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A b s t r a c t 

Introduction: Critically ill patients with cirrhosis face substantially increased 
mortality. Reliable prognostic tools are essential for risk stratification and 
to guide clinical decision-making. Although prior studies have explored the 
predictive value of the albumin-bilirubin score (ALBI) and Fibrosis-4 (FIB-4) 
index in compensated cirrhosis and liver cancer, their role in predicting mor-
tality among critically ill patients with cirrhosis has remained insufficiently 
investigated. This study was conducted to evaluate these associations in 
this high-risk population.
Material and methods: Data for 2,139 critically ill cirrhotic patients were 
drawn from Version 3.1 of the MIMIC-IV database. Associations were ana-
lyzed using restricted cubic splines and Cox proportional hazards regression. 
Survival analyses were performed using Kaplan-Meier curves. Feature im-
portance of the ALBI score and FIB-4 index was assessed using the Boruta 
algorithm, and machine learning-driven predictive models were developed.
Results: Elevated ALBI scores were strongly correlated with increased 28-
day all-cause mortality risk in patients with cirrhosis (HR = 1.69;95% CI: 
1.48–1.93; p  <  0.05). The FIB-4 index exhibited similar prognostic relevance. 
Boruta’s feature selection indicated that both scores had high Z  scores. 
Among predictive models, the random survival forest (RSF) approach per-
formed best (AUC = 0.832).
Conclusions: The ALBI and FIB-4 scores are strongly associated with 28-day 
all-cause death rates in critically ill cirrhotic patients. Higher ALBI scores 
and FIB-4 index values are associated with greater mortality risks. Predic-
tive models based on machine learning show strong performance. These 
findings suggest that the ALBI and FIB-4 scores may serve as potential pre-
dictors of adverse outcomes in critically ill cirrhotic patients.

Key words: cirrhosis, critical illness, ALBI score, FIB-4 index, mortality, 
machine learning.
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Introduction

Characterized by progressive fibrosis and he-
patic dysfunction, cirrhosis is recognized as the 
end-stage manifestation of progressive hepat-
ic deterioration and predisposes individuals to 
life-threatening decompensation events, hepato-
cellular carcinoma (HCC), and significantly elevat-
ed mortality risk. In critically ill patients with cir-
rhosis, the convergence of impaired liver function, 
systemic inflammation, and multi-organ failure is 
associated with particularly high mortality rates 
[1, 2]. Reliable prognostic tools are therefore es-
sential for risk stratification and to inform time-
ly clinical decisions. Traditional tools such as the 
Child-Pugh score and the Model for End-Stage Liv-
er Disease (MELD) have limitations. For example, 
the Child-Pugh score incorporates subjective pa-
rameters (e.g., ascites, hepatic encephalopathy), 
which reduces its objectivity. Its grading system is 
coarse (limited to grades A, B, and C), which re-
stricts its capacity to capture incremental changes 
in liver function. For instance, the bilirubin levels of 
60 μmol/l and 600 μmol/l are assigned the same 
weight. Moreover, the international normalized ra-
tio (INR) used in both systems does not adequate-
ly reflect coagulopathy or hepatic dysfunction, and 
both international normalized ratio (INR) and cre-
atinine are laboratory-dependent and influenced 
by non-hepatic factors [3, 4]. As novel liver func-
tion assessment tools, the albumin-bilirubin score 
(ALBI) score and Fibrosis-4 (FIB-4) index demon-
strate many advantages. The ALBI score, calcu-
lated from two laboratory values (albumin and 
bilirubin), has been validated for assessment of 
hepatic function and as an important indicator in 
the prognostic assessment of HCC and chronic liv-
er conditions, with the advantage of accurately re-
flecting subtle changes in liver dysfunction [5–7]. 
The FIB-4 index, which incorporates age, platelet 

count, alanine aminotransferase (ALT), and aspar-
tate aminotransferase (AST), serves as a non-in-
vasive marker for liver fibrosis, helps identify ad-
vanced fibrosis and cirrhosis, and has prognostic 
relevance for decompensation and long-term sur-
vival [8–10]. Recent studies have highlighted the 
synergistic potential of combining ALBI and FIB-4 
to refine risk prediction in compensated cirrhosis, 
particularly for decompensatory events [11, 12]. 
However, the prognostic utility of these scores in 
critically ill cirrhotic patients – a population at ex-
treme risk of short-term mortality – has not been 
thoroughly investigated. This investigation aims to 
address existing research gaps by evaluating the 
relationship between ALBI, FIB-4, and 28-day all-
cause death rates in critically ill cirrhosis patients 
while also developing a machine learning-driven 
predictive model. Using retrospective cohort data, 
this study aims to evaluate the predictive value of 
ALBI and FIB‑4 in acute settings and explore their 
integration with clinical and laboratory variables 
to enhance risk stratification. The findings could 
inform timely therapeutic decisions and thereby 
improve outcomes in this vulnerable population.

Material and methods

Source of data

Version 3.1 of the MIMIC-IV database, an 
open-access ICU clinical resource, includes ano-
nymized medical records from more than 90,000 
critically ill patients requiring intensive care. The 
database is widely used for research [13]. One of 
the authors, YCL (Certificate number: 14171994), 
complied with the database’s access require-
ments and was responsible for extracting the 
relevant data for this study. The patient inclusion 
process for this study involved identifying indi-
viduals receiving care in ICUs for the diagnosis of 
cirrhosis. A  total of 4,132 patients were initially 
considered. 1,993 patients were excluded based 
on the predefined exclusion criteria: pediatric 
population (aged < 18 years; n = 0), critical care 
duration under 24 h (n = 741), and incomplete es-
sential parameters during the first 24-hour critical 
care monitoring – specifically albumin, ALT, AST, 
total bilirubin measurements, and platelet counts  
(n = 1,252). The final cohort for analysis com-
prised 2,139 patients. The cohort was stratified 
according to 28-day clinical outcomes, resulting in 
two distinct categories: patients who survived be-
yond this period (n = 1,516) and those who expe-
rienced mortality within this timeframe (n = 623) 
(Figure 1).

Data extraction

Data for this study were extracted from the 
MIMIC-IV database using PostgreSQL software. 

Figure 1. Selection of the study population from 
the MIMIC-IV database

First ICU admission for cirrhosis 
diagnosis (n = 4132)

Final analysis cohort  
(n = 2139)

28-day survival  
(n = 1,516)

28-day non-survival 
(n = 623)

Total excluded (n = 1993): 
age < 18 (n = 0), 

ICU stay < 24 h (n = 741), 
first-day missing albumin, ALT, 

AST, total bilirubin, 
and platelets (n = 1252)
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The data exclusively incorporated critical care pa-
rameters documented during the initial 24-hour 
monitoring period. Demographic variables in-
cluded age, sex, race (white and other), and vital 
signs (systolic blood pressure, heart rate, oxygen 
saturation). Physiological scoring systems used 
were the Logistic Organ Dysfunction Score, Se-
quential Organ Failure Assessment, and Charlson 
Comorbidity Index. Comorbid conditions evaluat-
ed included acute kidney injury, diabetes, and hy-
pertension. Biomarker analyses quantified white 
and red blood cell counts (WBC and RBC), platelet 
count, electrolyte levels (potassium [K] and so-
dium [Na]), glucose, albumin, total bilirubin, ALT, 
AST, and INR. Therapeutic interventions included 
continuous renal replacement therapy, adminis-
tration of epinephrine, neuromuscular blockade, 
and mechanical ventilation. Event-related data, 
including the duration of hospital and intensive 
care unit (ICU) stays, as well as hospital and ICU 
mortality rates, were also collected. Supplemen-
tary Table SI demonstrates the absence of data. 
To minimize potential bias, Features (missing rate  
> 20%) were excluded. Missing values (< 0%) were 
addressed using multiple imputation with a ran-
dom forest approach, implemented in the “mice” 
package (R software).

Description and clinical findings

The study used clinical and laboratory parame-
ters, including the FIB-4 score and ALBI index. The 
ALBI score and FIB-4 index are derived from the 
following formulae: FIB-4 = (age × AST)/(platelet 
count × √ALT); ALBI score = (log10 bilirubin [μmol/l] 
× 0.66) + (albumin [g/l] × −0.0852). AST and ALT 
were quantified in international units per liter 
(IU/l), platelet count was expressed as ×109 cells/l, 
albumin was recorded in grams per liter (g/dl), 
and total bilirubin values were assessed in micro-
moles per liter (µmol/l) [14, 15]. The principal end-
point was the four-week all-cause mortality rates, 
a  common endpoint for evaluating short-term 
prognosis in critically ill patients.

Statistical analysis

Associative analysis

Data distribution patterns were assessed 
through Shapiro-Wilk normality evaluation. Nor-
mally distributed metrics underwent paramet-
ric analysis with results expressed as arithmetic 
mean ± standard deviation. Non-normal distri-
butions were examined via non-parametric tests, 
presented as median values and interquartile 
ranges (IQR). For inter-group comparisons: Contin-
uous variables with normal distribution between 
prognostic cohorts were analyzed using the in-
dependent t-test, while non-normally distributed 

variables were assessed using the Mann-Whitney 
U  test. Qualitative parameters were examined 
through the c2 test. Prognostic trajectories across 
FIB-4 score and ALBI index quartile-stratified 
cohorts were calculated through Kaplan-Meier 
analysis. Survival curves for each FIB-4 and ALBI 
quartile were plotted to assess the differences in 
survival across these groups. Intergroup survival 
differences were assessed through the log-rank 
test. Multivariable Cox regression modeling with 
the proportional hazards assumption determined 
the independent risk factors of clinical outcomes, 
which assessed the association between clinical 
variables including ALBI and FIB-4, and 28-day 
mortality. Three models were developed: Model 1 
(unadjusted); Model 2, adjusted for sex, age, and 
race; Model 3, further adjusted for Charlson Co-
morbidity Index, RBC, WBC, INR, and continuous 
renal replacement therapy (CRRT). The ALBI score 
was stratified into quartiles, with the first quartile 
serving as the reference group. Relationships were 
quantified using hazard ratio (HR) values with 
95% confidence intervals across quartile strata. 
Similarly, the FIB-4 index was analyzed both as 
a continuous variable (per 5-unit increase) and as 
quartiles, using the first quartile as the reference. 
Restricted cubic spline (RCS) regression with three 
knots was applied to model the non-linear rela-
tionships between continuous variables, such as 
FIB-4 and ALBI, and 28-day mortality risk. Inter-
action terms in Cox regression were used to eval-
uate whether the associations of FIB-4 and ALBI 
with 28-day mortality were modified by covari-
ates including age, sex, race, diabetes, hyperten-
sion, and CRRT status.

Development and evaluation of machine 
learning models

Machine learning models were developed and 
evaluated as follows. First, variables used to cal-
culate FIB-4 and ALBI were excluded due to sig-
nificant collinearity with these two indices. The 
remaining variables were then input into the Boru-
ta algorithm to assess the relative importance of 
FIB-4, ALBI, and other variables. The important 
variables identified by the Boruta algorithm (green 
variables) were used to construct machine learn-
ing models. The complete dataset was randomly 
partitioned, with 70% designated for model devel-
opment and the remaining 30% reserved for verifi-
cation purposes. The training cohort was used for 
model construction and hyperparameter optimi-
zation via grid search, while the validation cohort 
was employed for model performance evaluation. 
The outcome of interest was 28-day mortality. 
Multiple machine learning models were trained, 
including the Cox Proportional Hazards Model 
(CoxPH), Multilayer Perceptron (MLP), Conditional 
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Table I. Baseline characteristics

Characteristic Overall   
N = 2,139

28 d survival   
N = 1,516

28 d non-survival   
N = 623

P-value

Demographics

 Age [years] 59.64 (51.97, 66.96) 59.15 (51.13, 65.76) 61.31 (53.52, 70.38)  < 0.001

 Sex, n (%) 0.335

Female 753.00 (35.20%) 524.00 (34.56%) 229.00 (36.76%)

Male 1,386.00 (64.80%) 992.00 (65.44%) 394.00 (63.24%)

 Race, n (%) 0.019

White 1,482.00 (69.28%) 1,073.00 (70.78%) 409.00 (65.65%)

Other 657.00 (30.72%) 443.00 (29.22%) 214.00 (34.35%)

 Vital signs

 Heart rate [bpm] 88.20 (77.71, 99.58) 86.81 (76.39, 97.80) 92.23 (80.90, 103.60)  < 0.001

 SBP [mm Hg] 110.00 (101.85, 122.04) 112.44 (103.19, 124.94) 106.39 (99.24, 114.44)  < 0.001

 SpO
2 (%) 97.08 (95.50, 98.60) 97.30 (95.78, 98.73) 96.56 (95.00, 98.21)  < 0.001

 Clinical score

SOFA 4.00 (1.00, 6.00) 3.00 (1.00, 6.00) 5.00 (1.00, 8.00)  < 0.001

LODS 7.00 (4.00, 9.00) 6.00 (4.00, 8.00) 8.00 (6.00, 10.00)  < 0.001

Charlson Comorbidity 
Index

6.00 (4.00, 8.00) 5.00 (4.00, 7.00) 6.00 (4.00, 8.00)  < 0.001

 Comorbidities, n (%)

AKI 1,870.00 (87.42%) 1,273.00 (83.97%) 597.00 (95.83%)  < 0.001

Diabetes 638.00 (29.83%) 465.00 (30.67%) 173.00 (27.77%) 0.182

Hypertension 1,030.00 (48.15%) 736.00 (48.55%) 294.00 (47.19%) 0.568

Laboratory tests

 RBC [109/l] 2.98 (2.57, 3.43) 3.06 (2.65, 3.47) 2.75 (2.41, 3.30)  < 0.001

 WBC [109/l] 10.00 (6.63, 14.75) 9.31 (6.32, 13.33) 12.20 (7.90, 18.00)  < 0.001

 Platelet [109/l] 96.00 (64.00, 148.00) 96.58 (67.00, 147.50) 94.50 (59.00, 148.50) 0.079

 Sodium [mmol/l] 137.00 (133.00, 140.33) 137.50 (134.00, 140.50) 135.50 (131.00, 139.75)  < 0.001

 Potassium [mmol/l] 4.17 (3.80, 4.65) 4.13 (3.80, 4.55) 4.26 (3.80, 4.90)  < 0.001

 Glucose [mg/dl] 131.50 (106.00, 173.67) 133.50 (106.88, 182.00) 127.00 (103.00, 157.33)  < 0.001

 Anion gap 14.80 (12.00, 18.20) 14.00 (11.50, 17.00) 17.33 (14.00, 21.50)  < 0.001

 BUN [mg/dl] 28.40 (16.75, 49.00) 25.00 (16.00, 42.00) 40.00 (22.50, 66.00)  < 0.001

 Albumin [mg/dl] 2.96 (2.53, 3.40) 3.00 (2.60, 3.40) 2.90 (2.50, 3.40) 0.051

 ALT [U/l] 37.25 (21.00, 96.00) 36.50 (21.00, 106.08) 40.25 (22.00, 84.00) 0.706

 AST [U/l] 79.00 (42.33, 207.33) 72.25 (41.00, 204.08) 91.00 (47.50, 212.00) 0.007

 Bilirubin total [mg/dl] 3.15 (1.35, 7.90) 2.52 (1.20, 5.73) 5.87 (2.10, 17.25)  < 0.001

 INR 1.70 (1.43, 2.17) 1.60 (1.39, 1.95) 2.10 (1.67, 2.60)  < 0.001

 ALBI score –1.35 (–1.81, –0.95) –1.41 (–1.89, –1.03) –1.15 (–1.62, –0.73)  < 0.001

 FIB-4 index 8.40 (4.47, 16.82) 7.91 (4.08, 15.78) 9.60 (5.40, 19.17)  < 0.001

Treatment, n (%)

 Epinephrine 76.00 (3.55%) 24.00 (1.58%) 52.00 (8.35%)  < 0.001

 Neuromuscular blockade 84.00 (3.93%) 31.00 (2.04%) 53.00 (8.51%)  < 0.001

 MV 1,743.00 (81.49%) 1,210.00 (79.82%) 533.00 (85.55%) 0.002

 CRRT 365.00 (17.06%) 190.00 (12.53%) 175.00 (28.09%)  < 0.001

Event

 LOS hospital [day] 11.85 (6.39, 21.31) 13.26 (7.10, 25.81) 8.89 (4.45, 14.65)  < 0.001

 Hospital mortality n (%) 563.00 (26.32%) 55.00 (3.63%) 508.00 (81.54%)  < 0.001

 LOS ICU [day] 3.14 (1.88, 6.25) 2.98 (1.84, 5.78) 3.85 (2.01, 7.21)  < 0.001

 ICU mortality n (%) 371.00 (17.34%) 18.00 (1.19%) 353.00 (56.66%)  < 0.001

SBP – systolic blood pressure, SpO
2
 – oxygen saturation, LODS – Logistic Organ Dysfunction Score, SOFA – Sequential Organ Failure 

Assessment, AKI – acute kidney injury, RBC – red blood cells, WBC – white blood cells, BUN – blood urea nitrogen, INR – international 
normalized ratio, AST – aspartate aminotransferase, ALT – alanine aminotransferase, FIB-4 – Fibrosis-4, ALBI – albumin-bilirubin score, 
CRRT – continuous renal replacement therapy, MV – mechanical ventilation, ICU – intensive care unit, LOS – length of stay.
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Inference Trees (CTree), Extreme Gradient Boosting 
(XGBoost), Elastic Net (Enet), Generalized Boosted 
Regression Model (GBM), and Random Survival 
Forest (RSF). The predictive accuracy of the models 
was assessed using three analytical methodolo-
gies: discriminatory capacity analysis via receiver 
operating characteristic (ROC) curves, clinical utility 
evaluation through decision curve analysis (DCA), 
and predictive accuracy plots for model calibra-
tion. Additionally, Shapley Additive Explanations 
(SHAP) were employed to deconstruct the pre-
dictive mechanisms of the top-performing model, 
quantifying feature contributions through additive 
game-theoretic principles. All statistical analyses 
were performed using R statistical environment 
(version 4.4.2), and statistical significance was set 
at a two-sided p-value of less than 0.05.

Results

Baseline characteristics

Table I shows that non-survivors had a higher 
mean age compared to survivors (61.31 vs. 59.15 
years, p < 0.001) and a greater proportion of in-
dividuals identified as “other” races (34.35% vs. 
29.22%, p = 0.019). They also exhibited higher 
heart rates (92.23 vs. 86.81, p < 0.001), lower sys-
tolic pressure (106.39 vs. 112.44, p < 0.001), and 
lower SpO2 levels (96.56 vs. 97.30, p < 0.001). Clin-
ical scores were worse among non-survivors, in-
cluding higher SOFA (Sequential Organ Failure As-
sessment) (5 vs. 3, p < 0.001), LODS (Logistic Organ 
Dysfunction Score) (8 vs. 6, p < 0.001), Charlson 
Comorbidity Index (6 vs. 5, p < 0.001). Non-sur-
vivors had a higher incidence of AKI (95.83% vs. 
83.97%, p < 0.001). In terms of laboratory find-
ings, non-survivors had higher WBC counts (12.20 
vs. 9.31, p < 0.001), lower RBC counts (2.75 vs. 
3.06, p < 0.001), lower sodium levels (135.50 vs. 
137.50, p < 0.001), and higher total bilirubin (5.87 
vs. 2.52, p < 0.001). INR levels were also elevated 
among non-survivors (2.10 vs. 1.60, p < 0.001), 
along with higher ALBI scores (–1.15 vs. –1.41, 
p < 0.001) and FIB-4 index values (9.60 vs. 7.91, 
p < 0.001. Regarding treatments, non-survivors 
were more likely to receive epinephrine (8.35% vs. 
1.58%, p < 0.001) and CRRT (28.09% vs. 12.53%, 
p < 0.001). Finally, non-survivors had shorter hos-
pital stays (8.89 vs. 13.26 days, p < 0.001) and 
longer ICU stays (3.85 vs. 2.98 days, p < 0.001), 
along with higher hospital (81.54% vs. 3.63%, p < 
0.001) and ICU mortality rates (56.66% vs. 1.19%, 
p < 0.001).

Kaplan-Meier survival curve

Kaplan-Meier analysis demonstrates signifi-
cantly different survival across both FIB-4 and ALBI 
quartiles (log-rank p < 0.001) (Figure 2). Quartile 1 

of both FIB-4 and ALBI showed the highest surviv-
al probability, while quartile 4 showed the lowest.

Cox proportional hazards regression 
analysis 

Supplementary Table SII summarized the uni-
variate Cox regression analysis conducted in criti-
cally ill patients with cirrhosis, incorporating vari-
ables that were statistically significant (p < 0.05), 
as well as clinically relevant factors identified 
through expert opinion and prior knowledge.

Table II presents the results of the multivariate 
Cox regression analysis for 28-day mortality in 
Model 3, which adjusts for sex, age, race, Charl-
son Comorbidity Index, RBC, WBC, INR, and CRRT. 
In this model, the ALBI score was a  significant 
predictor of mortality, with a hazard ratio of 1.69 
(1.48–1.93, p < 0.001) for each unit increase. For 
ALBI score quartiles, the highest quartile (quartile 
4) had the greatest risk of mortality (HR = 2.24 
[1.77–2.83], p < 0.001), and a  significant trend 
across the quartiles was observed (p for trend  
< 0.001). The FIB-4 index per 5-unit increase was 
also a significant indicator of mortality (HR = 1.02 
[1.01–1.03], p < 0.001). For FIB-4 index quartiles, 
the highest quartile (quartile 4) had the greatest 
mortality risk (HR = 1.60 [1.25–2.05], p < 0.001), 
with a  significant trend across quartiles (p for 
trend < 0.001). The variables included in Model 3 
were determined through the Boruta algorithm, 
univariate Cox regression, and expert clinical rec-
ommendations.

Non-linear relationship analysis using RCS 
for 28-day mortality

The RCS analysis reveals a statistically signifi-
cant overall relationship between ALBI score and 
28-day mortality (p-value < 0.001, Figure 3). The 
p-value for non-linearity was 0.053, suggesting 
a potential non-linear trend, but it did not reach 
statistical significance. For FIB-4 index, the overall 
p-value was 0.001, indicating a significant associ-
ation with mortality, and the p-value for non-lin-
earity was 0.020, demonstrating a  significant 
non-linear relationship.

Interaction analysis 

The interaction analysis for 28-day mortality 
demonstrates that both ALBI score and FIB-4 in-
dex are significant predictors across all subgroups, 
with overall p-values for both < 0.001 (Figure 4). 
For ALBI, the p-values for interaction were non-sig-
nificant in all subgroups (age: p = 0.989, sex: p = 
0.464, race: p = 0.204, diabetes: p = 0.059, hyper-
tension: p = 0.944, CRRT: p = 0.858), suggesting 
no significant effect modification. For FIB-4, the 
p-values for interaction were also non-significant 
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Figure 2. 28-day KM survival curve. KM curves showing survival rates at 28 days for each quartile. A – ALBI: quartile 
1 (-3.78 – -1.81), quartile 2 (-1.81– -1.35), quartile 3 (-1.35– -0.95), quartile 4 (-0.95–0.44). ALBI: albumin-bilirubin 
score. B – FIB-4: quartile 1 (0.17–4.47), quartile 2 (4.47–8.40), quartile 3 (8.40–16.82), quartile 4 (16.21–623.21)
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Quartile 4	 535	 468	 432	 402	 380	 369	 360	 355

	 0	 4	 8	 12	 16	 20	 24	 28

Follow-up time [days]
 Quartile 1          Quartile 2          Quartile 3          Quartile 4

A

B

(sex: p = 0.425, race: p = 0.539, diabetes: p = 
0.877, hypertension: p = 0.335, CRRT: p = 0.143), 
indicating no significant interaction except for age 

(p = 0.046). 

Boruta algorithm 
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Figure 3. A – RCS analysis of ALBI with 28-day all-cause mortality. B – RCS analysis of FIB-4 with 28-day all-cause 
mortality. Curves represent estimated adjusted hazard ratios, and shaded ribbons represent 95% confidence inter-
vals. The horizontal dashed line represents a hazard ratio of 1.0

HR – hazard ratio, CI – confidence interval.

A B

Table II. Multivariate Cox regression

Variables Model 1 Model 2 Model 3

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

ALBI 1.78 (1.56–2.03)  < 0.001 1.95 (1.71–2.23)  < 0.001 1.69 (1.48–1.93)  < 0.001

ALBI quantile

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.16 (0.90–1.49) 0.263 1.28 (0.99–1.65) 0.062 1.25 (0.97–1.62) 0.087

3 1.52 (1.19–1.93)  < 0.001 1.70 (1.33–2.17)  < 0.001 1.46 (1.14–1.87) 0.002

4 2.37 (1.89–2.97)  < 0.001 2.74 (2.17–3.46)  < 0.001 2.24 (1.77–2.83)  < 0.001

P for trend  < 0.001  < 0.001  < 0.001

FIB-4 per 5 units 1.02 (1.02–1.03)  < 0.001 1.02 (1.01–1.03)  < 0.001 1.02 (1.01–1.03)  < 0.001

FIB-4 Quantile

1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

2 1.67 (1.32–2.13)  < 0.001 1.61 (1.27–2.05)  < 0.001 1.46 (1.14–1.87) 0.002

3 1.64 (1.28–2.08)  < 0.001 1.58 (1.24–2.02)  < 0.001 1.42 (1.11–1.81) 0.006

4 1.92 (1.51–2.44)  < 0.001 1.79 (1.41–2.28)  < 0.001 1.60 (1.25–2.05)  < 0.001

P for trend  < 0.001  < 0.001  < 0.001

Model 1: Crude. Model 2: Adjust: age, sex, race. Model 3: Adjust: age, sex, race, Charlson Comorbidity Index, RBC, WBC, INR, CRRT.  
HR – hazard ratio, CI – confidence interval. FIB-4 – Fibrosis-4, ALBI – albumin-bilirubin score, RBC – red blood cells, WBC – white blood cells, 
BUN – blood urea nitrogen, INR – international normalized ratio, CRRT – continuous renal replacement therapy.
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The Boruta algorithm identifies several im-
portant variables for predicting 28-day mortality 
(Figure 5). The green boxes in the plot represent 
the confirmed important variables, which include 
LODS, anion gap, INR, RBC, glucose, WBC, BUN, 
ALBI score, epinephrine, neuromuscular blockade, 
SOFA, serum sodium, SpO

2, CRRT, serum potassi-
um, SBP, and FIB-4 index.

Development and evaluation of machine 
learning model

The machine learning models were devel-
oped using the important variables identified by 
the Boruta algorithm and evaluated on the test-
ing set for 28-day mortality (t = 28). The trained 
models include CoxPH, CTree, GBM, Enet, MLP, RSF, 

and XGBoost. The performance of these models, 
measured by AUC, was as follows: CoxPH (0.822, 
0.782–0.862), CTree (0.765, 0.717–0.813), GBM 
(0.825, 0.784–0.865), Enet (0.824, 0.785–0.863), 
MLP (0.698, 0.647–0.749), RSF (0.832, 0.794–
0.869), and XGBoost (0.830, 0.790–0.870) (Fig- 
ure 6). The RSF and XGBoost models achieved the 
highest AUROC values (0.832 and 0.830, respec-
tively), indicating the best performance in predict-
ing 28-day mortality. In terms of decision curve 
analysis (Supplementary Figure S1), RSF shows 
the best net benefit across a wide range of thresh-
old probabilities, outperforming the other models. 
The calibration curve for RSF also demonstrated 
better calibration than the other models. Overall, 
RSF was the best performing model, in terms of 
both discrimination and calibration.
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Figure 4. Subgroup forest plot for 28-day all-cause mortality. A  – Interaction analysis of ALBI score across all 
subgroups. B –  Interaction analysis of FIB-4 index across all subgroups. Adjusted for age, sex, race, diabetes, 
hypertension, and CRRT

HR – hazard ratio, CI – confidence interval. 

Subgroup 	 N (%) 	 HR (95% CI) 	 P-value 	 P for interaction
Age 				    0.989
   < 65 	 1479 (69.14) 	 1.59 (1.34–1.89) 	 < 0.001 �
   ≥ 65 	 660 (30.86) 	 1.84 (1.47–2.30) 	 < 0.001�
Sex 				    0.464
   Female 	 753 (35.20) 	 1.72 (1.39–2.13) 	 < 0.001�
   Male 	 1386 (64.80) 	 1.65 (1.39–1.97) 	 < 0.001 �
Race 				    0.204
   White 	 1482 (69.28) 	 1.62 (1.37–1.91) 	 < 0.001�
   Other 	 657 (30.72) 	 1.77 (1.39–2.25) 	 < 0.001 �
Diabetes 				    0.059
   No 	 1501 (70.17) 	 1.51 (1.29–1.77) 	 < 0.001�
   Yes 	 638 (29.83) 	 2.02 (1.55–2.63) 	 < 0.001 �
Hypertension 				    0.944
   No 	 1109 (51.85) 	 1.65 (1.37–1.99) 	 < 0.001�
   Yes 	 1030 (48.15) 	 1.66 (1.36–2.03) 	 < 0.001 �
CRRT				    0.858
   No 	 1774 (82.94) 	 1.75 (1.49–2.06) 	 < 0.001�
   Yes 	 365 (17.06) 	 1.56 (1.22–2.01) 	 < 0.001�

Subgroup 	 N (%) 	 HR (95% CI) 	 P-value 	 P for interaction
Age 				    0.046
   < 65 	 1479 (69.14) 	 1.02 (1.01–1.03) 	 < 0.001 
   ≥ 65 	 660 (30.86) 	 1.01 (0.99–1.03) 	 0.376 
Sex 				    0.425
   Female 	 753 (35.20) 	 0.99 (0.96–1.03) 	 0.777
   Male 	 1386 (64.80) 	 1.02 (1.01–1.03) 	 < 0.001 
Race 				    0.539
   White 	 1482 (69.28) 	 1.01 (1.00–1.03) 	 0.056 
   Other 	 657 (30.72) 	 1.03 (1.01–1.04) 	 < 0.001 
Diabetes 				    0.877
   No 	 1501 (70.17) 	 1.01 (1.00–1.03) 	 0.011
   Yes 	 638 (29.83) 	 1.02 (1.01–1.04) 	 0.006 
Hypertension 				    0.335
   No 	 1109 (51.85) 	 1.01 (1.00–1.02) 	 0.09
   Yes 	 1030 (48.15) 	 1.02 (1.01–1.04) 	 < 0.001
CRRT				    0.143
   No 	 1774 (82.94) 	 1.03 (1.01–1.04) 	 < 0.001 
   Yes 	 365 (17.06) 	 1.01 (1.00–1.03) 	 0.056 
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SHAP explanation for the best performing 
model

SHAP values were used to interpret the RSF 
model for 28-day mortality (Figure 7). The ALBI 
score was the fifth most important variable, where 
higher ALBI score values correlated with a greater 
risk of 28-day mortality. The FIB-4 index was an 
important variable, contributing significantly to 
the model’s predictions. Other important variables 
included the anion gap and LODS, which played 
key roles in determining mortality risk.

Discussion 

The results of this study indicated a  signifi-
cant association between ALBI, FIB-4, and 28-day 

mortality in critically ill patients with cirrhosis. 
Patients in the highest quartiles of ALBI score 
had the greatest risk of unfavorable clinical out-
comes. This was also observed with the FIB-4 
index. After adjusting for various confounders, 
these findings remained consistent. The inter-
action analysis for 28-day mortality also showed 
that ALBI and FIB-4 were significant predictors 
across all subgroups.

The Boruta algorithm, an all-relevant feature 
selection method, uses shadow features to iden-
tify predictive features through iterative permu-
tation-based importance testing [16]. The results 
demonstrate that both ALBI and FIB-4 prominent-
ly feature in the green area, with high Z scores in 
feature selection, particularly the ALBI score. This 
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reveals that ALBI and FIB-4 are significantly asso-
ciated with short-term adverse clinical outcomes. 
The results also suggest that ALBI and FIB-4 may 
be significant predictors of 28-day all-cause mor-
tality in cirrhotic patients. However, this does not 
imply that they are decisive factors; other vari-
ables, such as LODS, anion gap, INR, RBC, glucose, 
WBC, and BUN, are also important features.

With the transformative innovations of artifi-
cial intelligence, machine learning algorithms are 
widely adopted for predicting patient prognosis 
and treatment outcomes in medical research [17]. 
We developed and trained seven machine learn-
ing models. The results indicate that all these 
predictive models performed well, especially the 
RSF and XGBoost models. SHAP values were used 
to interpret the RSF model. It can be reasonably 
inferred that ALBI and FIB-4 may be robust predic-
tive indicators.

 Previous studies have shown that the conven-
tional Child-Pugh score and the MELD score both 
have limitations [3, 4, 18, 19]. The Child-Pugh 
score incorporates subjective indicators, such as 
ascites and hepatic encephalopathy, and uses 
broad categories (Classes A/B/C), which limits 
granularity and sensitivity to small changes in 
disease severity [7]. The MELD score incorporates 
INR, creatinine, and other indicators, showing 
a strong dependence on renal function [20]. The 
INR in both systems cannot adequately reflect co-

Figure 5. Feature selection based on the Boruta algorithm. The horizontal axis is the name of each variable, and the 
vertical axis is the Z value of each variable. The box plot shows the Z value of each variable during model calcula-
tion. The green boxes represent important variables, and the red boxes represent unimportant variables
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Figure 6. ROC curves of the machine learning al-
gorithms

CoxPH – Cox Proportional Hazards, CTree – Conditional 
Inference Trees, GBM – Generalized Boosted Regression 
Model, Enet – Elastic Net, MLP – Multilayer Perceptron,  
RSF – Random Survival Forest, XGBoost – Extreme 
Gradient Boosting, ROC – receiver operating characteristic, 
AUC – area under the curve.
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CoxPH, t = 28, AUROC = 0.822 (0.782–0.862)
CTree, t = 28, AUROC = 0.765 (0.717–0.813)
GBM, t = 28, AUROC = 0.825 (0.784–0.865)
Enet, t = 28, AUROC = 0.824 (0.785–0.863)
MLP, t = 28, AUROC = 0.698 (0.647–0.749)
RSF, t = 28, AUROC = 0.832 (0.794–0.869)
XGBoost, t = 28, AUROC = 0.830 (0.790–0.870)

agulopathy or liver function, while both INR and 
creatinine measurements are laboratory-depen-
dent and influenced by non-liver factors [3, 4].
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The ALBI score, calculated based on two labo-
ratory values (albumin and bilirubin), is simple to 
determine and avoids the influence of subjective 
indicators. The ALBI score’s high-resolution quan-
tification enables precise monitoring of subclini-
cal hepatic function alterations in compensated 
cirrhosis cohorts [7, 21]. It has been widely used 
to assess the degree of liver function impairment, 
especially in patients with end-stage liver disease 
and HCC. It can also indirectly predict mortality risk 
by reflecting the deterioration of liver function [7]. 
Prior research demonstrated that the ALBI score 
was related to the prognosis of HCC and identified 
different prognostic subgroups across diverse HCC 
stages [21, 22]. The prognostic value of the ALBI 
score for patients who received HCC treatments, 

such as hepatic resection, transarterial therapies, 
locoregional ablative therapies, and systemic ther-
apies, has also been demonstrated [7, 23–26]. The 
ALBI score had been further validated for prognos-
tication of outcomes in patients with benign he-
patic diseases. Previous research established that 
the ALBI score could predict longer-term mortality 
in patients with cirrhosis [7, 27]. Several investi-
gations further supported its clinical equivalence 
to the MELD in predicting short-time mortality risk 
in patients with decompensated cirrhosis [28]. 
Moreover, many reports have demonstrated a sig-
nificant association between the ALBI score and 
non-hepatological diseases, such as heart failure, 
acute kidney injury, acute pancreatitis, sepsis, and 
aortic dissection [7, 29, 30].

Figure 7. RSF model explanation by the SHAP method. A – SHAP summary bar plot. This plot evaluates the contri-
bution of each feature to the model using mean SHAP values, displayed in descending order. B – SHAP summary 
dot plot. The risk of 28-day mortality increases with the SHAP values of the features. Each dot represents a pa-
tient’s SHAP value for a given feature, with red indicating higher feature values and blue indicating lower values. 
Dots are stacked vertically to show density

INR
LODS

Aniongap
BUN
ALBI
WBC

Potassium
SpO2

Charlson-comorbidity index
RBC
SBP

Glucose
FIB-4

Sodium
Neuroblock used 0

SOFA
Neuroblock used 1
Epnephrine used 0
Epinephrine used 1

CRRT-0
CRRT-1

INR
LODS

Aniongap
BUN
ALBI
WBC

Potassium
SpO2

Charlson-comorbidity index
RBC
SBP

Glucose
FIB-4

Sodium
Neuroblock used 0

SOFA
Neuroblock used 1
Epnephrine used 0
Epinephrine used 1

CRRT-0
CRRT-1

A

B

	 0	 0.02	 0.04	 0.06

Mean (SHAP value)

	 –0.1	 0	 0.1	 0.2	 0.3

SHAP value

High

Low

Fe
at

ur
e 

va
lu

e



Relationship between albumin-bilirubin score, Fibrosis-4 index and 28-day mortality in critically ill cirrhotic patients:  
a retrospective cohort analysis and machine learning-driven prediction models

Arch Med Sci� 11

The FIB-4 index, incorporating age, platelet 
count, ALT, and AST, can non-invasively assess the 
progression level of liver fibrosis and indirectly re-
flect liver reserve function [31, 32]. The FIB-4 index 
has been widely adopted for evaluating the extent 
of liver fibrosis and predicting cirrhosis and HCC 
[33, 34]. A longitudinal study in Germany among 
248,224 outpatients showed that the FIB-4 index 
was associated with the incidence of HCC [35, 36]. 
A retrospective study demonstrated that the FIB-4 
index predicted cirrhosis and HCC among individ-
uals with chronic HCV infection [37].  Prior stud-
ies have shown that the FIB-4 index predicts both 
long-term and short-term mortality in decompen-
sated cirrhotic patients [38]. Similar to the ALBI 
score, many studies have demonstrated a signif-
icant association of the FIB-4 index with survival 
outcomes in many non-hepatological conditions, 
including cardiovascular events, ischemic stroke, 
and sepsis [39, 40]. Miele et al. [40] demonstrated 
the prognostic capacity of the FIB-4 index across 
four distinct SARS-CoV-2 pandemic waves for 
mortality prediction. Guan et al. [41] established 
the association of the FIB-4 index with mortality 
among patients with diabetes.

Since the indicators included in ALBI and FIB-
4 do not overlap, combining both is speculated 
to have higher predictive value. Recent studies 
have confirmed this hypothesis [42]. Yibo Tian  
et al. [11] found that the ALBI-FIB4 score accurate-
ly predicts posthepatectomy liver failure (PHLF) in 
patients with HCC. Liao et al. [12] reported that 
combined preoperative ALBI and FIB-4 signifi-
cantly predicted postoperative HCC recurrence 
following curative hepatectomy. Previous studies 
have not explored the correlation between ALBI, 
FIB-4, and the prognosis of patients with cirrhosis 
in the ICU. This study fills this gap in the literature. 
The results showed that ALBI and FIB-4 strongly 
correlated with the 28-day all-cause death risk in 
patients with cirrhosis in the ICU. Moreover, the 
machine learning model constructed by combin-
ing ALBI, FIB-4, and other important indicators 
also demonstrates good predictive value.

However, this study has several limitations. 
Firstly, this was a  single-center retrospective co-
hort study. Secondly, ALBI and FIB-4 can only 
reflect liver function reserve; neither of them in-
cludes a  detailed evaluation of physical perfor-
mance  and  nutritional status. ICU liver cirrhosis 
patients often have liver function damage and 
other multiple organ dysfunctions, such as hepa-
torenal syndrome, coagulation disorders, gastroin-
testinal bleeding, and hepatic encephalopathy, all 
of which can lead to the patient’s death. ALBI and 
FIB-4 represent only part of the clinical picture. Fu-
ture studies that incorporate a broader range of 
variables, such as key biomarkers, genetic mark-
ers, and other organ dysfunctions, may enhance 

the model’s predictive accuracy and clinical appli-
cability. Thirdly, this study did not stratify patients 
by underlying cause (e.g., viral hepatitis, alcoholic 
cirrhosis, non-alcoholic fatty liver disease), which 
may influence the prognostic significance of ALBI 
and FIB-4. Meanwhile, although the predictive 
models performed well, the absence of external 
validation (such as other databases or prospective 
cohorts) increased the risk of overfitting. Multi-
center studies are needed to confirm the model’s 
generalizability and robustness. Fourth, we did 
not compare the predictive value of ALBI and FIB-
4 with the traditional Child-Pugh score and MELD 
score, which could assess incremental predictive 
value. Furthermore, with the rapid development of 
artificial intelligence, we should explore more ad-
vanced machine learning algorithms to optimize 
the model.

In conclusion, this study demonstrated that 
both ALBI and FIB-4 exhibited significant associa-
tions with 28-day all-cause mortality among crit-
ically ill cirrhotic patients. Our findings revealed 
a  strong positive correlation between elevated 
ALBI scores and increased risks of adverse clini-
cal outcomes. Similarly, higher FIB-4 index values 
demonstrated a  parallel association with unfa-
vorable prognosis. Future multicenter, prospective 
design, and external validation cohorts are still 
needed to validate these results.
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