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 Abstract
Introduction
Fatty acids mediate pulmonary inflammation through cytokine regulation, interactions with the
tryptophan-kynurenine pathway, and mediators like 18-HEPE that boost interferon-λ. To systematically
dissect these mechanisms and their translational implications, we pioneered a novel framework
integrating bidirectional two-sample mendelian randomization (MR) with multi-algorithm machine
learning.

Material and methods
We obtained Single nucleotide polymorphisms (SNPs) significantly associated with eight plasma fatty
acids from genome-wide association study (GWAS) summary statistics and used them as instrumental
variables in bidirectional two sample MR across six pneumonia phenotypes (Pneumonia, Asthma
related pneumonia, Bacterial pneumonia, Critical pneumonia, Viral pneumonia, and Lobar pnemonia).
Causal estimates were calculated using inverse variance weighting (IVW), which combines SNP-
specific Wald ratios weighted by the inverse of their variance, with MR-Egger and weighted median
approaches for sensitivity analysis. Transcriptomic data were then analyzed by Lasso regression,
support vector machine recursive feature elimination and random forest to identify fatty acid
metabolism–related biomarker candidates.

Results
MR analysis suggests potential causal associations between omega-6 fatty acids and critical
pneumonia (OR:1.28, CI:1.01-1.61, P=0.038), Linoleic acids (LA) and bacterial pneumonia (OR:0.85,
CI:0.73-0.99, P=0.047), and Docosahexaenoic fatty acids (DHA) and pneumonia (OR:0.83,
CI:0.74-0.93, P=0.002). Moreover, ACAA1 and OLAH, which are genes involved in fatty acid
metabolism, were identified as potential candidate biomarkers for pneumonia.

Conclusions
Our study employed MR analysis to establish a causal link between omega-6, LA and DHA with
pneumonia. Additionally, through transcriptomic analysis, we identified plasma fatty acid metabolism-
associated biomarkers that may serve as diagnostic indicators for pneumonia.

Prep
rin

t



 1 

Causality analysis of plasma fatty acids with pneumonia: identifying 1 

diagnostic biomarkers through transcriptome-wide association study 2 

 3 

Authors 4 

Xubin Chen1, Xiaoyu Wu2, Pingan Mao1
, Zijin Guo1, Xiaomei Wang3,* 5 

  6 

Affiliations 7 

1 Department of Rehabilitation Medicine, Lishui People’s Hospital, Lishui, 32300, 8 

Zhejiang, China 9 

2 Department of Neurosurgery, Lishui People’s Hospital, Lishui, 32300, Zhejiang, 10 

China 11 

3 Department of Hepatology and Infectious Diseases, Lishui People's Hospital, Lishui, 12 

32300, Zhejiang, China 13 

 14 

*Corresponding author information: 15 

Xiaomei Wang, Department of Hepatology and Infectious Diseases, Lishui People's 16 

Hospital; No.15 Dazhong Street, Liandu District, Lishui, 323000, Zhejiang , China;  17 

Tel:+86- 18957092292; 18 

Email: xmw18957092292@163.com 19 

  20 Prep
rin

t



 2 

Abstract 21 

Background: Fatty acids mediate pulmonary inflammation through cytokine 22 

regulation, interactions with the tryptophan-kynurenine pathway, and mediators like 23 

18-HEPE that boost interferon-λ. To systematically dissect these mechanisms and 24 

their translational implications, we pioneered a novel framework integrating 25 

bidirectional two-sample mendelian randomization (MR) with multi-algorithm 26 

machine learning. This approach not only quantifies causal relationships between fatty 27 

acids and inflammatory outcomes but also identifies clinically actionable diagnostic 28 

biomarkers. 29 

Methods: We obtained Single nucleotide polymorphisms (SNPs) significantly 30 

associated with eight plasma fatty acids from genome-wide association study (GWAS) 31 

summary statistics and used them as instrumental variables in bidirectional two sample 32 

MR across six pneumonia phenotypes (Pneumonia, Asthma related pneumonia, 33 

Bacterial pneumonia, Critical pneumonia, Viral pneumonia, and Lobar pnemonia). 34 

Causal estimates were calculated using inverse variance weighting (IVW), which 35 

combines SNP-specific Wald ratios weighted by the inverse of their variance, with MR-36 

Egger and weighted median approaches for sensitivity analysis. Transcriptomic data 37 

were then analyzed by Lasso regression, support vector machine recursive feature 38 

elimination and random forest to identify fatty acid metabolism–related biomarker 39 

candidates. 40 

Results: MR analysis suggests potential causal associations between omega-6 fatty 41 

acids and critical pneumonia (OR:1.28, CI:1.01-1.61, P=0.038), Linoleic acids (LA) 42 

and bacterial pneumonia (OR:0.85, CI:0.73-0.99, P=0.047), and Docosahexaenoic fatty 43 

acids (DHA) and pneumonia (OR:0.83, CI:0.74-0.93, P=0.002). Moreover, ACAA1 44 

and OLAH, which are genes involved in fatty acid metabolism, were identified as 45 

potential candidate biomarkers for pneumonia. 46 

Conclusions: Our study employed MR analysis to establish a causal link between 47 

omega-6, LA and DHA with pneumonia. Additionally, through transcriptomic analysis, 48 

we identified plasma fatty acid metabolism-associated biomarkers that may serve as 49 
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diagnostic indicators for pneumonia. 50 

Keywords: Plasma Fatty acid, Pneumonia, Mendelian randomization, Biomarkers, 51 

Machine learning algorithms 52 

 53 

Highlights 54 

1. Significant Associations Found: MR analysis reveals potential causal associations 55 

between specific fatty acids and pneumonia subtypes. 56 

2. Machine-Learning for Biomarker Discovery: Applies machine-learning 57 

algorithms to identify diagnostic biomarkers among differentially expressed genes. 58 

Novel Biomarker Candidates: Identifies ACAA1 and OLAH, genes in fatty acid 59 

metabolism, as potential pneumonia biomarkers. 60 

 61 

Table (1): List of Abbreviations 62 

Abbreviation Definition 

MR Mendelian randomization 

GWAS Genome-wide association study 

SNP Single nucleotide polymorphism 

IVW Inverse variance weighting 

OR Odds ratio 

LA Linoleic acids 

DHA Docosahexaenoic acid 

PUFA Polyunsaturated fatty acid 

FA Fatty acid 

SFA Saturated fatty acid 

MUFA Monounsaturated fatty acids 

T2D Type 2 diabetes 

COPD Chronic obstructive pulmonary disease 

BMI Body mass index 

IEU Integrative epidemiology unit 

IV Instrumental variable 

MR-PRESSO 
Mendelian randomization pleiotropy residual sum and 

outlier 

FDR False discovery rate 

GO Gene ontology 

KEGG Kyoto encyclopedia of genes and genomes 

LASSO Least absolute shrinkage and selection operator 

SVM-RFE Support vector machine recursive feature elimination  

CIBERSORT Cell-type identification by estimating relative subsets of 
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RNA transcripts 

GSEA Gene set enrichment analysis 

ROC Receiver operating characteristic 

PCA Principal component analysis 

Treg Regulatory T cell 

NK Neutral killer 

 63 

Introduction 64 

Pneumonia, a global health challenge driven by infectious pathogens, is 65 

aggravated by antibiotic resistance and chronic respiratory comorbidities [1]. This study 66 

focuses on pathogen-mediated mechanisms, distinguishing pneumonia from non-67 

infectious pneumonitis caused by autoimmune disorders or chemical exposures [2]. 68 

Severe cases often progress to systemic complications, including coagulation 69 

abnormalities such as disseminated intravascular coagulation, distinct from coagulation 70 

necrosis [3]. These abnormalities synergize with cytokine storms, elevating 71 

cardiovascular mortality risk through endothelial dysfunction and myocardial 72 

suppression [4, 5]. Despite advances in therapy, pneumonia remains a leading global 73 

cause of morbidity and mortality, underscoring the urgency to elucidate pathogenic 74 

mechanisms and advance novel therapies [6]. 75 

Fatty acids are essential membrane phospholipids and bioactive mediators that 76 

regulate immune cell function and inflammatory signaling [7, 8]. Dysregulated lipid 77 

profiles, particularly imbalances in circulating polyunsaturated fatty acids (PUFAs), 78 

influence lung pathology through membrane-mediated immune cell dysfunction and 79 

the production of lipid signaling molecules [9]. This mechanistic duality is exemplified 80 

in chronic obstructive pulmonary disease, where skewed omega-3 to omega-6 PUFA 81 

ratios correlate with sustained airway inflammatio [10]. The interplay extends to acute 82 

infectious contexts, as observed in severe pneumonia patients exhibiting activation of 83 

the tryptophan-kynurenine axis [11]. During this process, indoleamine 2,3-dioxygenase 84 

catalyzes tryptophan conversion into immunomodulatory kynurenines that suppress T-85 

cell activity, establishing a regulatory network with PUFA-derived inflammatory 86 

mediators, a phenomenon inversely associated with protective PUFA ratios [11-13].  87 
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Experimental evidence underscores therapeutic opportunities, with murine models 88 

demonstrating omega-3 fatty acids attenuate bacterial pneumonia severity through 89 

coordinated cytokine modulation, reducing pro-inflammatory IL-6 while elevating anti-90 

inflammatory IL-10 [14-16]. Parallel studies reveal butyrate-induced omega-3 91 

metabolites exert antiviral effects via interferon-λ  induction in viral pneumonia 92 

models [17]. Despite these mechanistic insights, translational challenges persist in 93 

distinguishing observational associations from causal relationships, particularly 94 

regarding pneumonia-specific lipid signatures and targeted therapeutic strategies. 95 

To address these gaps, this study employed bidirectional two-sample Mendelian 96 

randomization (MR) to causally link eight plasma fatty acids to six distinct pneumonia 97 

phenotypes. The workflow of this study was illustrated in Fig. (1). Building on MR-98 

derived causal evidence, we further applied three complementary machine-learning 99 

algorithms to transcriptomic data, identifying diagnostic biomarkers of fatty acid 100 

metabolism. This integrated methodology synergistically combined genetic causality 101 

analysis with multi-algorithm biomarker identification, establishing unified framework 102 

in pneumonia research that bridged mechanistic discovery and clinical translation. 103 
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 104 

Fig. (1): Work flow of this study. 105 

 106 

 107 

Material and methods 108 

Study design 109 

We first applied a two-sample MR framework to evaluate the causal effect of 110 

circulating plasma fatty acids on pneumonia risk. To address potential reverse causation, 111 

we then performed a reciprocal MR analysis [18], treating pneumonia liability as the 112 

exposure and plasma fatty acid levels as the outcome. In every MR analysis, we ensured 113 

that instrumental variables (IVs) satisfied the three core assumptions: strong association 114 

with the exposure, independence from confounders, and influence on the outcome 115 

exclusively through the exposure pathway [19]. To minimize bias from population 116 

stratification, all summary statistics were drawn from cohorts of European ancestry (Fig. 117 
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2). 118 

 119 

Fig. (2): Flow chart of the Mendelian randomization study design. 120 

 121 

Data source 122 

Genome-wide association study (GWAS) summary statistics for eight plasma fatty 123 

acid (FA) traits—omega-3, omega-6, omega-6/omega-3 ratio, linoleic acid (LA), 124 

docosahexaenoic acid (DHA), saturated fatty acids (SFA), monounsaturated fatty acids 125 

(MUFA), and PUFA—were obtained from the OpenGWAS platform. These data derive 126 

from 115,006 European ancestry participants in the UK Biobank. Pneumonia-related 127 

GWAS data were accessed via the IEU OpenGWAS repository and included overall 128 

pneumonia, severe pneumonia, lobar pneumonia, asthma-related pneumonia, viral 129 

pneumonia , and bacterial pneumonia. All summary statistics were drawn from cohorts 130 

of European ancestry, with detailed population descriptors provided in Table (2).  131 

 132 

Table (2): Detailed information of the genome-wide association studies in our analysis. 133 

Phenotype 
PMID 

(ID) 

Sample size 

(case/control) 
Population 

Prep
rin

t



 8 

Omega-3 fatty acid levels 
35213538 

(ebi-a-GCST90092931) 

115006 

/ 
European 

Omega-6 fatty acid levels 
35213538 

(ebi-a-GCST90092933) 

115006 

/ 
European 

Ratio of omega-6 fatty acids to 

omega-3 fatty acids 

35213538 

(ebi-a-GCST90092934) 

115006 

/ 
European 

Linoleic acid levels 
35213538 

(ebi-a-GCST90092880) 

115006 

/ 
European 

Docosahexaenoic acid levels 
35213538 

(ebi-a-GCST90092816) 

115006 

/ 
European 

Saturated fatty acid levels 
35213538 

(ebi-a-GCST90092980) 

115006 

/ 
European 

Monounsaturated fatty acid 

levels 

35213538 

(ebi-a-GCST90092928) 

115006 

/ 
European 

Polyunsaturated fatty acid 

levels 

35213538 

(ebi-a-GCST90092939) 

115006 

/ 
European 

Pneumonia 
34594039 

(ebi-a-GCST90018901) 

480299 

(16887/463412) 
European 

Asthma related pneumonia 
/ 

(ukb-d-ASTHMA_PNEUMONIA) 

361194 

(5900/355294) 
European 

Bacterial pneumonia 
/ 

(finn-b-J10_PNEUMOBACT) 

196855 

(7987/188868) 
European 

Critical pneumonia 
/ 

(ieu-b-4978) 

431365 

(2758/428607) 
European 

Viral pneumonia 
/ 

(finn-b-J10_VIRALPNEUMO) 

189568 

(700/188868) 
European 

Lobar pnemonia 
/ 

(ukb-b-6576) 

463010 

(2359/460651) 
European 

 134 
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Instrumental variants selection 135 

The criteria for selecting IVs were as follows: SNP Selection: SNPs were used as 136 

IVs, with a genome-wide significance threshold of P < 5e-08. However, for some 137 

pneumonitis-related traits, the number of SNPs meeting this threshold was limited. To 138 

increase the number of available SNPs, we relaxed the threshold to P < 5e-06, and for 139 

lobar pneumonia, a threshold of P < 5e-05 was applied. Clumping: SNPs were clumped 140 

to remove the effect of linkage disequilibrium (r² < 0.001, with a region length of 10,000 141 

kb). F-Statistic: The F-statistic was used to assess the strength of IVs. SNPs with an F-142 

statistic > 10 were retained, indicating strong instrument strength. Weak instruments 143 

were excluded. Allelic Consistency: SNPs associated with both exposure and outcome 144 

were aligned in terms of allelic direction. Palindromic SNPs and SNPs with inconsistent 145 

allelic directions were removed. MR-PRESSO Outliers: Outlier SNPs identified by the 146 

MR-PRESSO test were excluded from the analysis. 147 

 148 

MR analysis 149 

The primary causal estimates were obtained using the inverse variance weighted 150 

(IVW) method under a random effects model, supplemented by MR-Egger regression, 151 

weighted median, weighted mode, and simple mode analyses to assess robustness. Prior 152 

to MR, any SNPs associated with known confounders (BMI, waist measures, smoking, 153 

alcohol) were excluded. For reverse MR, the same procedure was followed with 154 

pneumonia as the exposure and individual fatty acid traits as outcomes. 155 

 156 

Sensitivity Analysis 157 

To assess the robustness of the identified associations, we conducted sensitivity 158 

analyses using three methods: heterogeneity test, horizontal pleiotropy test, and leave-159 

one-out test. Cochran's Q test was used to assess SNP heterogeneity. If heterogeneity 160 

was detected (P < 0.05), a random-effects IVW model was applied. The presence of 161 

horizontal pleiotropy was evaluated using MR-Egger regression, with statistical 162 

significance of the intercept (P < 0.05) indicating pleiotropy. Additionally, MR-163 

PRESSO was used to identify and remove outliers. A "leave-one-out" test was 164 
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performed to evaluate the impact of individual SNPs on the causal associations by 165 

sequentially excluding each SNP. 166 

 167 

Transcriptomic Data Acquisition and Differential Expression 168 

We retrieved two gene expression datasets from the Gene Expression Omnibus 169 

(GEO): GSE40012 (training set: 16 pneumonia, 18 controls) and GSE196399 170 

(validation set: 56 pneumonia, 21 controls). A curated list of 308 fatty acid metabolism-171 

related genes was compiled from the MSigDB Hallmark, KEGG, and Reactome 172 

collections (version 2024.1). Differential expression between pneumonia and control 173 

samples was determined using the limma package in R, with thresholds of |log2 fold 174 

change| > 1 and adjusted P < 0.05 (Benjamini–Hochberg correction).  175 

 176 

Functional enrichment Analysis 177 

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 178 

pathway enrichment analyses were conducted in R with the clusterProfiler package. We 179 

controlled for multiple testing using the Benjamini-Hochberg method and considered 180 

pathways with adjusted P < 0.05 to be significantly enriched. 181 

 182 

Feature Selection and Predictive Modeling 183 

To identify key fatty acid-related genes predictive of pneumonia, we applied three 184 

machine learning approaches: least absolute shrinkage and selection operator (LASSO) 185 

regression for initial feature retention, support vector machine recursive feature 186 

elimination (SVM-RFE) with ten-fold cross-validation for iterative refinement, and 187 

random forest for ranking variable importance. The intersection of genes selected by 188 

all three methods constituted the final feature set used in model construction. 189 

 190 

Immune infiltration analysis 191 

Immune cell proportions were estimated using the CIBERSORT algorithm 192 

implemented in the IOBR R package, and single sample gene set enrichment analysis 193 

(ssGSEA) of immune-related functions was performed via the GSVA package. 194 
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Differences between pneumonia and control groups were tested by Wilcoxon rank sum 195 

test with P < 0.05 denoting significance. 196 

 197 

Statistical Analysis 198 

All analyses were executed in R version 4.4.1, utilizing the TwoSampleMR (0.6.8) 199 

[20], MRPRESSO (1.0) [21], limma [22], clusterProfiler [23] and IOBR [24] packages. 200 

Statistical significance was defined as two-sided P < 0.05 throughout. 201 

 202 

Results 203 

Causal relationship between fatty acids and pneumonia 204 

Following rigorous selection and harmonization of genetic IVs, along with MR-205 

PRESSO-mediated removal of pleiotropic outliers, we employed IVW MR to estimate 206 

causal effects of eight plasma fatty acids on pneumonia risk. We observed that higher 207 

omega-6 levels were associated with increased risk of severe pneumonia (OR=1.28, 208 

95% CI: 1.01-1.61, P=0.038), whereas greater LA levels conferred protection against 209 

bacterial pneumonia (OR=0.85, 95% CI: 0.73-0.99, P=0.047). Similarly, elevated DHA 210 

was inversely related to overall pneumonia incidence (OR=0.83, 95% CI: 0.74-0.93, 211 

P=0.002). No statistically significant causal links were detected for the remaining fatty 212 

acids (Fig. 3). Consistent direction and magnitude across MR-Egger, weighted median, 213 

weighted and simple mode analyses reinforced these findings (Supplementary Table 1), 214 

and the complete lists of SNP instruments appear in Supplementary Tables (2-7) with 215 

corresponding scatter and forest plots in Supplementary Figures (1-2). 216 

 217 
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Fig. (3): Univariable Mendelian randomization results of Plasma fatty acid on Pneumonia.  218 

 219 

Sensitivity analysis 220 

To verify robustness, we assessed heterogeneity and pleiotropy across instruments. 221 

For DHA, Cochran’s Q test indicated no heterogeneity (P>0.05), whereas omega-6 and 222 

LA instruments displayed modest heterogeneity (P<0.05) but no evidence of horizontal 223 

pleiotropy by MR-Egger intercept (Table 3). All instruments demonstrated adequate 224 

strength (F>30; Supplementary Tables 8-10). Applying a random effects IVW model 225 

for heterogeneous traits did not materially alter effect estimates (P<0.05), and MR-226 

PRESSO detected no additional outliers. Symmetrical funnel plots (Supplementary 227 

Figure 3) and stable leave-one-out analyses (Supplementary Figure 4) further support 228 

the reliability of these causal inferences (Supplementary Table 11). 229 

Table (3): Sensitivity analysis of causal relationship between plasma fatty acid and 230 

pneumonia subtypes. 231 

Exposure Outcome 

Heterogeneity Pleiotropy 

MR-Egger 

Statistics 

Q 

MR-

Egger 

P-Value 

IVW 

Statistics 

Q 

IVW 

P-Value 
P-Value 

Docosahexaenoic 

acid levels 
Pneumonia 11.74 0.698 14.78 0.541  0.102 

Omega-6 fatty acid 

levels 

Critical 

pneumonia 
62.52  0.022  63.00  0.025  0.573 

Linoleic acid levels 
Bacterial 

pneumonia 
48.62 0.030 49.33 0.034 0.499 

 232 

Reverse causality between fatty acids and pneumonia 233 

In reverse MR, we tested whether genetic liability to pneumonia subtypes 234 

influences fatty acid levels. Notably, higher genetic risk of viral pneumonia was 235 

causally linked to marginally lower omega-3 levels (OR=0.98, 95% CI: 0.97-0.99, 236 

P=0.006) and to an elevated omega-6/omega-3 ratio (OR=1.02, 95% CI: 1.01-1.04, 237 

P=0.005) (Fig. 4). A random effects IVW framework accounted for heterogeneity 238 

(P<0.05), and sensitivity plots (Supplementary Figures. 5-8) confirmed absence of bias 239 

or influential SNPs. 240 
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 241 

Fig. (4): Reverse Mendelian randomization estimates of Pneumonia on Plasma fatty acid. 242 

 243 

Identification of Differential Genes Associated with Fatty Acid Metabolism 244 

Analyzing GSE40012, we identified 549 genes differentially expressed between 245 

pneumonia patients and controls (|log2 FC|>1, P<0.05), including 251 up-regulated and 246 

298 down-regulated (Fig. 5A). Intersection with our curated set of 308 fatty acid 247 

metabolism genes yielded 16 overlapping targets (Fig. 5B). Correlation analysis 248 

revealed strong positive co-expression among most of these 16 genes (Fig. 5C). GO 249 

enrichment highlighted their roles in fatty acid and unsaturated fatty acid metabolism, 250 

carboxylic acid biosynthesis, and localization to peroxisomes, outer mitochondrial 251 

membranes, and rough endoplasmic reticulum (Fig. 5D-F). 252 
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 253 

Fig. (5): Differential Gene Expression and Functional Enrichment Analysis of 254 

Fatty Acid Metabolism-Related Genes in Pneumonia. (A) Volcano plot depicting 255 

differential gene expression in pneumonia. (B) Intersection of fatty acid metabolism-256 

related genes and pneumonia differential genes. (C) Correlation heatmap of differential 257 

genes associated with fatty acid metabolism. (D-F) GO enrichment map of 16 fatty acid 258 

metabolism differential genes enriched in BP, CC and MF.  259 

BP: Biological Process, CC: Cellular Component, CC: Cellular Component 260 

 261 

Identification of key fatty acid metabolism genes in pneumonia 262 

In order to exclude unimportant genes and identify key genes associated with 263 

pneumonia, we employed three machine learning algorithms for gene selection. 264 

Starting with 16 fatty acid metabolism-related differential genes, we applied Lasso 265 

regression, which selected 9 genes (Fig. 6A-B), SVM-RFE selected 5 genes (Fig. 6C), 266 

and the random forest algorithm identified 7 genes (Fig. 6D-E). Only ACAA1 and 267 

OLAH were consistently selected by all three methods (Fig. 6F). In the training cohort 268 

(GSE40012), ROC AUCs were 0.969 for ACAA1 and 0.979 for OLAH (Fig. 6G); in 269 
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validation (GSE196399), AUCs were 0.781 and 0.965, respectively (Fig. 6H). PCA 270 

based on these two genes demonstrated clear separation of cases versus controls 271 

(Fig. 6I), and expression differences were highly significant in both datasets (Fig. 6J-272 

K). 273 

 274 

Fig. (6): Identification and validation of pneumonia diagnostic markers. (A) Lasso 275 

regression and (B) 10 fold cross validation diagram. (C) Error rate curve based on 276 

SVM-RFE algorithm with 10 fold cross validation. (D) The relationship between 277 

random forest error rate and the number of classification trees and (E) gene importance. 278 

(F) Genes shared by three machine learning models. (G) ROC curves of each signature 279 

gene in the training set (GSE40012) and (H) validation set (GSE196399) of the 280 
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diagnostic markers. (I) PCA plot of training set (GSE40012). (J) Expression of 281 

signature genes in the training set (GSE40012) and (K) validation set (GSE196399) in 282 

pneumonia and normal samples. 283 

 284 

Immune Cell Infiltration and Immune-Related Function in Pneumonia 285 

To characterize immune microenvironment alterations in pneumonia, we first 286 

applied CIBERSORT to quantify immune cell proportions in pneumonia versus healthy 287 

lung tissues (Fig. 7A-B). Compared to controls, pneumonia tissues showed significant 288 

increases in neutrophils, monocytes, M0 macrophages, and gamma-delta T cells, 289 

accompanied by reduced regulatory T cells (Tregs), resting NK cells, and CD8+ T cells. 290 

Next, to explore broader functional implications, we performed single-sample gene set 291 

enrichment analysis (ssGSEA), which revealed distinct immune-related functional 292 

signatures and infiltration patterns between pneumonia patients and controls (Fig. 7C). 293 

Notably, ssGSEA further demonstrated that elevated expression of ACAA1 and OLAH 294 

correlated positively with macrophage infiltration but inversely with cytotoxic immune 295 

functions (Fig. 7D-E), suggesting these fatty acid metabolism-related genes may drive 296 

macrophage polarization while suppressing adaptive immunity during pneumonia 297 

pathogenesis. 298 
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Fig. (7): Analysis of immune cell infiltration in patients with pneumonia and 300 

normal controls. (A) Distribution and (B) differences in levels of immune cell 301 

infiltration between normal samples and pneumonia patients. (C) Differences in 302 

immune cell infiltration between normal and pneumonia patients using ssGSEA. (D) 303 

Association between the ACAA1, (E) OLAH and immune cell infiltration levels. The 304 

circle size indicates the correlation strength, with larger circles representing stronger 305 

correlations. The color reflects the p-value significance: red for p < 0.001, yellow for p 306 

< 0.01, and green for p < 0.05. 307 

 308 

Discussion 309 

In this study, we investigated the causal relationships between plasma fatty acids 310 

and pneumonia, with a specific emphasis on identifying key genes involved in fatty 311 

acid metabolism and their potential roles in disease pathogenesis. Our MR analysis 312 

revealed that LA and DHA are causally associated with a reduced risk of pneumonia, 313 

suggesting their protective effects. These findings support and extend earlier 314 

observational studies, which have reported anti-inflammatory and immunomodulatory 315 

effects of omega-3 and omega-6 fatty acids in various inflammatory conditions, 316 

including pneumonia [25, 26]. For instance, a large prospective cohort study 317 

demonstrated that every 1-gram increase in LA intake was associated with a 4% 318 

reduction in pneumonia risk [27], which is consistent with our MR-derived protective 319 

estimate for LA. 320 

Our study further confirms the anti-inflammatory role of omega-3 fatty acids, 321 

particularly DHA, which are known to reduce the severity of inflammatory diseases by 322 

modulating immune responses [14]. While previous observational studies have 323 

suggested a beneficial association, our MR analysis strengthens the causal 324 

interpretation, overcoming potential confounding and reverse causation. On the other 325 

hand, omega-6 fatty acids are generally considered pro-inflammatory and have been 326 

associated with adverse outcomes in certain pneumonia subtypes [28, 29]. Our results 327 

support this view, as genetically predicted higher omega-6 levels were associated with 328 
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increased risk of severe pneumonia, thereby aligning with earlier evidence and 329 

reinforcing the dualistic role of fatty acids in inflammation. 330 

In animal models, omega-3 supplementation has been shown to mitigate 331 

pneumonia severity by suppressing microglial activation and inflammatory cytokine 332 

release through HMGB1 and TLR4/NF-κB signaling pathways [14, 30]. Furthermore, 333 

omega-3 and its derivatives have been shown to alleviate intestinal inflammation and 334 

modulate systemic immune responses in diseases such as ulcerative colitis [31, 32]. 335 

Short-chain fatty acids, another important class of fatty acids, exert anti-inflammatory 336 

effects by lowering colonic pH and limiting the growth of pathogenic bacteria [33]. 337 

These consistent findings across different disease models underscore the importance of 338 

fatty acid metabolism in modulating immune function and inflammatory responses.  339 

We further explored potential molecular mediators linking fatty acids to 340 

pneumonia by applying machine learning algorithms. Through this approach, we 341 

identified ACAA1 and OLAH as key genes involved in fatty acid metabolism. ACAA1 342 

plays a crucial role in mitochondrial β-oxidation, while OLAH is involved in fatty 343 

acid biosynthesis and homeostasis [34, 35]. Previous studies have linked ACAA1 344 

variants with asthma and other inflammatory airway diseases, suggesting its 345 

involvement in immune regulation [36]. The identification of these genes complements 346 

and expands previous research by offering specific molecular targets through which 347 

fatty acids may exert their protective effects in pneumonia.  348 

Infiltration analysis of immune cells revealed significant differences between 349 

pneumonia patients and healthy individuals. In line with previous reports, healthy 350 

controls exhibited higher infiltration of Tregs, resting NK cells, and CD8+ T cells, 351 

whereas pneumonia patients showed increased infiltration of neutrophils, monocytes, 352 

M0 macrophages, and gamma-delta T cells. These findings are consistent with the 353 

established role of neutrophils and macrophages in pneumonia pathogenesis [37, 38]. 354 

In Streptococcus pneumoniae-induced pneumonia, for example, neutrophil 355 

accumulation is a hallmark of the early immune response, contributing to bacterial 356 

clearance but also to lung tissue damage and systemic spread [39, 40]. Macrophages 357 

act as first responders to pathogens and contribute to both host defense and 358 
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inflammation by releasing cytokines and orchestrating immune responses [41-44]. The 359 

elevated levels of gamma-delta T cells in pneumonia samples also suggest a role in 360 

early immune activation, consistent with their known function in bridging innate and 361 

adaptive immunity [45]. 362 

 In addition to lipid mediators, various acute-phase plasma proteins, including C-363 

reactive protein, procalcitonin, surfactant proteins, and complement components, are 364 

key players in the pathophysiology of pneumonia [46-49]. These proteins are closely 365 

correlated with disease severity and outcomes [50]. Notably, their interplay with fatty-366 

acid-driven cytokine modulation implies that integrating lipid and protein biomarkers 367 

into combined panels could significantly enhance the accuracy of pneumonia diagnosis 368 

and improve prognostication[51, 52]. 369 

While our MR framework reduces confounding and reverse causation, it is limited 370 

by reliance on peripheral blood-derived GWAS and transcriptomic data, which lack 371 

direct validation in lung tissue. Future studies should combine clinical phenotyping 372 

with analyses of lung biopsy or bronchoalveolar lavage specimens to validate these 373 

findings. Additionally, functional studies of ACAA1 and OLAH in animal models will 374 

be critical to translate these genetic insights into targeted therapies. 375 

 376 

Conclusion 377 

In summary, our bidirectional MR study establishes that genetically higher levels 378 

of LA and DHA reduce pneumonia risk, while elevated omega-6 increases 379 

susceptibility to severe disease. Integrating machine learning driven transcriptomic 380 

analysis, we pinpoint ACAA1 and OLAH as novel biomarkers linking fatty acid 381 

metabolism to pneumonia pathogenesis. Immune cell deconvolution further reveals a 382 

shift toward neutrophil and macrophage driven inflammation alongside reduced 383 

regulatory and cytotoxic T-cell subsets in patients. Together, these findings deepen our 384 

understanding of lipid-immune crosstalk in pneumonia and highlight promising targets 385 

for future diagnostic and therapeutic strategies. 386 
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