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Causal analysis of plasma fatty acids and pneumonia: 
identifying diagnostic biomarkers through 
transcriptome-wide association study
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A b s t r a c t

Introduction: Fatty acids mediate pulmonary inflammation through cyto-
kine regulation, interactions with the tryptophan-kynurenine pathway, and 
mediators such as 18-HEPE that boost interferon-λ. To systematically dis-
sect these mechanisms and their translational implications, we pioneered 
a novel framework integrating bidirectional two-sample Mendelian random-
ization (MR) with multi-algorithm machine learning. This approach not only 
quantifies causal relationships between fatty acids and inflammatory out-
comes but also identifies clinically actionable diagnostic biomarkers.
Material and methods: We obtained single nucleotide polymorphisms (SNPs) 
significantly associated with eight plasma fatty acids from genome-wide 
association study (GWAS) summary statistics and used them as instrumen-
tal variables in bidirectional two-sample MR across six pneumonia pheno-
types (pneumonia, asthma-related pneumonia, bacterial pneumonia, criti-
cal pneumonia, viral pneumonia, and lobar pneumonia). Causal estimates 
were calculated using inverse variance weighting (IVW), which combines 
SNP-specific Wald ratios weighted by the inverse of their variance, with MR-
Egger and weighted median approaches for sensitivity analysis. Transcrip-
tomic data were then analyzed by LASSO regression, support vector machine 
recursive feature elimination and random forest to identify fatty acid metab-
olism–related biomarker candidates.
Results: MR analysis suggested potential causal associations between 
omega-6 fatty acids and critical pneumonia (OR = 1.28, 95% CI: 1.01–1.61,  
p = 0.038), linoleic acids (LA) and bacterial pneumonia (OR = 0.85, 95% CI: 
0.73–0.99, p = 0.047), and docosahexaenoic fatty acids (DHA) and pneumo-
nia (OR = 0.83, 95% CI: 0.74–0.93, p = 0.002). Moreover, ACAA1 and OLAH, 
which are genes involved in fatty acid metabolism, were identified as poten-
tial candidate biomarkers for pneumonia.
Conclusions: Our study employed MR analysis to establish a causal associ-
ation of omega-6, LA, and DHA with pneumonia. Additionally, through tran-
scriptomic analysis, we identified plasma fatty acid metabolism-associated 
biomarkers that may serve as diagnostic indicators for pneumonia.

Key words: plasma fatty acid, pneumonia, Mendelian randomization, 
biomarkers, machine learning algorithms.
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Introduction

Pneumonia, a global health challenge driven by 
infectious pathogens, is aggravated by antibiotic 
resistance and chronic respiratory comorbidities 
[1]. This study focuses on pathogen-mediated 
mechanisms, distinguishing pneumonia from 
non-infectious pneumonitis caused by autoim-
mune disorders or chemical exposures [2]. Severe 
cases often progress to systemic complications, 
including coagulation abnormalities such as dis-
seminated intravascular coagulation, distinct 
from coagulation necrosis [3]. These abnormal-
ities synergize with cytokine storms, elevating 
cardiovascular mortality risk through endothelial 
dysfunction and myocardial suppression [4, 5]. 
Despite advances in therapy, pneumonia remains 
a leading global cause of morbidity and mortality, 
underscoring the urgency to elucidate pathogenic 
mechanisms and advance novel therapies [6].

Fatty acids are essential membrane phospho-
lipids and bioactive mediators that regulate immu- 
ne cell function and inflammatory signaling [7, 8].  

Dysregulated lipid profiles, particularly imbal-
ances in circulating polyunsaturated fatty acids 
(PUFAs), influence lung pathology through mem-
brane-mediated immune cell dysfunction and 
the production of lipid signaling molecules [9]. 
This mechanistic duality is exemplified in chron-
ic obstructive pulmonary disease, where skewed 
omega-3 to omega-6 PUFA ratios correlate with 
sustained airway inflammation [10]. The inter-
play extends to acute infectious contexts, as ob-
served in severe pneumonia patients exhibiting 
activation of the tryptophan-kynurenine axis [11]. 
During this process, indoleamine 2,3-dioxygen-
ase catalyzes tryptophan conversion into immu-
nomodulatory kynurenines that suppress T-cell 
activity, establishing a  regulatory network with 
PUFA-derived inflammatory mediators, a  phe-
nomenon inversely associated with protective 
PUFA ratios [11–13]. 

Experimental evidence underscores therapeu-
tic opportunities, with murine models demon-
strating that omega-3 fatty acids attenuate bac-
terial pneumonia severity through coordinated 

Figure 1. Study workflow
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cytokine modulation, reducing pro-inflammatory 
interleukin-6 while elevating anti-inflammatory 
interleukin-10 [14–16]. Parallel studies revealed 
that butyrate-induced omega-3 metabolites exert 
antiviral effects via interferon-λ induction in viral 
pneumonia models [17]. Despite these mecha-
nistic insights, translational challenges persist in 
distinguishing observational associations from 
causal relationships, particularly regarding pneu-
monia-specific lipid signatures and targeted ther-
apeutic strategies.

To address these gaps, this study employed bi-
directional two-sample Mendelian randomization 
(MR) to evaluate the potential causal associations 
between eight plasma fatty acids and six distinct 
pneumonia phenotypes. The workflow of this 
study is illustrated in Figure 1. Building on MR-de-
rived causal evidence, we further applied three 
complementary machine-learning algorithms to 
transcriptomic data, identifying diagnostic bio-
markers of fatty acid metabolism. This integrated 
methodology synergistically combined genetic 
causality analysis with multi-algorithm biomarker 
identification, establishing a unified framework in 
pneumonia research that bridged mechanistic dis-
covery and clinical translation.

Material and methods

Study design

We first applied a  two-sample MR framework 
to evaluate the causal effect of circulating plasma 
fatty acids on pneumonia risk. To address poten-
tial reverse causation, we then performed a recip-
rocal MR analysis [18], treating pneumonia liabil-
ity as the exposure and plasma fatty acid levels 
as the outcome. In every MR analysis, we ensured 

that instrumental variables (IVs) satisfied the 
three core assumptions: strong association with 
the exposure, independence from confounders, 
and influence on the outcome exclusively through 
the exposure pathway [19]. To minimize bias from 
population stratification, all summary statistics 
were drawn from cohorts of European ancestry 
(Figure 2).

Data source

Genome-wide association study (GWAS) sum-
mary statistics for eight plasma fatty acid (FA) 
traits – omega-3, omega-6, omega-6/omega-3 ra-
tio, linoleic acid (LA), docosahexaenoic acid (DHA), 
saturated fatty acids (SFA), monounsaturated fat-
ty acids (MUFA), and PUFA – were obtained from 
the OpenGWAS platform. These data derive from 
115,006 European ancestry participants in the UK 
Biobank. Pneumonia-related GWAS data were ac-
cessed via the IEU OpenGWAS repository and in-
cluded overall pneumonia, severe pneumonia, lo-
bar pneumonia, asthma-related pneumonia, viral 
pneumonia, and bacterial pneumonia. All summa-
ry statistics were drawn from cohorts of Europe-
an ancestry, with detailed population descriptors 
provided in Table I. 

Selection of instrumental variants 

The criteria for selecting IVs were as follows: 
SNP selection: SNPs were used as IVs, with a ge-
nome-wide significance threshold of p < 5e-08. 
However, for some pneumonitis-related traits, the 
number of SNPs meeting this threshold was limit-
ed. To increase the number of available SNPs, we 
relaxed the threshold to p < 5e-06, and for lobar 
pneumonia, a threshold of p < 5e-05 was applied. 

Figure 2. Flowchart of Mendelian randomization study design
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Table I. Detailed information of the genome-wide association studies in our analysis

Phenotype PMID
(ID)

Sample size
(case/control)

Population

Omega-3 fatty acid levels 35213538
(ebi-a-GCST90092931)

115006
/

European

Omega-6 fatty acid levels 35213538
(ebi-a-GCST90092933)

115006
/

European

Ratio of omega-6 fatty acids to 
omega-3 fatty acids

35213538
(ebi-a-GCST90092934)

115006
/

European

Linoleic acid levels 35213538
(ebi-a-GCST90092880)

115006
/

European

Docosahexaenoic acid levels 35213538
(ebi-a-GCST90092816)

115006
/

European

Saturated fatty acid levels 35213538
(ebi-a-GCST90092980)

115006
/

European

Monounsaturated fatty acid levels 35213538
(ebi-a-GCST90092928)

115006
/

European

Polyunsaturated fatty acid levels 35213538
(ebi-a-GCST90092939)

115006
/

European

Pneumonia 34594039
(ebi-a-GCST90018901)

480299
(16887/463412)

European

Asthma related pneumonia /
(ukb-d-ASTHMA_PNEUMONIA)

361194
(5900/355294)

European

Bacterial pneumonia /
(finn-b-J10_PNEUMOBACT)

196855
(7987/188868)

European

Critical pneumonia /
(ieu-b-4978)

431365
(2758/428607)

European

Viral pneumonia /
(finn-b-J10_VIRALPNEUMO)

189568
(700/188868)

European

Lobar pneumonia /
(ukb-b-6576)

463010
(2359/460651)

European

Clumping: SNPs were clumped to remove the 
effect of linkage disequilibrium (r² < 0.001, with 
a region length of 10,000 kb). F-statistic: the F-sta-
tistic was used to assess the strength of IVs. SNPs 
with an F-statistic > 10 were retained, indicating 
strong instrument strength. Weak instruments 
were excluded. Allelic consistency: SNPs associat-
ed with both exposure and outcome were aligned 
in terms of allelic direction. Palindromic SNPs and 
SNPs with inconsistent allelic directions were re-
moved. MR-PRESSO outliers: Outlier SNPs identi-
fied by the MR-PRESSO test were excluded from 
the analysis.

Mendelian randomization analysis

The primary causal estimates were obtained 
using the inverse variance weighted (IVW) meth-
od under a  random effects model, supplement-
ed by MR-Egger regression, weighted median, 
weighted mode, and simple mode analyses to as-
sess robustness. Prior to MR, any SNPs associated 
with known confounders (BMI, waist measures, 
smoking, alcohol) were excluded. For reverse MR, 
the same procedure was followed with pneumo-

nia as the exposure and individual fatty acid traits 
as outcomes.

Sensitivity analysis

To assess the robustness of the identified asso-
ciations, we conducted sensitivity analyses using 
three methods: the heterogeneity test, the hori-
zontal pleiotropy test, and the leave-one-out test. 
Cochran’s Q test was used to assess SNP hetero-
geneity. If heterogeneity was detected (p < 0.05), 
a  random-effects IVW model was applied. The 
presence of horizontal pleiotropy was evaluated 
using MR-Egger regression, with statistical signifi-
cance of the intercept (p < 0.05) indicating pleiot-
ropy. Additionally, MR-PRESSO was used to identi-
fy and remove outliers. A “leave-one-out” test was 
performed to evaluate the impact of individual 
SNPs on the causal associations by sequentially 
excluding each SNP.

Transcriptomic data acquisition and 
differential expression

We retrieved two gene expression data-
sets from the Gene Expression Omnibus (GEO): 

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90092934/
https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90092928/
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GSE40012 (training set: 16 pneumonia, 18 con-
trols) and GSE196399 (validation set: 56 pneumo-
nia, 21 controls). A curated list of 308 fatty acid 
metabolism-related genes was compiled from 
the MSigDB Hallmark, KEGG, and Reactome col-
lections (version  2024.1). Differential expression 
between pneumonia and control samples was 
determined using the limma package in R, with 
thresholds of |log2 fold change| > 1 and adjusted 
p < 0.05 (Benjamini–Hochberg correction). 

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment 
analyses were conducted in R with the clusterPro-
filer package. We controlled for multiple testing 
using the Benjamini-Hochberg method and con-
sidered pathways with adjusted p < 0.05 to be 
significantly enriched.

Feature selection and predictive modeling

To identify key fatty acid-related genes pre-
dictive of pneumonia, we applied three machine 
learning approaches: least absolute shrinkage and 
selection operator (LASSO) regression for initial 
feature retention, support vector machine recur-
sive feature elimination (SVM-RFE) with ten-fold 
cross-validation for iterative refinement, and ran-
dom forest for ranking variable importance. The 
intersection of genes selected by all three meth-
ods constituted the final feature set used in model 
construction.

Immune infiltration analysis

Immune cell proportions were estimated us-
ing the CIBERSORT algorithm implemented in 
the IOBR R package, and single sample gene set 
enrichment analysis (ssGSEA) of immune-relat-
ed functions was performed via the GSVA pack-
age. Differences between pneumonia and control 
groups were tested using the Wilcoxon rank sum 
test, with p < 0.05 denoting significance.

Statistical analysis

All analyses were performed in R version 4.4.1, 
using the TwoSampleMR (0.6.8) [20], MRPRES-
SO (1.0) [21], limma [22], clusterProfiler [23], 
and IOBR [24] packages. Statistical significance 
was defined as two-sided p < 0.05 throughout.

Results

Causal relationship between fatty acids 
and pneumonia

Following rigorous selection and harmonization 
of genetic IVs, along with MR-PRESSO-mediated 

removal of pleiotropic outliers, we employed IVW 
MR to estimate the causal effects of eight plas-
ma fatty acids on pneumonia risk. We observed 
that higher omega-6 levels were associated with 
increased risk of severe pneumonia (OR = 1.28, 
95%  CI:  1.01–1.61, p = 0.038), whereas greater 
LA levels conferred protection against bacterial 
pneumonia (OR = 0.85, 95%  CI:  0.73–0.99, p = 
0.047). Similarly, elevated DHA was inversely re-
lated to overall pneumonia incidence (OR = 0.83, 
95% CI: 0.74–0.93, p = 0.002). No statistically sig-
nificant causal associations were detected for the 
remaining fatty acids (Figure 3). Consistent direc-
tion and magnitude across MR-Egger, weighted 
median, weighted mode, and simple mode anal-
yses reinforced these findings (Supplementary Ta-
ble SI), and the complete lists of SNP instruments 
appear in Supplementary Tables SII–SVII with cor-
responding scatter and forest plots in Supplemen-
tary Figures S1, S2.

Sensitivity analysis

To verify robustness, we assessed heterogene-
ity and pleiotropy across instruments. For DHA, 
Cochran’s Q test indicated no heterogeneity (p > 
0.05), whereas omega-6 and LA instruments dis-
played modest heterogeneity (p < 0.05) but no 
evidence of horizontal pleiotropy by MR-Egger 
intercept (Table  II). All instruments demonstrat-
ed adequate strength (F > 30; Supplementary 
Tables  SVIII–SX). Applying a  random effects IVW 
model for heterogeneous traits did not materially 
alter effect estimates (p < 0.05), and MR-PRESSO 
detected no additional outliers. Symmetrical fun-
nel plots (Supplementary Figure S3) and stable 
leave-one-out analyses (Supplementary Figure S4) 
further support the reliability of these causal infer-
ences (Supplementary Table SXI).

Reverse causality between fatty acids  
and pneumonia

In reverse MR, we tested whether genetic lia-
bility to pneumonia subtypes influences fatty acid 
levels. Notably, higher genetic risk of viral pneu-
monia was causally associated with marginally 
lower omega-3 levels (OR = 0.98, 95% CI:  0.97–
0.99, p = 0.006) and with an elevated omega-6/
omega-3 ratio (OR = 1.02, 95%  CI:  1.01–1.04,  
p = 0.005) (Figure 4). A random effects IVW frame-
work accounted for heterogeneity (p < 0.05), and 
sensitivity plots (Supplementary Figures  S5–S8) 
confirmed absence of bias or influential SNPs.

Identification of differential genes 
associated with fatty acid metabolism

Analyzing GSE40012, we identified 549 genes 
differentially expressed between pneumonia pa-
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Figure 3. Univariable Mendelian randomization results for the effects of plasma fatty acid on pneumonia
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Table II. Sensitivity analysis of causal relationship between plasma fatty acid and pneumonia subtypes

Exposure Outcome Heterogeneity Pleiotropy

MR-Egger
statistics Q

MR-Egger
p-value

IVW
statistics Q

IVW
p-value

p-value

Docosahexaenoic acid levels Pneumonia 11.74 0.698 14.78 0.541 0.102

Omega-6 fatty acid levels Critical pneumonia 62.52 0.022 63.00 0.025 0.573

Linoleic acid levels Bacterial pneumonia 48.62 0.030 49.33 0.034 0.499

tients and controls (|log2 FC|>1, p < 0.05), including 
251 up-regulated and 298 down-regulated genes 
(Figure 5 A). Intersection with our curated set of 
308 fatty acid metabolism genes yielded 16 over-
lapping targets (Figure  5 B). Correlation analysis 
revealed strong positive co-expression among 
most of these 16 genes (Figure 5 C). GO enrich-
ment highlighted their roles in fatty acid and un-
saturated fatty acid metabolism, carboxylic acid 
biosynthesis, and localization to peroxisomes, 
outer mitochondrial membranes, and rough endo-
plasmic reticulum (Figure 5 D, F).

Identification of key fatty acid metabolism 
genes in pneumonia

In order to exclude unimportant genes and 
identify key genes associated with pneumonia, 
we employed three machine learning algorithms 
for gene selection. Starting with 16 fatty acid me-
tabolism-related differential genes, we applied 
LASSO regression, which selected 9 genes (Fig-
ure 6 A, B), SVM-RFE selected 5 genes (Figure 6 
C), and the random forest algorithm identified 7 
genes (Figure 6 D, E). Only ACAA1 and OLAH were 
consistently selected by all three methods (Fig-
ure 6 F). In the training cohort (GSE40012), ROC 
area under the curve values (AUCs) were 0.969 for 
ACAA1 and 0.979 for OLAH (Figure 6 G); in vali-
dation (GSE196399), AUCs were 0.781 and 0.965, 
respectively (Figure 6 H). PCA based on these two 
genes demonstrated clear separation of cases 
versus controls (Figure  6 I), and expression dif-
ferences were highly significant in both datasets 
(Figure 6 J, K).

Immune cell infiltration and immune-
related function in pneumonia

To characterize immune microenvironment al-
terations in pneumonia, we first applied CIBER-
SORT to quantify immune cell proportions in pneu-
monia versus healthy lung tissues (Figure 7 A, B). 
Compared to controls, pneumonia tissues showed 
significant increases in neutrophils, monocytes, 
M0 macrophages, and γδ T cells, accompanied 
by reduced regulatory T cells (Tregs), resting NK 
cells, and CD8+ T cells. Next, to explore broader 
functional implications, we performed single-sam-
ple gene set enrichment analysis (ssGSEA), which 

revealed distinct immune-related functional sig-
natures and infiltration patterns between pneu-
monia patients and controls (Figure 7 C). Notably, 
ssGSEA further demonstrated that elevated ex-
pression of ACAA1 and OLAH correlated positively 
with macrophage infiltration but inversely with 
cytotoxic immune functions (Figure 7 D, E), sug-
gesting that these fatty acid metabolism-related 
genes may drive macrophage polarization while 
suppressing adaptive immunity during pneumo-
nia pathogenesis.

Discussion

In this study, we investigated the causal rela-
tionships between plasma fatty acids and pneu-
monia, with a  specific emphasis on identifying 
key genes involved in fatty acid metabolism and 
their potential roles in disease pathogenesis. Our 
MR analysis revealed that LA and DHA are causal-
ly associated with a  reduced risk of pneumonia, 
suggesting their protective effects. These findings 
support and extend earlier observational studies, 
which have reported anti-inflammatory and im-
munomodulatory effects of omega-3 and omega-6 
fatty acids in various inflammatory conditions, in-
cluding pneumonia [25, 26]. For instance, a large 
prospective cohort study demonstrated that every 
1-gram increase in LA intake was associated with 
a 4% reduction in pneumonia risk [27], which is 
consistent with our MR-derived protective esti-
mate for LA.

Our study further confirms the anti-inflam-
matory role of omega-3 fatty acids, particularly 
DHA, which are known to reduce the severity of 
inflammatory diseases by modulating immune re-
sponses [14]. While previous observational stud-
ies have suggested a  beneficial association, our 
MR analysis strengthens the causal interpretation, 
overcoming potential confounding and reverse 
causation. On the other hand, omega-6 fatty acids 
are generally considered pro-inflammatory and 
have been associated with adverse outcomes in 
certain pneumonia subtypes [28, 29]. Our results 
support this view, as genetically predicted higher 
omega-6 levels were associated with increased 
risk of severe pneumonia, thereby aligning with 
earlier evidence and reinforcing the dualistic role 
of fatty acids in inflammation.
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Figure 4. Reverse Mendelian randomization estimates for the effects of pneumonia on plasma fatty acid
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Figure 5. Differential gene expression and functional enrichment analysis of fatty acid metabolism-related genes 
in pneumonia. (A) Volcano plot depicting differential gene expression in pneumonia. (B) Intersection of fatty acid 
metabolism-related genes and pneumonia differential genes. (C) Correlation heatmap of differential genes associ-
ated with fatty acid metabolism. (D–F) GO enrichment map of 16 fatty acid metabolism differential genes enriched 
in BP, CC and MF 

BP – biological process, CC – cellular component, MF – molecular function.
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In animal models, omega-3 supplementation 
has been shown to mitigate pneumonia severity 
by suppressing microglial activation and inflam-
matory cytokine release through HMGB1 and 
TLR4/NF-κB signaling pathways [14, 30]. Fur-
thermore, omega-3 and its derivatives have been 
shown to alleviate intestinal inflammation and 
modulate systemic immune responses in diseases 
such as ulcerative colitis [31, 32]. Short-chain fatty 
acids, another important class of fatty acids, exert 
anti-inflammatory effects by lowering colonic pH 
and limiting the growth of pathogenic bacteria 
[33]. These consistent findings across different 
disease models underscore the importance of fat-
ty acid metabolism in modulating immune func-
tion and inflammatory responses. 

We further explored potential molecular me-
diators linking fatty acids to pneumonia by ap-
plying machine learning algorithms. Through this 
approach, we identified ACAA1 and OLAH as key 

genes involved in fatty acid metabolism. ACAA1 
plays a  crucial role in mitochondrial β-oxidation, 
while OLAH is involved in fatty acid biosynthesis 
and homeostasis [34, 35]. Previous studies have 
linked ACAA1 variants with asthma and other 
inflammatory airway diseases, suggesting its in-
volvement in immune regulation [36]. The identifi-
cation of these genes complements and expands 
previous research by offering specific molecular 
targets through which fatty acids may exert their 
protective effects in pneumonia. 

Infiltration analysis of immune cells revealed 
significant differences between pneumonia pa-
tients and healthy individuals. In line with pre-
vious reports, healthy controls exhibited higher 
infiltration of Tregs, resting NK cells, and CD8+ T 
cells, whereas pneumonia patients showed in-
creased infiltration of neutrophils, monocytes, 
M0 macrophages, and γδ T cells. These findings 
are consistent with the established role of neutro-
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Figure 6. Identification and validation of pneumonia diagnostic markers. (A) LASSO regression and (B) 10-fold cross 
validation diagram. (C) Error rate curve based on SVM-RFE algorithm with 10-fold cross validation. (D) Relationship 
between random forest error rate and number of classification trees and (E) gene importance. (F) Genes shared 
by three machine learning models. (G) ROC curves of each signature gene in the training set (GSE40012) and  
(H) validation set (GSE196399) of the diagnostic markers. (I) PCA plot of training set (GSE40012). (J) Expression 
of signature genes in the training set (GSE40012) and (K) validation set (GSE196399) in pneumonia and normal 
samples
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phils and macrophages in pneumonia pathogene-
sis [37, 38]. In Streptococcus pneumoniae-induced 
pneumonia, for example, neutrophil accumulation 
is a hallmark of the early immune response, con-
tributing to bacterial clearance but also to lung 
tissue damage and systemic spread [39, 40]. Mac-
rophages act as first responders to pathogens and 
contribute to both host defense and inflammation 
by releasing cytokines and orchestrating immune 
responses [41–44]. The elevated levels of γδ T cells 

in pneumonia samples also suggest a role in early 
immune activation, consistent with their known 
function in bridging innate and adaptive immuni-
ty [45].

In addition to lipid mediators, various acute-
phase plasma proteins, including C-reactive 
protein, procalcitonin, surfactant proteins, and 
complement components, are key players in the 
pathophysiology of pneumonia [46–49]. These 
proteins are closely correlated with disease se-
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Figure 7. Analysis of immune cell infiltration in patients with pneumonia and normal controls. (A) Distribution and 
(B) differences in levels of immune cell infiltration between normal samples and pneumonia patients. (C) Differenc-
es in immune cell infiltration between normal and pneumonia patients using ssGSEA. 
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verity and outcomes [50]. Notably, their interplay 
with fatty-acid-driven cytokine modulation im-
plies that integrating lipid and protein biomarkers 
into combined panels could significantly enhance 
the accuracy of pneumonia diagnosis and improve 
prognostication [51, 52].

While our MR framework reduces confounding 
and reverse causation, it is limited by reliance on 
peripheral blood-derived GWAS and transcriptom-
ic data, which lack direct validation in lung tissue. 
Future studies should combine clinical phenotyp-
ing with analyses of lung biopsy or bronchoalve-
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Figure 7. Cont. (D) Association between ACAA1, (E) OLAH and immune cell infiltration levels. The circle size indi-
cates the correlation strength, with larger circles representing stronger correlations. The color reflects the p-value 
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olar lavage specimens to validate these findings. 
Additionally, functional studies of ACAA1 and 
OLAH in animal models will be critical to translate 
these genetic insights into targeted therapies.

In summary, our bidirectional MR study estab-
lishes that genetically higher levels of LA and DHA 
reduce pneumonia risk, while elevated omega-6 
increases susceptibility to severe disease. Inte-
grating machine learning driven transcriptomic 
analysis, we identified ACAA1 and OLAH as novel 
biomarkers linking fatty acid metabolism to pneu-
monia pathogenesis. Immune cell deconvolution 
further reveals a shift toward neutrophil and mac-
rophage driven inflammation alongside reduced 
regulatory and cytotoxic T-cell subsets in patients. 
Together, these findings deepen our understand-
ing of lipid-immune crosstalk in pneumonia and 
highlight promising targets for future diagnostic 
and therapeutic strategies.
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