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Abstract

Introduction

Observational studies suggest a complex connection between infectious diseases and inflammatory
bowel disease (IBD), yet the underlying mechanisms remain unclear. This study examines the genetic
correlations and causal relationships between antibody-mediated immune responses (targeting 46
infectious pathogens) and IBD, using linkage disequilibrium score regression (LDSC) and Mendelian
Randomization (MR) to inform early prevention and personalized treatment.

Material and methods

Data from the UK Biobank (8,735 samples) were used to identify independent SNPs associated with
antibody responses. IBD-related data from the GWAS Catalog included 2,515 UC cases and 482,083
controls, as well as 1,342 CD cases and 455,006 controls. Validation was done using datasets from
the International IBD Genetics Consortium (IIBDGC), including 6,968 UC and 5,956 CD cases.
Genetic correlations were assessed using LDSC, and causal links were investigated through MR
analysis, employing inverse-variance weighting (IVW) and sensitivity analyses.

Results

Genetic correlations were found between antibody responses to specific pathogens and IBD. MR
analysis revealed causal effects of antibody responses to four pathogens on UC and protective/risk
effects on CD. No horizontal pleiotropy or heterogeneity was observed, and sensitivity analyses
confirmed the consistency of findings.

Conclusions

This research provides genetic evidence for the causal links between antibody-mediated immune
responses to 46 pathogens and IBD in European populations, offering insights into IBD pathogenesis
and implications for prevention and treatment strategies.
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Abstract

Background: Observational studies suggest a complex connection between infectious diseases
and inflammatory bowel disease (IBD), yet the underlying mechanisms remain unclear. This study
examines the genetic correlations and causal relationships between antibody-mediated immune
responses (targeting 46 infectious pathogens) and IBD, using linkage disequilibrium score
regression (LDSC) and Mendelian Randomization (MR) to inform early prevention and
personalized treatment.

Methods: Data from the UK Biobank (8,735 samples) were used to identify independent SNPs
associated with antibody responses. IBD-related data from the GWAS Catalog included 2,515 UC
cases and 482,083 controls, as well as 1,342 CD cases and 455,006 controls. Validation was done
using datasets from the International IBD Genetics Consortium (IIBDGC), including 6,968 UC

and 5,956 CD cases. Genetic correlations were assessed using LDSC, and causal links were
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investigated through MR analysis, employing inverse-variance weighting (IVW) and sensitivity
analyses.

Results: Genetic correlations were found between antibody responses to specific pathogens and
IBD. MR analysis revealed causal effects of antibody responses to four pathogens on UC and
protective/risk effects on CD. No horizontal pleiotropy or heterogeneity was observed, and
sensitivity analyses confirmed the consistency of findings.

Conclusion: This study provides genetic evidence for the causal links between
antibody-mediated immune responses to 46 pathogens and IBD in European populations, offering
insights into IBD pathogenesis and implications for prevention and treatment strategies.
Keywords: Antibody-mediated immune responses;Inflammatory bowel disease;Linkage

disequilibrium score regression;Mendelian randomization.

1. Introduction

IBD is a group of complex gastrointestinal disorders characterized by non-specific chronic
inflammation, primarily including UC and CD. Various factors play a part in the pathogenesis of
IBD, Including aspects like genetics, environmental influences, gut microbiota dysbiosis, and
immune dysregulation [1, 2]. These diseases are more commonly observed in young populations
and are clinically manifested by symptoms such as diarrhea, abdominal pain, hematochezia, and
anemia[3]. Given the fluctuating course of IBD, characterized by periods of relapse and remission,
the long-term disease course may lead to severe complications, including intestinal strictures,
fistulas, systemic infections, and cancer[4, 5]. With the growing prevalence of IBD, its effects on

the quality of life for millions of patients worldwide have become more significant[6, 7].
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Previous research has demonstrated that The development of IBD is heavily influenced by

genetic factors. Genome-wide association studies (GWAS), for instance, have revealed several

genetic variants associated with IBD risk, including NOD2, IL23R, and ATG16L1[8, 9]. The

relationship between infectious diseases and IBD is complex. On one hand, IBD patients may be

more susceptible to infectious diseases due to hyperactive immune responses[10]; on the other

hand, the onset of infectious diseases may influence the progression and clinical manifestations of

IBDJ[11]. Nevertheless, the precise nature of the relationship between infectious diseases and IBD

remains poorly understood. While some observational studies have attempted to explore this

association, many are constrained by small sample sizes or dependence on patient-reported

diagnoses of infectious diseases, which diminishes statistical power and introduces confounding

factors such as environmental and behavioral influences.

Antibody-Mediated Immune Responses(AMIR) represent one of the primary defense

mechanisms against infectious diseases. Following exposure to infectious pathogens, the body

produces specific antibodies to neutralize pathogens or mark infected cells, thereby providing

protection[12]. Previous studies have shown that AMIR are closely connected to both the onset of

infectious diseases and the progression of some non-infectious diseases[12, 13]. Recent methods,

such as GWAS, have identified numerous genetic variants linked to antibody immune

responses[14, 15], providing valuable insights for further research into their relationships with

diseases. Compared to traditional observational studies, using GWAS data on genetic variants

related to antibody immune responses enhances research accuracy and statistical power while

uncovering novel biological mechanisms. This approach provides substantial advantages in

comprehending the intricate relationships between infectious and non-infectious diseases, offering
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potential strategies for treatment and prevention.

Therefore, this study aims to leverage published GWAS data on AMIR and IBD, combining
LDSC[16] and MR methods to comprehensively investigate the associations between antibody
immune response-related genetic variants identified in infectious diseases and IBD. This study
seeks to further clarify the genetic correlations and causal connections between AMIR to
infectious diseases and the development of IBD, which are critical for understanding the
pathogenesis of IBD and developing early-stage prevention and therapeutic approaches.

2. Materials and Experimental Procedures
2.1 Research Design

LDSC, MR, and Meta-analysis were employed in our study to examine the genetic

correlation and causal link between AMIR to 46 infectious pathogens and IBD. The research

design is summarized in Figure 1.

® 46 antibody immune response phenotypes \ 4
defined by 13 pathogens :
e data from the UK biobank study(N=8735)

MR analyses

® IVW method

e Simple mode method

o Weighted mode method
e Weighted median method
: ' o MR-Egger method

: o Meta analyses

Selection of genetic lvs

® associated with Antibody-
Mediated Immune(P<1.0x10%)
® LD R<0.001,window
size=10,000l

e Exclude the ambiguous
SNPs with non-concordant
alleles, palindromic SNPs
* Remove potential
pleiotropic SNPs by MR-
PRESSO and Radial MR

o F-statistics of IVs>10

Inflammatory Bowel Disease
® GWAS Catalog
UC study(N=484598)
CD study(N=456348)
e [IBDGC
UC study (N=27432)
CD study (N=20883)

* Remove SNPs associated
with confounder

Sensitivity analyses

e Cochran Q test

o MR-Egger intercept test
® MR-PRESSO global test
® Leave-one-out

Exposure selection > LD Score regression Vs selection and Data harmonization > Outcome selection

Results analyses and Sensitivity analyses

79 Figure 1. An outline of the study design is presented schematically. In MR analyses, genetic variants must meet three core criteria to
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qualify as valid instrumental variables (IVs): (1) The relevance criterion, where IVs must exhibit a strong association with the exposure;
(2) The exclusivity criterion, which requires that IVs influence the outcome solely via the exposure; (3) The independence criterion,
ensuring that IVs remain unlinked to confounding factors.

MR, Mendelian randomization; SNP, single-nucleotide polymorphisms; IBD, inflammatory bowel disease; CD, Crohn’s disease; UC,

ulcerative colitis; IIBDGC, International IBD Genetics Consortium. GWAS, genome-wide association study.

2.2 Data Sources

The UK Biobank (UKB) provided summary statistics from a European population-based
cohort for the GWAS investigating antibody-mediated immune responses,From 2006 to 2010, a
cohort of over 500,000 UK adults was recruited in this study, among which 9,724 participants
submitted serum samples. Serological assays for 20 microorganisms were performed, uncovering
genetic variants correlated with antibody-mediated immune responses to various infections[17].
UC and CD datasets were extracted from the GWAS Catalog (IDs: GCST90038684[18],
GCST90044153[19]) comprising 484,598 European individuals (2,515 UC cases and 482,083
controls) and 456,348 European individuals (1,342 CD cases and 455,006 controls). To assess the
reliability of the findings, two datasets from the IBD Consortium (ieu-a-32, icu-a-30) were used
for replication and meta-analysis. These datasets encompassed 6,968 UC cases (20,464 controls)
and 5,956 CD cases (14,927 controls)[20], all of European descent.

2.3 Genetic Instrumental Variables (Genetic I'Vs)

A rigorous series of filtering steps was applied to validate the reliability and validity of IVs.
First, Considering the limited number of IVs surpassing the genome-wide significance threshold
(p <5 x 107-8), a less stringent threshold (p < 1 x 10"-5) was applied, as recommended by
previous studies[21-24], to identify further potential IVs and improve the study's overall
comprehensiveness and statistical power. Second, To remove single nucleotide polymorphisms

(SNPs) in high Linkage Disequilibrium (LD) and maintain the independence of each SNP, LD
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clumping was conducted with a threshold of r» < 0.001 and a window size of 10,000 kb,
effectively reducing bias attributable to LD. In addition, to ensure genetic variant clarity,
ambiguous and palindromic SNPs were discarded. PhenoScanner database queries were then
utilized to detect and remove SNPs with known phenotypic associations to the IVs[25, 26], further
reducing genotyping errors and enhancing analysis accuracy.Subsequently, pleiotropy tests were
conducted using the MR-PRESSO and RadialMR methods to exclude SNPs showing abnormal
pleiotropy, ensuring that the selected I'Vs influenced outcomes exclusively through the exposure of
interest. Finally, The F-statistic was computed to determine the robustness of the IV[27], and Vs
exhibiting an F-statistic lower than 10 were removed to mitigate potential bias arising from weak
instruments[28]. These stringent filtering procedures ensured the independence, validity, and
robustness of the selected Vs, establishing a solid foundation for subsequent genetic correlation
and causal inference analyses.
3. Statistical Analysis
3.1 LDSC

The genetic correlation between traits was assessed using LDSC. Contrary to MR analysis,
which considers only SNPs linked to the exposure, genetic correlation analysis incorporates all
measured SNPs to examine the correlation of effect sizes between traits.A genetic correlation (rg)
of 0 indicates no genetic correlation between the two traits, while an r of 1 suggests identical
genetic effects [16, 29]. In this study, LDSC was employed to filter GWAS summary statistics
based on the HapMap3 reference panel. Non-SNP variants (e.g., insertions and deletions),
ambiguous strand variants, duplicates, and SNPs having a Minor Allele Frequency (MAF) below

0.01 were discarded[30, 31]. This method estimates genetic correlation by regressing the genetic
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covariance (calculated by multiplying the z-scores of SNPs for one trait with those for another
trait) on LD scores [32]. Statistical significance was defined as p<0.001 (0.05/46, Adhering to a
rigorous Bonferroni correction), Results with 0.001 < p < 0.05 were interpreted as suggestive
evidence of genetic correlation.
3.2 MR and Meta-analysis

To evaluate the causal relationship between AMIR and IBD, five MR methods were used:
inverse variance weighting (IVW), MR-Egger, weighted median, simple mode, and weighted
mode. IVW was selected as the main analysis method because of its superior statistical power[33,
34]. MR-Egger was used to identify horizontal pleiotropy (signified by an intercept with a
p-value<0.05) [35],while Cochran's Q test assessed heterogeneity, with a leave-one-out analysis
presenting a visual representation[36]. MR-PRESSO was applied to detect and remove outlier
variants and potential pleiotropy,followed by Radial-MR to further optimize the results[37, 38]
(Complete sensitivity analysis results are provided in Supplementary Table S6).

Meta-analysis of the IVW results was carried out using the random-effects model in the
'meta’ package of R (version 4.3.1). Heterogeneity in MR results was evaluated using Cochran's Q
test, with the I? statistic quantifying heterogeneity, 1> values of 25%, 50%, and 75% correspond to
low, moderate, and high heterogeneity, respectively. (Complete analysis data are provided in
Supplementary Table S7.)

Statistical analyses were conducted in R (version 4.3.1) using the "TwoSampleMR,' 'meta,’
'RadialMR,' and '"™MRPRESSO' packages to guarantee the accuracy and consistency of the data
analysis.

4. Results
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4.1 LDSC regression analysis

The results of LDSC analysis revealed potential genetic correlations between Human herpes
virus 6 IE1B antibody levels and CD, as well as Epstein-Barr virus (EBV) VCA pl18 antibody
levels, anti-human herpes virus 6 IE1B IgG seropositivity, Herpes simplex virus 1 (HSV-1) IgG
antibody levels, and Merkel cell polyomavirus VP1 antibody levels with UC (Table 1 and Figure

2). Detailed information on all genetic correlation results is provided in Supplementary Table S3.

Table 1. The genetic correlations between antibody-mediated immune responses and IBD

Antibody immune response phenotype Diseases rg P
Human herpes virus 6 IE1B antibody levels CD -0.847  0.015
Epstein-Barr virus VCA p18 antibody levels ucC 0.576 0.030

Anti-human herpes virus 6 IELB IgG seropositivity ucC -0.648  0.010
Herpes simplex virus 1 mgG-1 antibody levels ucC -0.658  0.030
Merkel cell polyomavirus VP1 antibody levels ucC 0.615 0.024
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Figure 2. Circular heat map of suggestive genetic correlation between antibody-mediated immune responses and IBD.

4.2 MR Analysis and Meta-Analysis

MR analysis, combining the GWAS Catalog and [IBDGC datasets, was used to further
explore the causal relationship between antibody-mediated immune responses and
IBD.Meta-analysis results indicated that elevated EBV ZEBRA antibody levels significantly
increased the risk of CD (OR:1.217, 95% CI:1.010-1.465, p:0.0387), whereas antibody levels of
varicella-zoster virus (VZV) glycoproteins E and I were significantly inversely associated with
CD (OR:0.783, 95% CI:0.730-0.841, p<0.0001).In UC, Chlamydia trachomatis pGP3 antibody
levels showed a potential causal relationship with UC(OR:0.999,95%C1:0.999—1.000,p=0.0348p),
while cytomegalovirus (CMV) IgG seropositivity was significantly inversely associated with the
risk of UC (OR: 0.999, 95% CI: 0.998-0.999, p= 0.0032). Additionally, HHV-7 U14 antibody
levels also exhibited a negative association (OR: 0.998, 95% CI: 0.997-0.999, p= 0.0286), as
shown in Figure 3. Comprehensive results of MR analyses and single SNP F-statistic the two

datasets are provided in Supplementary Tables S4 and S5.
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Figure3. Forest Plot of Meta-Analysis Showing Causal Associations Between antibody-mediated immune responses and IBD Subtypes

(UC and CD).

5. Discussion

As far as we are aware, this is the first study to investigate the connection between AMIR and

IBD through genetic correlation and potential causality, utilizing GWAS summary statistics. These

results not only corroborate prior observational studies but also advance the understanding of the

potential pathogenic mechanisms underlying IBD, offering new perspectives for early prevention

and personalized treatment strategies.The findings indicate that different pathogens may regulate

the risk of IBD through various immunological mechanisms, with distinct patterns observed

between the two IBD subtypes.

Epstein-barr virus (EBV) is a herpesvirus with a productive cleavage cycle and incubation

period, which can infect approximately 90% of adults [39]. It has been found that viral capsid

antigens such as EBV VCA p18 can trigger a strong immune response, including the production of

high levels of IgG and IgA antibodies, which can cross-react with host proteins and trigger

autoimmunity [40]. Studies have shown that high levels of EBV nuclear antigen

10
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386-40s(EBNA336-405) specific antibodies cross-react with cell adhesion molecules such as Glial

CAM370-330 and mediate effective cytotoxic NKG2C and NKG2D natural killer (NK) cells as well

as different EBV-specific T cell responses to kill Glial CAM ™ 37.380-specific cells [41]. In addition,

poor control of EBV latency, especially during the active stage of the disease, can lead to elevated

antibody levels and mediate the expression of B-cell inflammatory genes and T-cell activation,

resulting in increased levels of inflammatory factors such as IL-6, GMCSF, and LTA, and causing

tissue inflammation [42]. Recently, the connection between EBV and IBD has drawn attention. A

2022 study reported that EBV infection was detected in 79.4% of intestinal mucosal samples from

IBD patients, with a prevalence as high as 94.9% in patients with severe IBD, indicating a

significant association between EBV infection and disease severity [43]. It is worth mentioning

that EBV-positive IBD patients often exhibit rapid disease progression, frequent relapses, and

resistance to treatment, likely due to chronic immune activation induced by EBV infection of B

cells and intestinal epithelial cells, which exacerbates inflammatory responses[44]. Moreover,

EBYV has been shown to activate the NF-kB signaling pathway via viral gene products (e.g., LMP1

and EBER1), directly affecting host signaling pathways and amplifying intestinal tissue damage

[45]. Interestingly, EBV virus infects intestinal epithelial cells and induces the epithelial cells to

produce chemokines and adhesion molecules [46], which may lead to the killing of epithelial cells

by NK cells and EBV-specific T cells through cross-reaction with EBNA3gs.405-specific antibodies.

This further leads to the amplification of lamina propria inflammation related to the leakage of

intestinal contents. EBV infection may also interact with the gut microbiota, further intensifying

inflammation. This study found suggestive genetic correlation between EBV VCA p18 antibody

levels and UC (LDSC) and further revealed a significant positive association between EBV

11
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ZEBRA antibody levels and CD through MR and meta-analysis (OR:1.217, 95% CI:1.010-1.465,

p=0.0387),these results are in agreement with prior studies. These findings reinforce the crucial

role of EBV in the pathogenesis of IBD and stress the necessity for early detection and

intervention of EBV infection within IBD treatment strategies.

Varicella-zoster virus (VZV) is a highly contagious alpha herpesvirus. The surface

glycoproteins of VZV virus, such as glycoprotein E (gE), glycoprotein B (gB), and glycoprotein I

(gl), are the main antigenic targets of VZV antibodies. Studies have shown that serum positivity of

VZV antibodies is associated with improved survival outcomes in adult glioma patients [47].

Studies have shown that VZV vaccination significantly enhances specific immune responses,

including increased IgG antibody concentrations and specific lymphocyte proliferation [48]. In

addition, VZV infects and establishes latency in the neurons of the intestinal ganglion [49].

High-dose vitamin D supplementation can increase antibody affinity or raise the level of VZV IgG,

accompanied by CD4+ T cell proliferation response, IFN-y secretion and reduced IL-2 secretion

level [50, 51], indicating that the increase of VZV antibodies may predict low-level intestinal

inflammation. This suggests that VZV infection or vaccination may improve the prognosis of IBD

by enhancing host immune regulation and reducing the risk of other viral infections. In contrast to

EBV's risk-enhancing effects, the inverse association between VZV glycoproteins E and I

antibody levels and CD suggests a potential protective effect (meta-analysis OR :0.783, 95% CI:

0.730-0.841, p<0.0001), possibly related to antiviral immunity.Studies have shown that VZV

vaccination significantly enhances specific immune responses, including increased IgG antibody

concentrations and specific lymphocyte proliferation. However, it should be noted that these

protective effects may differ based on the host's genetic background and the timing of infection.
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For instance,childhood VZV infection may provide long-term protective immunity, whereas adult

infection may elicit heightened immune responses [52], potentially exacerbating IBD symptoms.

More studies are necessary to examine the dynamic interplay between VZV infection and host

immune regulation in IBD.

Cytomegalovirus (CMV), as a widely existing  -herpesvirus, the association between its

latent characteristics after infection and chronic inflammation has attracted people's attention. a

study of 287 IBD patients found that CMV infection was prevalent among IBD patients, with

infection rates significantly increasing with disease activity: from 3.4% in mild cases to 70.4% in

severe cases. This phenomenon may stem from CMV-induced Th1/Th2 immune imbalance, which

exacerbates intestinal inflammation [43]. CMV infection can induce the continuous activation of

memory B cells, generating high-affinity antibodies, and simultaneously drive CD4+ and CD8+ T

cells to differentiate into effector phenotypes [53, 54]. Studies have shown that in patients with

inflammatory bowel disease (IBD), CMV reactivation can induce abnormal expression of

glucocorticoid receptor (GR), reduce the GRo/p ratio and increase GRa phosphorylation, leading

to hormone resistance, accompanied by elevated pro-inflammatory factors such as IL-6 and

TNF-0 and decreased IL-5 [55, 56]. In addition, the production of CMV-specific antibodies

depends on the synergistic effect of B cells and T cells. Clinical studies have further demonstrated

that the titer of anti-CMV IgG antibody is positively correlated with the levels of various

pro-inflammatory factors. For instance, in the elderly population, a high level of CMV antibody is

significantly associated with the increase of IL-6, TNF-o and CRP [56, 57]. Conversely, other

studies suggest that CMV infection may interfere with inflammatory signaling pathways, offering

protective effects in certain UC patients [58]. This study also identified a significant causal

13
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relationship between Anti-cytomegalovirus (CMV) IgG seropositivity and UC, suggesting a

potential protective effect (meta-analysis OR = 0.999, p=0.0032). These bidirectional effects

observed under different immune conditions warrant further investigation to clarify the specific

mechanisms involved. The observed differences between IBD subtypes in this study are

noteworthy, suggesting that the pathogenic mechanisms of IBD may be disease-specific. In UC

patients, antibody levels against Chlamydia trachomatis pGP3, CMV IgG seropositivity, HHV-7

Ul4, and VZV IgG seropositivity showed potential negative associations, possibly due to the

mucosal inflammation pattern in UC, which is more influenced by localized viral infections and

immune regulation. In contrast, CD patients showed a positive causal relationship with EBV

ZEBRA antibody levels, which may be explained by the deeper tissue inflammation in CD that

predisposes to systemic viral infections. For instance, CD patients treated with

immunosuppressants (e.g., azathioprine) have significantly higher rates of EBV-related

complications [59]. This underscores the importance of developing subtype-specific treatment

strategies for IBD.

From a clinical perspective, these findings have important implications for IBD management.

First, screening for viral infections such as EBV and CMV is recommended during the diagnosis

and treatment of IBD, particularly for patients planning to use immunosuppressive therapies.

Studies have shown that EBV-seronegative IBD patients receiving azathioprine are at higher risk

of acute EBV infection and associated complications, such as lymphoproliferative disorders and

hemophagocytic lymphohistiocytosis[58]. Drawing from the results of this study, close monitoring

of EBV and CMV infection is particularly crucial in CD patients. Dynamic monitoring of

high-risk subgroups of IBD patients carrying genetic susceptibility loci is necessary. Even if the

14
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initial serum is negative, antibody levels should be regularly rechecked in the early stage [60].

Second, combining antiviral therapies with standard IBD treatments for patients with abnormal

viral antibody levels may improve disease outcomes. Lastly, further research into the complex

interactions between pathogen infections, host genetic backgrounds, and the gut microbiota will

help elucidate the mechanisms underlying IBD and advance precision medicine approaches in

IBD management [61].

While these findings are significant, this study is not without its limitations. First, due to low

heritability (representing the variance explained by genetics) and sample size constraints, certain

categories of AMIR to the 46 infectious pathogens could not be included in the LDSC analysis,

reducing the statistical power and robustness of the results. In the future, it is necessary to

combine super-large cohorts to enhance the detection sensitivity. Second, the genetic correlation

analysis based on antibody levels cannot directly assess the effects of dynamic pathogen infection

status on IBD. Further histological validation data from clinical samples and animal models need

to be incorporated, and the connection between these antibodies and the pathophysiology of IBD

will be further clarified. Finally, given that the data were exclusively from European populations,

to improve the generalizability of the findings, further validation across different ethnic groups is

required.

Based on the potential relationship between virus-related antibodies and IBD discovered in

this study, future research needs to be conducted in the following aspects. Firstly, it is necessary to

further clarify the pathophysiological connection of IBD anchored by virus-related antibodies,

such as the possibility of aggravating or alleviating IBD by exerting immunomodulatory effects on

intestinal inflammation. Secondly, the exact mechanisms involved in these antibodies need to be
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further analyzed. Further study the targets and downstream pathways involved in antibodies by

constructing a humanized intestinal organoid - immune cell co-culture model. Finally, it is

necessary to further combine molecular simulation and vertex mutation techniques to analyze the

potential cross-reactions between these antibodies and host proteins, so as to avoid the generation

of autoimmunity while retaining antiviral activity.

6. Conclusion

This study utilized genetic correlation analysis and MR methods to uncover potential

associations between pathogen AMIR and IBD. The findings indicate that EBV could be a key

risk factor for CD, while VZV and CMV might have protective roles in IBD under varying

immune conditions. The differences between IBD subtypes further indicate that UC and CD may

involve distinct pathogens and immune mechanisms.These results shed light on the etiological

mechanisms of IBD and point to potential directions for early prevention and personalized

treatment via vaccination.
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Table 1. The genetic correlations between antibody-mediated immune responses and IBD

Antibody immune response phenotype Diseases rg P
Human herpes virus 6 IE1B antibody levels CD -0.847  0.015
Epstein-Barr virus VCA p18 antibody levels ucC 0.576  0.030

Anti-human herpes virus 6 IE1B IgG seropositivity ucC -0.648  0.010
Herpes simplex virus 1 mgG-1 antibody levels ucC -0.658  0.030

Merkel cell polyomavirus VP1 antibody levels ucC 0.615 0.024
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Outcome Exposure

5-GWAS Catalog --IIBDGC -¢-Meta-analysis

GWAS Catalog

1IBDGC

Meta-analysis

OR (95% Cl)

OR (95% CI)

OR (95% CI)

[os]

uc

Epstein-Barr virus EA-D antibody levels

Epstein-Barr virus ZEBRA antibody levels

Anti-human herpes virus 6 IgG seropositivity

Anti-polyomavirus 2 IgG seropositivity

Anti-varicella zoster virus 1gG seropositivity

Varicella zoster virus glycoproteins E and | antibody levels

Chlamydia trachomatis pGP3 antibody levels

Anti

irus 1gG
Epstein—Barr virus EBNA-1 antibody levels
Human herpes virus 7 U14 antibody levels
Anti-polyomavirus 2 19G seropositivity
Anti-varicella zoster virus IgG seropositivity

Varicella zoster virus glycoproteins E and | antibody levels

r T T
06 08 1

T T T T 1
12 14 16 18 2

1.6694 (1.4538 - 1.9170)

1.3392 (1.2219 - 1.4678)

1.0282 (0.9550 - 1.1070)

1.0087 (0.9378 - 1.0850)

0.9116 (0.8515 - 0.9761)

0.7733 (0.6946 - 0.8609)

0.9996 (0.9992 - 1.0000)

0.9993 (0.9988 - 0.9998)

1.0023 (1.0020 - 1.0026)

0.9988 (0.9978 - 0.9999)

0.9988 (0.9985 - 0.9991)

0.9992 (0.9987 - 0.9996)

0.9974 (0.9970 - 0.9978)

1.1760 (0.8794 - 1.3709)

1.1075 (1.0167 - 1.2064)
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1.4034 (0.9956 - 1.9783)

1.2170 (1.0103 - 1.4659)
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1.0358 (0.9846 - 1.0896)

0.9450 (0.8893 - 1.0042)

0.7839 (0.7301 - 0.8418)

0.9996 (0.9992 - 1.0000)
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0.9988 (0.9978 - 0.9999)
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0.9992 (0.9987 - 0.9996)

0.9771 (0.9169 - 1.0413)

0.0530
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0.2951

0.1736
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