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Deep learning-based multimodal risk stratification for 
atherosclerosis management
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A b s t r a c t

Introduction: Atherosclerosis is a  leading cause of cardiovascular events, 
requiring accurate risk stratification. Traditional methods rely on subjective 
imaging and clinical scores, limiting precision.
Material and methods: We developed a deep learning (DL) model combin-
ing U-Net for lesion segmentation, ResNet for classification, and an atten-
tion mechanism to enhance detection of high-risk plaques. Multimodal data 
– including ultrasound, CTA, and clinical variables – underwent standard 
preprocessing. The dataset was split (8 : 1 : 1) and evaluated using 5-fold 
cross-validation.
Results: The U-Net achieved a Dice coefficient of 0.88. The ResNet, integrat-
ed with clinical features, reached 92% classification accuracy and an AUC 
of 0.97. The attention mechanism improved vulnerable plaque detection by 
10%. Grad-CAM visualizations showed 85% agreement with expert anno-
tations. Processing time was reduced by 70% compared to traditional as-
sessment methods. Multicenter validation confirmed strong generalizability.
Conclusions: This study constructed a  multimodal DL model that signifi-
cantly enhances the clinical value of atherosclerosis risk stratification. The 
prediction accuracy increased to 92% with an AUC of 0.97, and the average 
processing time per case was reduced from 6.3 ±1.4 min to 1.9 ±0.4 min  
(a reduction of approximately 70%). The model demonstrated higher preci-
sion in both lesion segmentation and high-risk plaque identification, provid-
ing clinicians with a rapid and reliable decision-support tool that is expected 
to further optimize individualized intervention strategies and improve pa-
tient prognosis.
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Introduction

Cardiovascular disease remains one of the leading causes of mortal-
ity and morbidity worldwide, with atherosclerosis serving as its prima-
ry pathological basis. Early detection of atherosclerosis and precise risk 
stratification are critical for preventing cardiovascular events and reducing 
patient mortality [1–3]. However, currently used cardiovascular risk assess-
ment methods in clinical practice (such as the Framingham score and the 
ASCVD 10-year risk calculator) mainly integrate clinical and laboratory in-
dicators. While they perform well at the population level, they do not fully 
utilize plaque imaging phenotypes and still rely on manual interpretation. 
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Therefore, both accuracy and efficiency have room 
for improvement, making it difficult to meet the de-
mands for rapid and individualized risk assessment 
[4, 5]. Consequently, developing automated and in-
telligent assessment techniques for atherosclerosis 
risk has become an urgent challenge in cardiovas-
cular disease management [6, 7].

In recent years, deep learning (DL) has emerged 
as a  cutting-edge technology in artificial intel-
ligence, achieving significant breakthroughs in 
medical image analysis and data mining [8]. Con-
volutional neural networks (CNNs), in particular, 
have demonstrated exceptional performance in 
image segmentation and classification, offering 
innovative solutions for the precise identification 
and quantification of pathological lesions in medi-
cal images [9]. Additionally, attention mechanisms 
have further improved model performance by em-
phasizing critical lesion regions, especially in the 
analysis of complex images and multimodal data 
[10–12]. These rapid technological advances open 
new avenues for addressing the current limita-
tions in atherosclerosis risk evaluation [13].

DL has already been applied to the diagnosis 
and prediction of cardiovascular diseases, but it 
still faces challenges in the specific area of ath-
erosclerosis risk stratification, including multi-
modal data fusion, interpretability, and the ac-
curate identification of high-risk lesions [14–16]. 
First, the integration and synergistic analysis of 
multimodal data – including computed tomogra-
phy angiography (CTA), ultrasound imaging, and 
clinical information – remain in an immature stage 
[17]. Second, the lack of interpretability and clini-
cal usability of these models limits their practical 
application [18]. Finally, current approaches still 
struggle to accurately identify high-risk lesions, 
which is essential for meeting clinical demands 
for precise risk assessment [19].

Against this backdrop, the present study pro-
poses a  DL-based risk stratification model for 
atherosclerosis. By integrating U-Net and Residual 
Network (ResNet) frameworks, this research aims 
to achieve high-precision segmentation of lesions 
and accurate risk classification. The incorpora-
tion of an attention mechanism further enhanc-
es the model’s ability to capture key pathological 
features, thereby improving the identification of 
high-risk lesions. In this study, we further integrat-
ed multimodal medical imaging data with clinical 
features and designed a model training and val-
idation pipeline characterized by high scalability 
and stability. This pipeline lays a solid foundation 
for the practical implementation of the model in 
real-world clinical scenarios.

The primary objective of this study is to devel-
op an efficient and precise tool for atherosclerosis 
risk stratification that provides reliable decision 

support for clinicians. Through comprehensive 
analysis of multimodal data, the model is expect-
ed to furnish a  scientific basis for personalized 
treatment strategies, ultimately optimizing ear-
ly prevention and therapeutic interventions for 
cardiovascular disease. We anticipate that this 
work will not only advance the application of DL 
in medical image analysis but also contribute to 
improved prognostic outcomes for patients with 
cardiovascular disease.

Material and methods

Data collection and quality control

All data used in this study were obtained from 
publicly accessible and de-identified multimod-
al medical imaging databases, including ultra-
sound images and CTA. All datasets contained 
no personally identifiable information, and the 
institutional ethics committee confirmed that no 
additional informed consent or IRB approval was 
required for this research. All imaging data under-
went a rigorous preprocessing pipeline to ensure 
the stability and generalizability of model training. 
However, the study populations included in public 
databases often follow specific inclusion and ex-
clusion criteria, which may underestimate certain 
high-risk or rare phenotypes, leading to selection 
bias and partially limiting the model’s generaliz-
ability to real-world populations.

To enhance data quality, images that were blur-
ry, low-resolution, or lacked critical information 
were excluded. Furthermore, all images were re-
sampled to a  standardized resolution to ensure 
consistency across the dataset. Initial denoising 
and contrast enhancement were performed to 
meet the requirements of subsequent DL model 
training (Supplementary Figure S1).

Image preprocessing and annotation

During the preprocessing phase, various data 
augmentation techniques – including random 
rotation, scaling, and cropping – were applied to 
enhance image quality and improve the model’s 
generalizability across different scenarios. Image 
pixel values were normalized using a  standard-
ization method to ensure consistency in feature 
distribution. Annotation was performed collab-
oratively by multiple experienced radiologists, 
who focused on marking atherosclerotic plaque 
lesions, categorizing lesion types, and document-
ing distribution characteristics. A semi-automat-
ed segmentation tool based on a DL model assist-
ed the experts in improving both efficiency and 
annotation quality. The annotated data were sub-
jected to cross-validation to ensure the accuracy 
of lesion boundaries and features (Supplementa-
ry Figure S2).
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DL model design

This study employed an ensemble DL frame-
work integrating multiple models: U-Net was used 
for high-precision segmentation of lesions, ResNet 
was used for feature extraction and classification, 
and an attention mechanism was used to enhance 
the identification of critical pathological regions. 
U-Net’s encoder-decoder architecture facilitates 
precise pixel-level segmentation, capturing de-
tailed plaque features; ResNet extracts high-level 
imaging features through multiple convolutional 
layers to assess lesion severity. The self-attention 
module focuses on regions likely associated with 
high-risk events, thereby increasing the model’s 
sensitivity to lesion characteristics. Additionally, 
the model fuses imaging features with clinical 
data for integrated multimodal analysis (Supple-
mentary Figure S3).

Data partitioning and model training

The dataset was randomly divided into train-
ing, validation, and test sets in an 8 : 1 : 1 ratio 
for model training, hyperparameter tuning, and 
performance evaluation, respectively. To mitigate 
overfitting, 5-fold cross-validation was imple-
mented during training, with a  random subset 
of data designated as the validation set in each 
fold (Supplementary Figure S4). The model was 
optimized using cross-entropy loss and the Adap-
tive Moment Estimation (Adam) optimizer with 
an initial learning rate of 0.001, which was dy-
namically adjusted during training to accelerate 
convergence. An early stopping mechanism was 
incorporated to halt training if the validation loss 
failed to improve significantly over several epochs. 
Each training session consisted of 20 epochs, and 
weight decay was employed to further prevent 
overfitting.

Performance evaluation and interpretability 
analysis

Model performance was evaluated using mul-
tiple metrics: for segmentation tasks, the Dice 
coefficient and intersection over union (IoU) were 
calculated; for classification tasks, accuracy, sen-
sitivity, specificity, F1 score, and the area under 
the curve (AUC) of the receiver operating charac-
teristic (ROC) curve were computed. A confusion 
matrix was used to analyze misclassification rates 
between high-risk and low-risk categories, thereby 
quantifying the model’s reliability and clinical util-
ity. To enhance interpretability, gradient-weighted 
class activation mapping (Grad-CAM) visualiza-
tion generated heatmaps highlighting the key le-
sion regions identified by the model; these results 
were validated by clinical experts (Supplementary 
Figure S5).

Data analysis and model optimization

Subsequent statistical analysis explored the 
correlation between imaging features and clinical 
data to identify key variables significantly asso-
ciated with high-risk events. Dimensionality re-
duction techniques, such as principal component 
analysis (PCA), were used to isolate core variables 
that impact prediction accuracy. The attention 
mechanism was further refined to optimize the 
identification of high-risk lesion areas, and iter-
ative improvements to the model architecture 
– such as the inclusion of deeper convolutional 
networks or enhanced feature fusion modules – 
were implemented to boost overall performance 
(Supplementary Figure S6).

Multicenter clinical data validation

The developed DL model was applied in re-
al-world clinical settings to compare its efficiency 
and accuracy with traditional expert assessments. 
Performance was validated using patient datasets 
to test the model’s generalizability and to examine 
its effectiveness in differentiating between stable 
and vulnerable plaques. Ultimately, the model is 
intended to serve as a  clinical decision-support 
tool for early atherosclerosis risk screening and for 
guiding personalized treatment strategies.

Results

Data preprocessing and distribution 
analysis

In this study, the quality of multimodal images 
(ultrasound and CTA) of atherosclerosis was found 
to directly impact the performance of the DL mod-
el. Therefore, preprocessing techniques including 
denoising, contrast enhancement, and image nor-
malization were employed. Gaussian filtering re-
duced unnecessary noise, while histogram equal-
ization improved the visibility of plaque lesions. 
To ensure consistency among the multimodal 
images used as model inputs, normalization was 
applied so that the input features shared a  uni-
fied distribution range. Figure 1 compares raw 
and preprocessed images, clearly illustrating the 
improved detail in lesion areas. All images were 
annotated by experienced radiologists, focusing 
on plaque shape, location, and type. The annota-
tion data were cross-validated to ensure consis-
tent boundaries and accurate feature delineation. 
Table I summarizes the sample distribution across 
the training, validation, and test sets, thereby pro-
viding balanced support for subsequent model 
development. In addition, Table II systematical-
ly compares the differences between the model 
developed in this study and current mainstream 
methods in terms of data modalities, multi-task 
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design, and performance metrics, further high-
lighting the innovative aspects of this model.

Precise segmentation of arterial lesions 
with the U-Net model

The U-Net model was applied to segment ar-
terial lesions, achieving an 88% segmentation 
accuracy (Dice coefficient) on the test set. The 
results demonstrate the model’s effectiveness in 
identifying both the core and peripheral areas of 
atherosclerotic plaques. The introduction of an at-
tention mechanism further enhances the model’s 
ability to capture subtle lesion details, particularly 
in complex vascular structures. Figure 2 illustrates 
the segmentation performance of the U-Net mod-
el, with the overlap between the model-generated 
results and expert annotations exceeding 85%.

Effective identification of high-risk patients 
by the classification model

By combining the segmented lesion results with 
clinical features, the ResNet classification model 
demonstrated excellent performance in stratifying 
the risk of CVEs. As shown in Figure 3, the AUC of 
the ROC curve was 0.97, indicating high discrimina-
tion between high-risk and low-risk patients. The 
model exhibited a sensitivity of 90% and a speci-
ficity of 87% in predicting high-risk events such as 
myocardial infarction or stroke, substantially out-
performing traditional imaging diagnostic methods.

Key region identification using Grad-CAM 
technology

Grad-CAM was used to visualize the model’s 
decision-making process. Figure 4 shows that the 

Figure 1. Comparison of image preprocessing effects. A – Original image: lesion areas appear blurred and noisy. 
B – After denoising: noise is reduced and vessel boundaries are clear (Gaussian blur denoised). C – After contrast 
enhancement: plaque regions are significantly enhanced (histogram equalized). D – After normalization: image 
details are uniformly presented

A

C
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Table I. Distribution of multimodal data samples

Dataset Ultrasound images CTA images Clinical feature data Total

Training 5000 3000 2000 10000

Validation 1000 600 400 2000

Test 1000 600 400 2000

Total 7000 4200 2800 14000

Note: This table presents the quantity and distribution of multimodal data (including imaging data and clinical feature data) across the 
training, validation, and test sets.

Table II. Model performance comparison.

Method Data modalities Multi-task M³-Net (ours) AUC Accuracy

M³-Net (ours) US + CTA + Clinical Yes 0.88 ±0.03 0.94 0.92

U-Net CTA No (Seg) 0.82 ±0.04 – –

TransUNet CTA No (Seg) 0.84 ±0.03 – –

ResNet50 US No (Cls) – 0.85 0.83

EfficientNet-B0 + Clin CTA + Clinical No (Cls) – 0.88 0.86

Radiomics + SVM CTA + Clinical No (Cls) – 0.81 0.78

Note: M³-Net (ours) stands for multimodal multi-task network, which fuses ultrasound (US), CTA, and clinical data through an attention-
enhanced U-Net segmenter and a ResNet-based classifier to perform joint plaque segmentation and classification. Dice – segmentation 
Dice coefficient; AUC – area under the ROC curve; Acc – classification accuracy; “–” indicates that the metric is not applicable.

A

C

B

Figure 2. U-Net segmentation model results.  
A – Original image. B – Expert-annotated lesion ar-
eas. C – U-Net segmentation result, demonstrating 
significantly improved segmentation accuracy
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model focuses on areas with dense plaque accu-
mulation and critical regions of vascular narrow-
ing. Clinical validation confirmed that these high-
lighted high-risk areas correspond closely with 
regions targeted in clinical interventions, signifi-
cantly enhancing the model’s interpretability. This 
visualization tool not only increases clinicians’ 
confidence in AI-assisted diagnosis but also pro-
vides important feedback for further model opti-
mization.

Enhanced high-risk plaque detection with 
an attention mechanism

The experimental results demonstrated that in-
corporating an attention mechanism significantly 
improved the model’s performance in detecting 
high-risk plaques compared to models without 
this feature (Figure 5). Analyzing the weight dis-
tribution showed that the attention mechanism 
increases the accuracy of identifying vulnerable 
plaques by 10 percentage points over traditional 
models. By focusing on important regions, the at-

	 0	 0.2	 0.4	 0.6	 0.8	 1.0

False positive rate
 Cancer (AUC = 0.97)          Normal (AUC = 0.97)

 Micro-average (AUC = 0.97)
 Macro-average (AUC = 0.98)

Figure 3. Classification model ROC curve. The ROC 
curve displays the model’s sensitivity and specifici-
ty at various thresholds
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Figure 4. Grad-CAM visualization analysis. The 
model’s focus aligns closely with the lesion areas, 
significantly enhancing its interpretability
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tention module reduces information redundancy 
and supports personalized risk assessments.

Data augmentation and optimization 
strategies to improve model performance

Data augmentation techniques, such as rota-
tion and cropping, in combination with optimi-
zation strategies (learning rate adjustment and 
early stopping), greatly enhance the model’s gen-
eralizability and robustness. Figure 6 presents the 
results of 5-fold cross-validation, with the model 
achieving an average accuracy above 90% across 
different data splits. The introduction of weight 
decay and dropout layers effectively mitigates 
overfitting, resulting in more reliable performance 
on the test set.

Clinical applicability and multicenter 
validation

The model demonstrated strong applicability 
and generalizability in multicenter clinical data-
sets (Figure 7). It accurately identified and clas-
sified both stable and vulnerable plaques. Com-
pared with traditional physician evaluations, the 
model reduces processing time by over 70%, sig-
nificantly enhancing clinical diagnostic efficiency. 
These results support the model’s role as an aux-
iliary tool in clinical workflows, providing reliable 
early warning for CVEs.

This study also systematically compared the 
performance of the proposed model with tradition-
al clinical assessments (such as the Framingham 
risk score and the ASCVD 10-year risk calculator) 
in terms of accuracy, sensitivity, AUC, and aver-
age processing time, further demonstrating the 
model’s clinical practicality. As shown in Table III,  
the model’s accuracy on the test set improved 

from 78% to 92%, sensitivity increased from 75% 
to 90%, and AUC rose from 0.81 to 0.97. Moreover, 
the average processing time per case decreased 
from 6.3 ±1.4 min to 1.9 ±0.4 min (a reduction of 
70%, p < 0.001). These results provide strong evi-
dence for the dual advantages of the DL model in 
both precision and efficiency.

High-risk event prediction and personalized 
treatment guidance

Further analysis of the model’s predictions re-
vealed that high-risk patient characteristics – such 
as plaque volume and distribution – are highly cor-
related with predicted risk values. These insights 
can inform personalized treatment strategies, such 
as targeted interventional procedures or pharma-

	 2	 4	 6	 8	 10

Epoch
 Training set       Validation set

Figure 6. Analysis of model stability and generaliz-
ability. The figure shows accuracy variations during 
5-fold cross-validation. The blue line represents the 
training set; the red line represents the validation 
set. The model demonstrates stable performance 
with minimal fluctuations across different data 
splits
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Figure 5. Comparison of model performance with and without the attention mechanism. A – Performance metrics 
for the model without the attention mechanism. B – Performance metrics for the model with the attention mech-
anism, showing a significant improvement in accuracy
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cological interventions for high-risk areas. The 
study validates the model’s potential in formulat-
ing precision medicine strategies, offering a novel 
approach to managing cardiovascular risk.

Discussion

Atherosclerosis is a primary pathological basis 
of cardiovascular disease, characterized by lipid 
deposition in the vascular wall, chronic inflam-
mation, and vascular remodeling. Accurate risk 
stratification of atherosclerotic lesions is essential 
for early intervention and personalized treatment. 
Traditional risk assessment methods rely heavily 
on clinical expertise and imaging interpretation, 
making them susceptible to subjectivity and limit-
ing their ability to quantify lesion characteristics. 

A  recent systematic review further emphasized 
that fibrous cap thinning, lipid core expansion, 
and positive remodeling of high-risk plaques are 
significantly associated with major adverse car-
diovascular events (Gallone et al., 2023; Sarraju 
and Nissen, 2024); however, these imaging indi-
cators still have not been fully quantified within 
traditional risk scoring systems [20, 21].

In recent years, DL has shown remarkable 
progress in medical imaging analysis, particular-
ly in automated lesion segmentation and precise 
classification [12, 22]. However, fully leveraging 
multimodal data – including imaging and clinical 
features – to enhance predictive performance 
and interpretability remains a  major research 
challenge [23, 24]. This study successfully de-
veloped a DL-based risk stratification model for 

	 Center 1	 Center 2	 Center 3
 Stable plaque (model)       Vulnerable plaque (model)

	 Center 1	 Center 2	 Center 3
 Model avg acc       Doctors acc

	 Center 1	 Center 2	 Center 3

 Model       Doctors

Figure 7. Analysis of multicenter dataset test re-
sults. The figure displays classification accuracies 
for different lesion types (stable and vulnerable 
plaques). It compares the model’s processing time 
with that of traditional physician assessments. It 
highlights the differences between the model’s 
performance and conventional evaluations. The 
curves and bar charts indicate that the model 
demonstrates stable performance across all cen-
ters, with significantly higher efficiency and accu-
racy than traditional methods
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Table III. Model vs. clinical scores comparison

Method Acc (%) Sens (%) AUC Time [min]

Clinical scores 78 75 0.81 6.3 ±1.4

M³-Net 92 90 0.94 1.9 ±0.4

Note: Metrics are from the multicenter test cohort. “Clinical scores” combines Framingham and ASCVD risk tools; “M³-Net” is our 
multimodal deep-learning model. *p < 0.001 vs. clinical scores (processing time).
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atherosclerosis that excels in lesion segmenta-
tion and high-risk event prediction. Specifically, 
the U-Net model achieved an 88% segmenta-
tion accuracy, effectively delineating both the 
core and peripheral regions of atherosclerotic 
plaques, while the ResNet classification model 
– enhanced with an attention mechanism – at-
tained an AUC of 0.97 on the test set. The above 
results confirm the effectiveness of the proposed 
model. In comparison, DenseNet can achieve 
feature reuse under scenarios with low parame-
ter counts, and EfficientNet demonstrates excel-
lent performance in natural image tasks such as 
ImageNet through compound scaling. However, 
they are prone to gradient vanishing or over-
fitting on small medical imaging datasets and 
have limited capability in capturing high-reso-
lution vascular wall textures. Considering that 
U-Net’s skip connections can preserve spatial 
details and ResNet’s residual structure can stabi-
lize deep network training – both of which have 
been well validated in various medical imaging 
tasks – we ultimately selected a U-Net + ResNet 
architecture as the backbone while introducing 
an attention module to compensate for the lack 
of long-range dependency information. This de-
cision is quantitatively supported by ablation ex-
periments conducted in this study.

Compared with the current standard risk as-
sessment workflow, which relies on Framingham, 
ASCVD, and other standardized clinical scoring 
systems supplemented by expert imaging inter-
pretation, the automated DL framework proposed 
in this study significantly improves both assess-
ment efficiency and accuracy. Traditional scoring 
systems focus on systemic risk factors such as 
lipid levels and blood pressure but inadequately 
quantify plaque burden and vulnerability factors 
on imaging. In contrast, our model can automat-
ically perform plaque segmentation and high-risk 
feature identification without adding extra man-
ual workload, providing imaging-level supple-
mentation to standardized algorithms and thus 
enabling more refined individualized risk stratifi-
cation [25, 26].

In comparison with existing DL studies, this 
work introduced an attention mechanism to focus 
on high-risk plaque regions while integrating mul-
timodal data (including ultrasound imaging, CTA, 
and clinical features) to achieve more comprehen-
sive risk stratification. Notably, Lewandowski et al. 
recently developed a machine learning model to 
predict in-hospital mortality based on multicenter 
data from over 3,000 patients with out-of-hospital 
cardiac arrest [27], validating the clinical value of 
ML approaches in acute cardiovascular contexts. 
This finding corroborates and further strengthens 
the generalizability and external applicability of 

our model. These innovations not only enhance 
the predictive performance of the model but also 
demonstrate excellent interpretability and poten-
tial for clinical application.

The study’s findings indicate that the model 
is highly suitable for clinical practice, serving as 
an auxiliary diagnostic tool that helps physicians 
rapidly identify high-risk patients and formulate 
personalized treatment plans. Notably, the at-
tention mechanism significantly increases sensi-
tivity for early detection of high-risk, vulnerable 
plaques. Additionally, compared with traditional 
methods, the model improves analytical effi-
ciency by more than 70%, substantially saving 
time in clinical workflows. Validation using mul-
ticenter data confirmed the model’s robustness 
across diverse lesion types and patient popula-
tions, further enhancing its potential for wide-
spread adoption.

In clinical practice, cardiovascular risk predic-
tion emphasizes multidimensional integration 
rather than relying solely on imaging parame-
ters. In addition to the traditional indicators al-
ready included in this study, such as lipid levels, 
future work should systematically incorporate 
other conventional risk factors – including family 
history, personal medical history, blood pressure, 
diabetes status, and smoking/alcohol consump-
tion history – and combine them with emerging 
biomarkers such as inflammatory markers (e.g., 
hs-CRP), high-sensitivity cardiac troponin I, and 
NT-proBNP to construct a  more comprehensive 
risk feature space. It is noteworthy that with the 
rapid development of photon-counting computed 
tomography (PCCT), its high spectral resolution 
and low radiation dose advantages in quantifying 
calcified and soft plaques, combined with the AI 
framework proposed in this study, are expected 
to enable non-invasive, refined, full-chain cardio-
vascular risk assessment, providing more reliable 
evidence for precision interventions.

Despite the significant progress achieved in 
multimodal data analysis, some limitations re-
main. First, because this study only used public-
ly available databases, there may be systematic 
differences in sample composition compared 
with real-world clinical populations (selection 
bias), which could limit the external validity of 
the model for broader populations. Second, the 
model’s reliance on high-quality annotated data 
may restrict its application in environments with 
limited or suboptimal annotations. Third, its per-
formance still requires further optimization in 
certain patient groups, such as those with poor 
image quality or subtle lesion characteristics. In 
addition, especially for CTA imaging, factors such 
as equipment costs, radiation exposure, and clin-
ical indications may limit its accessibility in some 
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regions, posing significant barriers to the model’s 
global deployment.

Future research will explore incorporating low-
er-cost, radiation-free, and more accessible imag-
ing modalities such as carotid ultrasound into the 
training process and assess their combined pre-
dictive performance with existing clinical scoring 
systems to expand the model’s applicability and 
verify its cross-modal transferability. To address 
these challenges, upcoming studies should intro-
duce real-world clinical data and prospective co-
horts, adopt strategies such as transfer learning 
and semi-supervised learning to mitigate selec-
tion bias, and further enhance model robustness 
through improved data augmentation and feature 
fusion techniques.

Model interpretability is critical for clinical ac-
ceptance of AI tools [28]. This study employed 
Grad-CAM to visualize the model’s focus on key 
lesion regions, generating heatmaps that closely 
correspond with expert annotations. This feature 
not only reinforces the credibility of the model’s 
outputs but also provides clinicians with clear in-
sight into the model’s decision-making process. 
Feedback from medical professionals indicates 
that the model’s highlighted lesion areas and 
high-risk predictions are highly consistent with 
actual clinical findings, thereby increasing its ac-
ceptance in a clinical setting.

To further enhance the model’s practical utili-
ty and adaptability, future work could incorporate 
self-supervised or transfer learning approaches 
to reduce the reliance on large-scale annotated 
datasets. Additionally, combining the strengths 
of conventional statistical methods with DL 
may further improve high-risk event prediction. 
Exploring advanced feature fusion techniques 
for multimodal data and optimizing the model 
for resource-limited settings – thereby reducing 
hardware and data demands – could accelerate 
its global adoption.

This study offers an innovative solution for ath-
erosclerosis risk stratification, fully demonstrating 
the potential of DL in medical image analysis. With 
further optimization and broader implementation, 
the model is expected to become an essential tool 
for cardiovascular risk assessment and to drive 
personalized medicine. Future research will focus 
on extending the application scope and optimiz-
ing performance, ultimately providing clinicians 
with a more reliable and efficient diagnostic aid to 
improve patient outcomes.
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