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 Abstract
Introduction
Atopic dermatitis (AD), the most common chronic inflammatory dermatosis, currently lacks definitive
curative treatments. This study aimed to identify potential drug targets for AD through an integrative
genomic approach.

Material and methods
Cis-expression quantitative trait loci (cis-eQTL) from the eQTLGen consortium were used as genetic
instruments for druggable genes. Summary-level AD statistics were obtained from the largest available
GWAS dataset (cases = 22,474; controls = 774,187) with replication in an independent cohort (cases
= 10,788; controls = 30,047). Mendelian randomization (MR) was employed to explore the causal
relationship between druggable genes and AD risk, augmented by colocalization analysis to identify
shared causal variants. A pQTL dataset was thereafter utilized for further validation. Furthermore, the
potential association between the identified genes and five other inflammatory skin diseases was also
assessed. Finally, we specifically investigated expression patterns of identified genes through analysis
of single-cell RNA sequencing and spatial transcriptomics data from GEO datasets via Seurat.

Results
Three druggable genes, HSP90AA1, IL2RA, and MANBA, were positively associated with an
increased risk of AD. Colocalization analysis identified rs61839660 as a shared variant between IL2RA
and AD, with pQTL data confirming IL2RA protein-level effects. Increased IL2RA gene expression was
observed in natural killer cells within leukocyte infiltration regions. Moreover, MR analysis indicated
that IL2RA gene expression also heightens the risk of psoriasis and eczema, though without
colocalization evidence.

Conclusions
These findings suggest that IL2RA inhibitors could be promising therapeutic agents for the treatment
of AD.
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Abstract  17 

Background: Atopic dermatitis (AD), the most common chronic inflammatory dermatosis, currently 18 

lacks definitive curative treatments. This study aimed to identify potential drug targets for AD through 19 

an integrative genomic approach. 20 

Methods: Cis-expression quantitative trait loci (cis-eQTL) from the eQTLGen consortium were used as 21 

genetic instruments for druggable genes. Summary-level AD statistics were obtained from the largest 22 

available GWAS dataset (cases = 22,474; controls = 774,187) with replication in an independent cohort 23 

(cases = 10,788; controls = 30,047). Mendelian randomization (MR) was employed to explore the causal 24 

relationship between druggable genes and AD risk, augmented by colocalization analysis to identify 25 

shared causal variants. A pQTL dataset was thereafter utilized for further validation. Furthermore, the 26 

potential association between the identified genes and five other inflammatory skin diseases was also 27 

assessed. Finally, we specifically investigated expression patterns of identified genes through analysis of 28 

single-cell RNA sequencing and spatial transcriptomics data from GEO datasets via Seurat.  29 

Results: Three druggable genes, HSP90AA1, IL2RA, and MANBA, were positively associated with an 30 

increased risk of AD. Colocalization analysis identified rs61839660 as a shared variant between IL2RA 31 

and AD, with pQTL data confirming IL2RA protein-level effects. Increased IL2RA gene expression was 32 

observed in natural killer cells within leukocyte infiltration regions. Moreover, MR analysis indicated 33 

that IL2RA gene expression also heightens the risk of psoriasis and eczema, though without 34 

colocalization evidence. 35 

Conclusion: These findings suggest that IL2RA inhibitors could be promising therapeutic agents for the 36 

treatment of AD.  37 

Keywords: Atopic dermatitis; Drug target; Mendelian randomization; Single-cell RNA-sequencing; 
38 

Spatial transcriptomics 
39 
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Introduction  41 

Atopic dermatitis (AD), the most common chronic inflammatory dermatosis, is clinically characterized 42 

by intense pruritus and recurring eczematous lesions [1]. This condition exhibits a striking age-dependent 43 

prevalence, affecting 15-20% of children compared to only 5-10% of adults [2]. The pathogenesis of AD 44 

remain uncertain and intricate. The current understanding of AD’s causes includes genetic predisposition 45 

and environmental triggers, skin barrier disruptions, microbial community imbalances, immune system 46 

dysregulation [1, 3]. As a chronic condition with variable clinical presentations, AD management 47 

primarily focuses on maintaining epidermal barrier function through emollient use. For more resistant 48 

cases, treatment options expand to include biologic therapies, phototherapy, and immunomodulators. 49 

However, the lack of targeted treatments for severe AD underscores the urgent need to better understand 50 

its underlying mechanisms and develop more effective therapies. 51 

 52 

Drug discovery and optimization are protracted, costly, and fraught with risk [4]. The traditional drug 53 

development pipeline encompasses multiple rigorous phases, including target validation, compound 54 

screening, lead optimization, preclinical efficacy and toxicity assessments, clinical trials, and ultimately 55 

regulatory approval and commercialization. Despite these extensive efforts, the overall success rate of 56 

clinical drug development remains alarmingly low at 10-15% [5, 6]. A major contributing factor to this 57 

high attrition rate is the frequent failure of late-stage clinical candidates, primarily because early-stage 58 

target selection failed to accurately predict therapeutic efficacy [7]. Notably, emerging evidence suggests 59 

that genetically supported drug targets demonstrate significantly higher therapeutic potential, offering 60 

promising opportunities to improve development success rates [8]. 61 

 62 

The integration of genetic research findings into drug target research is a promising avenue that generates 63 

novel methodologies for the advancement of pharmaceutical development. Mendelian randomization 64 

(MR), a powerful genetic epidemiological approach, employs genetic variants as instrumental variables 65 

(IVs) to infer causal relationships between exposures and outcomes while addressing key limitations of 66 

observational studies, including confounding and reverse causation [9, 10]. By leveraging quantitative 67 

trait loci (QTLs) as IVs, MR analysis has successfully identified novel drug targets across multiple 68 

diseases [11-17]. This methodology not only enhances the precision of therapeutic effect estimation but 69 

also holds significant potential to accelerate drug development. 70 
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 71 

In this study, we applied an integrative multi-omics framework to identify and validate potential drug 72 

targets for AD. Specifically, we performed two-sample MR and colocalization analyses by integrating 73 

data on druggable genes, blood eQTLs, and two independent AD Genome-Wide Association Studies 74 

(GWAS) datasets to infer causal relationships between gene expression and AD risk. Validation was 75 

carried out with pQTL dataset data, and the causal effects of putative druggable genes on five other 76 

inflammatory dermatoses were also explored. Finally, we characterized the cellular and spatial 77 

expression patterns of candidate targets through integrated single-cell RNA sequencing (scRNA-seq) and 78 

spatial transcriptomics(ST) data, providing multi-dimensional evidence to prioritize therapeutic 79 

candidates. 80 

  81 
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Materials and methods  82 

2.1 Exposure Data sources  83 

A total of 4,302 druggable genes located on the autosomal chromosomes with HGNC nomenclature were 84 

identified [18]. These are 1,375 protein targets that are currently under clinical development, 646 proteins 85 

associated with drug targets and compounds, and 2,281 proteins associated with members of major drug 86 

target families. Given the observation that cis-eQTLs exhibited greater proximity to the target gene in 87 

the context of drug development investigations, we acquired cis-eQTLs within a range of ±1 megabase 88 

(Mb) from the eQTLGen consortium's peripheral blood study (n = 31,684) [19]. For protein-level 89 

validation, we analyzed pQTL data derived from a GWAS of plasma proteins measured by 4,907 90 

aptamers in 35,559 Icelandic individuals (sTable 1). Genes showing consistent cis-eQTL associations in 91 

both discovery and replication phases were further examined using this pQTL resource, including 92 

analysis of significant cis-pQTLs identified in the original study's supplemental data. Significant cis-93 

pQTLs from the original study's supplemental data were analyzed. 94 

 95 

2.2 Outcome Data sources  96 

Atopic dermatitis  97 

The genetic summary data for AD was obtained from a recent large-scale meta-analysis study involving 98 

796,661 individuals of European ancestry (sTable 1). The dataset encompassed sources from the Estonian 99 

Biobank (11,187 cases and 125,537 controls), the FinnGen (8,383 cases and 236,161 controls), and the 100 

UK Biobank consortiums (2,904 cases and 412,489 controls) [20]. The FinnGen required cases to be 101 

entered using the International Classification of Diseases, Tenth Revision (ICD-10) code L20, ICD-9 102 

number 6918, or ICD-8 code 691. Participants having the ICD-10 code L20 were judged to have AD in 103 

both the Estonian Biobank and the UK Biobank. Both the FinnGen and the Estonian Biobank's 104 

association models used age, sex, and genetic features like the top 10 genetic main components. The 105 

FinnGen modified models for genotyping batches. The UK Biobank study accounted for many 106 

confounders, such as age, sex, age×sex, age2, age2×sex, and the first 10 genetic main components. 107 

Replication data from the EArly Genetics and Life Course Epidemiology (EAGLE) Consortium's 10,788 108 

AD patients and 30,047 controls (excluding the 23andMe study) [21]. The EAGLE Consortium 109 

diagnosed AD by self-report or dermatological exam. 110 

 111 
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Five inflammatory dermatoses 112 

GWAS summary statistics for psoriasis (9,267 cases; 364,071 controls), rosacea (1,195 cases; 211,139 113 

controls), and acne (2,787 cases; 361,140 controls) were made public by the FinnGen consortium [22]. 114 

The EAGLE Consortium released GWAS summary data on eczema with 10,788 cases and 30,047 115 

controls [21]. Summary results from the greatest GWAS meta-analyses for vitiligo (4,680 cases; 29,586 116 

controls) [23]. 117 

 118 

2.3 IVs selection 119 

We initially identified cis-eQTLs cis-eQTLs within ±100 kb of gene probes in 2,630 druggable genes. 120 

Second, for potential IVs to be selected, the SNP-phenotype association level must meet the genome-121 

wide significance threshold (P < 5×10-8). Furthermore, minor allele frequency (MAF) < 0.01 was 122 

eliminated. Fourth, to assure the independence of IVs without linkage disequilibrium(LD), SNPs with 123 

R2 > 0.1 (window size = 10,000 kb) were filtered based on the 1000 Genomes European reference panel. 124 

We assessed weak IVs bias utilizing the F-statistic (beta2/se2) [24]; an F-statistic greater than 10 indicates 125 

that there is little evidence of weak IVs. The IVs’ directionality is evaluated by exploiting the MR Steiger 126 

filtering estimate to determine whether the SNP was stronger to exposure than outcome. Otherwise, the 127 

SNP would be eliminated (sTable 2-3). 128 

 129 

2.4 Mendelian randomization 130 

We applied MR to assess causal relationships between druggable gene expression and AD risk using 131 

summary-level genetic data. The analysis excluded SNPs when exposure-related SNPs were unavailable 132 

in outcome GWAS datasets. We implemented strict allele harmonization procedures to ensure 133 

consistency between exposure and outcome data. For SNPs with discordant effect alleles across datasets, 134 

we performed strand alignment adjustments. Palindromic SNPs were removed due to their inherent allele 135 

ambiguity, as previously described [25]. For single SNP instruments, we employed the Wald ratio method 136 

[26]. Multiple SNP analyses primarily utilized the inverse-variance weighted method (IVW) [27, 28]. 137 

Weighted median and MR-Egger regression estimators are employed to evaluate the robustness of the 138 

findings [29]. The weighted median method presents a median estimate of all SNP effect values sorted 139 

by weight, with consistent results even if up to 50% of IV is invalid [30]. The MR-Egger regression 140 

method was used to evaluate pleiotropy, taking into account the existence of the intercept. The MR-Egger 141 
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intercept test was utilized to conduct pleiotropy testing. Cochran's Q test was employed to identify the 142 

existence of heterogeneity in IVs [28]. 143 

 144 

2.5 Bayesian colocalization analysis 145 

Bayesian colocalization analysis was performed to determine whether two traits share the common causal 146 

variant rather than being linked owing to LD. The analysis was conducted using the default parameters 147 

in the "coloc" package (https://github.com/chr1swallace/coloc). As indicated, colocalization analysis 148 

caculates posterior probability for five hypotheses regarding shared genetic associations. PP.H0 indicates 149 

no genetic association for either trait in the region. PP.H1 suggests association only for trait 1. PP.H2 150 

indicates association only for trait 2. PP.H3 represents association for both traits but with distinct causal 151 

variants. PP.H4 provides evidence for shared causal variants between traits. The analysis included all cis-152 

eQTLs within ±1Mb of each gene without LD or P-value filtering. Colocalization analysis uses 153 

coloc.abf algorithms. We considered PP.H4 > 80% as strong evidence for colocalization and designated 154 

such genes as potential therapeutic targets. 155 

 156 

Leveraging MR and colocalization analysis, we also explored causal relationships between candidate 157 

target genes and five other inflammatory skin diseases. To evaluate therapeutic potential, we queried 158 

DrugBank and ChEMBL databases for relevant small-molecule compounds. ClinicalTrials.gov provided 159 

additional information on clinical development status. 160 

 161 

Discovery analyses used a Bonferroni-corrected threshold of P < 2.16e-05 (0.05/2316). Replication 162 

analyses required P < 0.005 (0.05/10). Other analyses used P < 0.05 as the significance threshold. All 163 

analysis was conducted exploiting the “TwoSampleMR” and "coloc” packages in R software (version 164 

4.3.1).  165 

 166 

2.6 Single-cell RNA-sequencing data acquisition and processing  167 

In this study, scRNA-seq data was obtained from the GSE153760 dataset in the GEO database [31], 168 

which includes 7 healthy controls (HC) and 8 AD patients. Data processing utilized “Seurat” package 169 

(v4.4.0) with the following workflow. First, quality control (QC) removed cells expressing fewer than 170 

200 or more than 7,000 genes and those with mitochondrial content exceeding 20% conducted by the 171 
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“PercentageFeatureSet” function. Second, data normalization was carried out using the “NormalizeData” 172 

function, followed by identification of the top 2,000 highly variable genes (HVGs) with the 173 

“FindVariableFeatures” function. We then conducted principal component analysis (PCA) on the HVGs 174 

using the “RunPCA” function. To correct for batch effects, the “RunHarmony” function was employed. 175 

Cell clusters were identified with the “FindClusters” function (resolution = 0.5) and visualized in the 176 

Harmony space through the “RunTSNE” function. Marker gene identification for each cluster was 177 

accomplished through the “FindAllMarkers” function, focusing on genes with at least a 0.25 logFC 178 

increase compared to other cell clusters. Finally, we visualized IL2RA expression patterns using both the 179 

“FeaturePlot_scCustom” and “DotPlot” functions.  180 

 181 

2.7 Spatial transcriptomic sequencing data acquisition and processing  182 

We obtained ST-seq data from from the GEO dataset GSE197023, consisting of 6 HC and 6 lesional skin 183 

(LS) samples from AD patients [31]. The ST data were processed and analyzed using the “Seurat” 184 

package, similar to the methods applied for scRNA-seq data. Samples with fewer than 100 spot counts 185 

were excluded. The filtered ST-seq data were then normalized using the “NormalizeData” and 186 

“SCTransform” functions. The top 5,000 HVGs were selected based on their consistent variability across 187 

datasets. Dimension reduction was performed using PCA on each sample individually before integration, 188 

using the “RunPCA” function. The Seurat objects were then integrated into a single ST dataset using the 189 

“SelectIntegrationFeatures,” “FindIntegrationAnchors,” and “IntegrateData” functions. Canonical 190 

correlation analysis (CCA) and “Harmony” were employed to correct for batch effects across samples. 191 

Afterward, clusters were identified using the “FindNeighbors” and “FindClusters” functions. These 192 

clusters were annotated based on marker genes identified in previous studies. Finally, the expression 193 

levels and spatial distribution of IL2RA were determined. 194 

 195 

2.8 Gene Expression Analysis Using Integrated ST-seq and scRNA-seq Data 196 

Additionally, cell-type mapping of ST-seq data with scRNA-seq data was performed using the 197 

“FindIntegrationAnchors” and “TransferData” functions. Cell types within the ST data were identified 198 

using the “CreateAssayObject” function. The expression levels, as well as the cellular and spatial 199 

distribution of IL2RA, were determined. 200 

  201 
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Results 202 

1 Research design 203 

The study design consisted of six consecutive analytical steps (Figure 1). Initially, the identification of 204 

druggable genes. Subsequently, determine appropriate IVs for these genes. Following that, MR analysis 205 

of the gene expression-AD connection was performed in both the discovery and replication cohorts. 206 

Additionally, colocalization analysis to detect common causal variations. Furthermore, the validation 207 

process utilized pQTL datasets and conducted cross-disease MR/colocalization analyses involving five 208 

additional inflammatory dermatoses. Additionally, investigate druggability and the progress of clinical 209 

development for drugs. Finally, characterization of candidate gene expression profiles with scRNA-seq 210 

and ST-seq analysis. 211 

2 Discovery Cohort Findings 212 

Ultimately, the MR analysis results for 2,316 druggable genes were obtained. MR research found ten 213 

genes that were strongly linked to the risk of AD (Figure 2). Among these, the expression of GPX3, HLA-214 

DRB1, and IL2RA druggable genes has a promoted impact on the risk of AD (OR: 1.20; 95% CI: 1.11, 215 

1.29; P = 1.43e-6; OR: 1.12; 95% CI: 1.07, 1.17; P = 3.71e-06; OR: 1.50; 95% CI: 1.33, 1.67; P = 3.55e-216 

12 [IVW]) (Figure 2). The expression of HSP90AA1, IMPG2, MANBA, MCL1, OPRL1, SENP7, and 217 

TNFRSF10C druggable genes has an inhibitory effect on the risk of AD. No association between the 218 

expression of remaining druggable genes and the risk of AD was detected (P > 2.16-05) (Figure 2). For 219 

the 10 significant druggable genes identified above, our analyses showed no evidence of heterogeneity 220 

among the IVs (Q_pval > 0.05). Furthermore, MR-Egger intercept tests confirmed the absence of 221 

significant pleiotropic effects (Pleiotropy_pval > 0.05) (sTable 4). 222 

 223 

3 Replication Cohort Validation 224 

We validated the ten significant druggable genes in an independent AD cohort. The IVW results showed 225 

that expression of three druggable genes (HSP90AA1, IL2RA, and MANBA) remained significant after 226 

Bonferroni correction (P < 0.005, 0.05/10 genes), consistent with the discovery dataset (Figure 3). 227 

Nominal significance was observed in the expression of the druggable genes HLA-DRB1, MCL1, and 228 

OPRL1 (P < 0.05 [IVW]) (Figure 3). While part of heterogeneity was observed (Q_pval < 0.05), the MR-229 

Egger intercept test ruled out horizontal pleiotropy (Pleiotropy_pval > 0.05) (Figure 3). 230 

 231 
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4 Colocalization analysis 232 

For genes significant in both discovery and replication cohorts, we examined shared genetic architecture 233 

with AD. IL2RA showed strong colocalization evidence (rs61839660, PP.H4 > 0.8) (sTable 4; Figure 4), 234 

while HSP90AA1 and MANBA demonstrated no colocalization (sTable 5; Figure 4). 235 

 236 

5 pQTL dataset  237 

The finding revealed a statistically significant positive impact on the IL2RA protein-associated cis-pQTL 238 

(rs12722489) and the risk of AD (sTable 6-7)), which aligns with the direction of impact in the primary 239 

discoveries. 240 

 241 

6 Five inflammatory dermatoses 242 

Elevated IL2RA expression increased the risk of psoriasis (OR: 1.48; 95% CI: 1.25, 1.75; P = 4.8e-06) 243 

and eczema (OR: 1.40; 95% CI: 1.18, 1.66; P = 1.4e-04), but showed no association with vitiligo, rosacea 244 

or acne (P > 0.05) (Figure 5). However, colocalization analyses found no shared variants between IL2RA 245 

and these dermatoses (sTable 8). 246 

 247 

7 Identify druggability and clinical development status 248 

A systematic review of DrugBank and ChEMBL databases revealed that most small-molecule drugs 249 

targeting IL2RA are currently in either approved or investigational stages (sTable 9). The approval of 250 

aldesleukin has been granted for the treatment of metastatic renal cell carcinoma in adults. Denileukin 251 

diftitox has been approved to treat cutaneous T-cell lymphoma. Basiliximab is a monoclonal anti-C25 252 

antibody (IL2RA) approved for prophylactic treatment of kidney transplant rejection. Furthermore, 253 

multiple IL2RA inhibitors are undergoing clinical trials, with a primary focus on organ transplant 254 

rejection (sTable 10). 255 

 256 

8. Identification of IL2RA expression in AD based on scRNA-seq and ST-seq data 257 

Current discovery indicated that IL2RA expression is associated with a high risk of AD. Therefore, we 258 

further investigated IL2RA expression at both cellular and tissue levels. After QC, a total of 33,162 cells 259 

and 33,408 genes were retained for further analysis (Figure S1A-D). Cells were then clustered and 260 

annotated using canonical markers (Figure 6A-C, Figure 6E; Figure S1E-G), including keratinocytes 261 
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(KRT14 and KRT10), melanocytes (PMEL and MLANA), natural killer cells (GZMB and NKG7), T 262 

cells (IL7R and CD3D), phagocytes (LYZ and F13A1), mast cells (TPSAB1 and TPSB2), fibroblasts 263 

(COL6A2 and COL1A2), endothelial cells (RAMP2 and CLDN5), and smooth muscle cells (ACTA2 264 

and TAGLN). We observed increased proportions of keratinocytes and phagocytes in AD compared to 265 

HC (Figure 6D). IL2RA expression was noted in T cells and natural killer cells within AD samples (Figure 266 

6F), suggesting its involvement in AD-related immune modulation. 267 

 268 

Furthermore, ST-seq data were obtained, processed, and clustered (Figure S2A-B; Figure S3A). A total 269 

of 7 regions were identified: upper epidermis (niche 5), lower epidermis (niches 3 and 18), leukocyte 270 

infiltration (niches 0, 4, 8, and 16), ECM/fibroblast (niches 1, 2, 6, 7, 9, 10, 14, and 15), sweat gland 271 

(niche 11), fibroblast (niche 12), smooth muscle cell (niche 13), and hair follicle (niche 17) (Figure 6G; 272 

Figure S3B). IL2RA expression was prominent in leukocyte infiltration zones (Figure 6H). Following 273 

cell-type mapping, four cell types were identified: natural killer cells, keratinocytes, phagocytes, and T 274 

cells (Figure 6I). Phagocytes and T cells were predominantly enriched in the leukocyte infiltration region, 275 

consistent with the scRNA-seq analysis.   276 
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Discussion 277 

This work utilized integrative multi-omics studies to systematically assess the causal significance of 278 

druggable genes in AD. We leveraged GWAS and eQTL data to conduct MR and colocalization 279 

investigations, identifying greater IL2RA expression as a potential cause of increased AD risk, with pQTL 280 

validation at the protein level. While MR linked greater IL2RA expression to a higher risk of psoriasis 281 

and eczema, colocalization analysis provided no evidence. Notably, scRNA-seq and ST revealed a 282 

relationship between IL2RA expression and T and NK cells in leukocyte infiltration zones in AD tissues. 283 

 284 

IL2RA, namely Interleukin 2 receptor alpha subunit, which is also known as CD25, represents the alpha 285 

chain of the interleukin-2 receptor, characterized by a short cytoplasmic region and low affinity. IL2RA 286 

is widely regarded as the predominant molecular marker for regulatory T cells due to its continuous and 287 

elevated expression on resting and activated regulatory T cells (Tregs). The receptor plays a role in the 288 

modulation of immunological tolerance through Treg activity. Tregs exert a suppressive effect on the 289 

activation and proliferation of autoreactive T cell. Currently, little is known about the underlying 290 

mechanism by which greater IL2RA expression contributes to increased susceptibility to AD. We propose 291 

the following potential hypotheses. IL2RA interacts with IL2 on CD8+ T cells, facilitating the generation 292 

of memory cytolytic T lymphocytes, which subsequently convert into memory T cells [32]. Memory T 293 

cells play a crucial role in the infiltration of inflammatory T cells in the development of AD [33]. 294 

Furthermore, IL2RA plays a crucial role in the formation and operation of Tregs. Regulatory T cells 295 

stimulate the initiation of innate inflammation following a breach in the skin barrier through the 296 

activation of TGF-β [34]. Besides, therapeutic interventions targeting IL2RA may hold promise for AD 297 

treatment. The monoclonal antibody basiliximab, which specifically binds CD25, has demonstrated 298 

clinical efficacy in psoriasis management by suppressing hyperactive T cell responses. Given the shared 299 

pathophysiology of T cell dysregulation in both psoriasis and AD, this therapeutic approach warrants 300 

further investigation for potential application in AD treatment strategies [35, 36]. 301 

 302 

This study offers several significant advantages. It is the first to identify potential drug targets for AD 303 

using MR analysis. Second, drug research and development is a lengthy, resource-intensive process with 304 

a low success rate. By focusing on druggable genes, this study aims to enhance the efficacy of AD 305 

treatments and improve the success rate of drug development. Specifically, our research has identified 306 
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IL2RA as a potential drug target for AD. Additionally, the integration of scRNA-seq and ST-seq data 307 

allowed us to provide biological evidence for IL2RA-related inflammation in AD. By utilizing cis-eQTLs 308 

as IVs for druggable gene expression and combining GWAS and eQTL datasets for MR analysis, we 309 

have addressed limitations commonly associated with observational studies and randomized controlled 310 

trials, such as small sample sizes, confounding bias, reverse causality, and feasibility issues. This 311 

approach also helps minimize the risk of horizontal pleiotropy, which can violate the assumptions of MR. 312 

Furthermore, our MR studies explored the impact of IL2RA gene expression on five other inflammatory 313 

skin diseases, revealing potential alternative indications. Finally, we identified several targeted small 314 

molecule inhibitors currently under development, providing direction for future drug development efforts 315 

targeting these pathways. 316 

 317 

Several limitations of this study also should be noted. Foremost, excluding the potential impact of 318 

pleiotropy entirely poses challenges in MR studies. Furthermore, trans-eQTL SNPs (SNPs and gene 319 

centers >5 Mb) may exert a significant influence on regulatory networks. However, our research merely 320 

concentrated on the cis-eQTLs of the druggable genes [19]. Although a Bayesian colocalization strategy 321 

was employed in this study under the premise that two traits are associated with a common genetic variant, 322 

the scenario involving multiple causative variants has not been extensively investigated [37]. Moreover, 323 

it is imperative to conduct clinical trials to assess the efficacy and safety of this putative drug target in 324 

the treatment of AD. Besides, the study was restricted to people of European descent, therefore 325 

constraining the applicability of the results to other populations. Ultimately, the findings necessitate basic 326 

experimental validation of IL2RA in specimens from AD patients, although ethical limits in biopsy 327 

collection and limited access to untreated lesions provide hurdles.  328 

 329 

Conclusion  330 

In conclusion, our study indicates a potential causal relationship between increased expression of the 331 

IL2RA gene and a greater risk of AD. Nevertheless, our investigation yielded no support regarding the 332 

impact of IL2RA gene expression on the remaining five inflammatory dermatoses. The present 333 

investigation highlights the potential of IL2RA inhibitors as therapeutic targets for the treatment of AD. 334 

Further research is required to enhance comprehension of the pathogenesis of AD, and it is imperative to 335 

assess the potential efficacy of IL2RA inhibitors in the treatment of AD by conducting preclinical and 336 
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clinical studies. 337 
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Figure legends 453 

Figure 1. Flowchart of the study process. 454 

 455 

Figure 2. Mendelian randomization estimates of druggable gene expression associated with 456 
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atopic dermatitis using discovery datasets. nSNPs: number of single nucleotide polymorphisms; 457 

IVW: inverse-variance weighted; OR: odds ratio; 95% CI: 95% confidence interval. 458 

 459 

Figure 3. Mendelian randomization estimates of druggable gene expression associated with 460 

atopic dermatitis using replication datasets. nSNPs: number of single nucleotide polymorphisms; 461 

IVW: inverse-variance weighted; OR: odds ratio; 95% CI: 95% confidence interval. 462 

 463 

Figure 4. LocusZoom plot of the IL2RA locus (±500 Kb) in relation to atopic dermatitis. 464 

Regional Manhattan plot showing SNP associations within the IL2RA locus. 465 

A. rs61839660 was used as a proxy for serum IL2RA expression. 466 

B. rs61839660 and its flanking 500 kb region on either side in atopic dermatitis. 467 

 468 

Figure 5. Mendelian randomization estimates of IL2RA gene expression in five inflammatory 469 

dermatoses. nSNPs: number of single nucleotide polymorphisms; IVW: inverse-variance 470 

weighted; OR: odds ratio; 95% CI: 95% confidence interval. 471 

 472 

Figure 6. Identification of IL2RA gene expression in AD using scRNA-seq and ST-seq data. 473 

(A-C) t-SNE plots showing the nine major cell types in all samples (A), HC samples (B), and AD 474 

samples (C). 475 

(D) Bar plots illustrating the distribution of cell types in HC and AD samples. 476 

(E) Bubble plots displaying the expression of the top two marker genes in each cell type. 477 

(F) t-SNE plots depicting IL2RA gene expression in major cell types within HC and AD samples. 478 

(G) Spatial scatter pie plots showing the annotated regions in skin tissue. 479 

(H) Bubble plots presenting IL2RA gene expression in the annotated regions. 480 

(I) Spatial scatter pie plots showing the annotated cell types in the capture location. 481 
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Figure 1. Flowchart of the study process.
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Figure 2. Mendelian randomization estimates of druggable gene expression associated with
atopic dermatitis using discovery datasets. nSNPs: number of single nucleotide
polymorphisms; IVW: inverse-variance weighted; OR: odds ratio; 95% CI: 95% confidence
interval.
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Figure 3. Mendelian randomization estimates of druggable gene expression associated with
atopic dermatitis using replication datasets. nSNPs: number of single nucleotide
polymorphisms; IVW: inverse-variance weighted; OR: odds ratio; 95% CI: 95% confidence
interval.
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Figure 4. LocusZoom plot of the IL2RA locus (±500 Kb) in relation to atopic dermatitis.
Regional Manhattan plot showing SNP associations within the IL2RA locus.
A. rs61839660 was used as a proxy for serum IL2RA expression.
B. rs61839660 and its flanking 500 kb region on either side in atopic dermatitis.
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Figure 5. Mendelian randomization estimates of IL2RA gene expression in five inflammatory
dermatoses. nSNPs: number of single nucleotide polymorphisms; IVW: inverse-variance
weighted; OR: odds ratio; 95% CI: 95% confidence interval.
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Figure 6. Identification of IL2RA gene expression in AD using scRNA-seq and ST-seq data.
(A-C) t-SNE plots showing the nine major cell types in all samples (A), HC samples (B), and
AD samples (C).
(D) Bar plots illustrating the distribution of cell types in HC and AD samples.
(E) Bubble plots displaying the expression of the top two marker genes in each cell type.
(F) t-SNE plots depicting IL2RA gene expression in major cell types within HC and AD
samples.
(G) Spatial scatter pie plots showing the annotated regions in skin tissue.
(H) Bubble plots presenting IL2RA gene expression in the annotated regions.
(I) Spatial scatter pie plots showing the annotated cell types in the capture location.
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