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A b s t r a c t

Introduction: This project intended to develop and validate a diabetes pre-
diction model for high-risk populations based on machine learning algo-
rithms.
Material and methods: A total of 2,355 samples from the National Health 
and Nutrition Examination Survey (NHANES) database covering three cycles 
from 2013 to 2018 were included. The data were divided into training and 
testing sets in a 7:3 ratio. Nineteen risk prediction factors were selected as 
feature variables, including demographic baseline data, measurement data, 
medical history, and psychological health. Five machine learning models – 
decision tree, random forest (RF), multilayer perceptron (MLP), Adaboost, 
and Extreme Gradient Boosting (XGBoost) – were developed based on the 
data and variables mentioned above. Model performance was evaluated 
using accuracy, sensitivity, specificity, the area under curve (AUC) values 
of receiver operating characteristic (ROC) curves, and Matthews Correlation 
Coefficient (MCC) scores. Finally, the Shapley feature importance measure-
ment tool was employed to select features in the optimal model.
Results: The present work ultimately included 2,355 individuals at high risk 
of diabetes for analysis, with 260 cases of diabetes and 2,095 cases without 
diabetes. Among the five machine learning models established in this proj-
ect., the RF and XGBoost models exhibited better overall performance com-
pared to other models. In the test set, the RF model had an AUC of 0.896, ac-
curacy of 0.784, sensitivity of 0.739, specificity of 0.849, and MCC of 0.418. 
The XGBoost model had corresponding values of AUC as 0.903, accuracy of 
0.815, sensitivity of 0.962, and MCC of 0.443. According to the importance 
analysis of features in these two optimal models, waist circumference, age, 
BMI, gender, systolic blood pressure (SBP), diastolic blood pressure (DBP), 
education level, poverty income ratio (PIR), Patient Health Questionnaire 
(PHQ)-9 score, and race were the top ten key risk factors for diabetes in the 
high-risk population.
Conclusions: The RF and XGBoost machine learning models demonstrated 
strong performance in predicting the occurrence of diabetes in high-risk 
populations. These models can aid in developing more precise intervention 
measures and personalized treatment plans to effectively reduce the inci-
dence of diabetes and related risks in this population.

Key words: diabetes, machine learning, National Health and Nutrition 
Examination Survey, prediction model.
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Introduction

Diabetes is a chronic metabolic disorder char-
acterized by abnormal blood sugar levels, caused 
by improper use of insulin or insufficient insulin 
secretion, leading to severe long-term damage 
to multiple organs and body systems (including 
kidneys, heart, nerves, blood vessels, and eyes) 
[1], ultimately becoming a  major contributor to 
mortality [2]. On a global scale, diabetes has be-
come a daunting public health challenge, with its 
prevalence continuing to rise [3]. From 2021 to 
2050, the global burden of diabetes will rise from 
529 million to 1.31 billion people [4]. Despite the 
projected dramatic increase in the future diabetic 
population, high-risk individuals often underes-
timate their own risk of developing the disease 
[5, 6]. Once high-risk individuals progress to con-
firmed cases, although there are treatment meth-
ods available to slow down the progression of the 
disease, there is still a lack of curative treatment 
options [7]. Considering the high prevalence of di-
abetes and the relatively large size of the high-risk 
population [8], it is crucial at a population level to 
further identify risk factors and take preventive 
measures before high-risk individuals develop the 
disease state [9].

In recent years, the application of machine 
learning techniques in the medical field has be-
come increasingly widespread, especially in the 
prediction of disease risks and diagnosis, exhibit-
ing potential value [10–12]. Utilizing rich clinical 
data and advanced algorithms, machine learn-
ing studies based on large-scale databases have 
become a hot topic in diabetes research, aiding 
in identifying individuals at risk of diabetes and 
providing personalized prevention and manage-
ment strategies [13, 14]. For example, a project 
used five machine learning models – Logistic 
Regression, Support Vector Machine, Random 
Forest (RF), Extreme Gradient Boosted Tree, and 
Weighted Voting Classifier – to predict diabetes 
in adolescents and identify factors leading to di-
abetes in adolescents, such as waist circumfer-
ence, gender, BMI, and leg length [15]. However, 
research on the risk assessment of diabetes in 
high-risk populations has not been fully devel-
oped yet.

Therefore, this project utilized the Nation-
al Health and Nutrition Examination Survey 
(NHANES) database with a  large sample size to 
develop a  machine learning-based diabetes risk 
prediction model for high-risk populations. The 
model was designed to enable early identification 
of individuals at high risk of diabetes within high-
risk populations, facilitating timely preventive and 
therapeutic interventions. This research is of great 
significance for reducing the incidence of diabetes 
and related complications.

Material and methods

Data source and study population

This investigation conducted data analysis us-
ing the NHANES public database, which was es-
tablished and continuously updated and improved 
by the Centers for Disease Control and Prevention 
(CDC) in the United States. The NHANES employs 
a layered, multi-stage probability sampling meth-
od to select a nationally representative sample of 
the population, and collects data through direct 
physical examinations, clinical and laboratory 
tests, personal interviews, and relevant measure-
ment procedures. Relevant questionnaires and 
study protocols can be obtained from the NHANES 
official webpage on the CDC website [16]. The 
NHANES has obtained ethical approval from the 
National Health Statistics Research Ethics Review 
Committee in the United States, and all partici-
pants have signed informed consent forms to 
ensure that they understand and agree to partici-
pate in the survey.

Participants

In this project, we selected a  sample of in-
dividuals at high risk of diabetes from 29,400 
participants in the NHANES from 2013 to 2018. 
The definition criteria for high-risk groups of di-
abetic patients were those who meet any of 
the following conditions: (1) age ≥ 40 years old;  
(2) impaired glucose tolerance (fasting glucose  
< 126 mg/dl and 140 mg/dl ≤ OGTT (oral glucose 
tolerance test) < 200 mg/dl) [17] or abnormal fast-
ing glucose (100 mg/dl ≤ fasting glucose < 126 
mg/dl) [18]; (3) overweight (BMI ≥ 25 kg/m2);  
(4) lack of physical activity (moderate or equiva-
lent intensity activity time < 150 min per week); 
(5) family history of diabetes; (6) a history of ges-
tational diabetes; (7) high blood pressure or taking 
antihypertensive drugs; (8) a history of coronary 
heart disease; (9) patients with polycystic ovarian 
cancer syndrome; (10) taking antidepressants for 
more than 3 months and depression diagnosed 
by ICD-10 coding (F32.9 and F33.9). By applying 
the above screening criteria, 18,649 individuals at 
high risk of diabetes were identified. Subsequent-
ly, 16,294 samples with missing feature data were 
excluded, resulting in 2,355 eligible samples that 
met the criteria. These samples were divided into 
training and testing sets in a  7 : 3 ratio for the 
construction and evaluation of machine learning 
prediction models. The specific inclusion process 
is shown in Figure 1.

Outcome variables

Diabetes as the outcome variable was defined 
as meeting one of the following criteria: (a) diag-
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nosed with diabetes by a doctor; (b) taking anti-
diabetic medication; (c) glycosylated hemoglobin 
HbA1c > 6.5%; (d) fasting blood glucose > 126 mg/
dl [19, 20]. In this project, the outcome variable 
was defined as a categorical variable, encoded in 
numerical form for binary classification of high-
risk individuals: 0 indicating non-diabetes and  
1 indicating diabetes. Categorical features were 
encoded with numerical values for analysis.

Feature variables

The feature variables in this project included 
demographic baseline data, measurement data, 
medical history, and the Patient Health Question-
naire (PHQ)-9. Demographic baseline data includ-
ed gender, age, race, education level [21], poverty- 
income ratio (PIR), and family history of diabetes. 
Measurement data included waist circumference, 
BMI, diastolic blood pressure (DBP), and systolic 
blood pressure (SBP). History of disease includ-
ed heart disease, hypertension, arthritis, cancer, 
stroke, hearing impairment, vision impairment, 
asthma, and kidney failure [22, 23]. Kidney failure 
was defined as eGFR ≤ 60 ml/min/1.73 m2 or albu-
min to creatinine ratio ≥ 30 mg/g [24]. Depression 
was assessed using the PHQ-9, which includes  

9 items rated on a  0–3 scale (0 = “not at all”,  
1 = “a few days”, 2 = “more than half the days”, 
and 3 = “almost every day”), yielding a total score 
of 0–27 points [25, 26].

Machine learning

We applied five machine learning algorithms to 
train the classification model. The first one was 
the decision tree, a  classification model based 
on a tree-like structure, which was used to make 
decisions by progressively splitting the data into 
multiple nodes. The decision tree model is easy to 
understand and interpret, and suitable for han-
dling non-linear relationships and complex rules 
in data [27]. Random forest (RF) is an ensemble 
learning model that reduces errors and improves 
prediction reliability by constructing multiple in-
dependent decision trees (similar to a  flowchart 
judgment model) and then synthesizing the re-
sults of all trees [28]. Multilayer perceptron (MLP) 
is a  network model that simulates the connec-
tions of human brain neurons. By continuously ad-
justing the connection strength of each neuron in 
the network (i.e. a backpropagation algorithm), it 
reduces prediction errors and improves the ability 
to judge disease risk [29]. Adaboost, an ensemble 

Figure 1. Flow chart illustrating the data processing and model development process
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learning method, can first train a  simple model 
(weak classifier), then adjust weights based on 
its incorrectly predicted samples (making hard-to-
predict samples more noticeable), and then train 
the next model, ultimately integrating the results 
of all models to improve prediction accuracy [30]. 
XGBoost, an efficient gradient boosting algorithm 
that continuously builds new decision trees to 
correct errors in previous models, can gradually 
improve predictive performance. It is suitable for 
processing complex data and is widely used in 
classification and regression tasks, with great per-
formance on large-scale datasets [31].

Statistical analysis

Continuous variables were presented in the 
form of mean and standard deviation, while cat-
egorical variables were presented as percentages. 
We used the t-test for inter-group comparison of 
continuous variables and a chi-square test for in-
ter-group comparison of categorical variables. The 
data were split into a 7 : 3 ratio for training and 
testing sets. Machine learning models were de-
veloped using Python 3.9.7 and the sklearn pack-
age [32], and the receiver operating characteristic 
(ROC) curves were plotted using the matplotlib 
package [33]. Five machine learning algorithms 
– Decision Tree, RF, MLP, Adaboost, and XGBoost 
– were applied to train the prediction model. The 
grid search method was employed to generate 
the optimal model parameters by adjusting the 
model parameters for different models and evalu-
ating their performance. The trained models were 
evaluated on a  test set using 10-fold cross-vali-
dation to determine the stability of the model. 
The following indices were used in evaluation: 
accuracy (the proportion of correct overall mod-
el predictions), sensitivity (the ability to correctly 
identify actual patients, that is, the proportion of 
“no missed diagnosis”), specificity (the ability to 
correctly identify actual unaffected individuals, 
that is, the proportion of “no misdiagnosis”), the 
area under the curve (AUC) of the ROC curves (the 
comprehensive ability of the model to distinguish 
between diseased and non-diseased individuals, 
with a value closer to 1 indicating greater ability 
to distinguish patients), and the Matthews cor-
relation coefficient (MCC), the accuracy of model 
classification, ranging from –1 to 1, with the value 
closer to 1 indicating the more reliable ability of 
classification). Based on the best-performing ma-
chine learning model, the SHAP (SHapley Additive 
exPlanations) model, a  tool grounded in mathe-
matical theory, was used to analyze the impact 
of each factor on the model’s prediction results, 
identifying more important factors for diabetes 
risk prediction. The partial SHAP values were plot-
ted as a summary plot, which included the relative 

ranking of features and the relationship between 
each feature and the outcome. The SHAP values 
for each feature were calculated for each sample 
to reflect the impact of the feature on the predic-
tion result. Next, we aggregated the average ab-
solute SHAP values and summarized the global 
contribution of each feature in a bar chart form 
[34]. To address the issue of data imbalance in the 
study, the combination technique of SMOTEENN 
from the imblearn package was applied to handle 
imbalanced data. First, we oversampled SMOTE, 
then cleaned the samples with the edited nearest 
neighbors (ENN) method to reduce noisy samples 
and refine model generalization performance [35] 
(p < 0.05: statistically significant).

Results

Baseline characteristics

The baseline characteristics included in this 
project are presented in Table I. With 260 dia-
betic patients and 2,095 non-diabetic patients 
in high-risk groups, the results indicated that the 
average age of those with diabetes was higher 
(46.37 vs. 39.15, p < 0.001), and the proportion 
of people with a  high school education level or 
equivalent was lower compared with the non-di-
abetic group (46.9% vs. 48.4%, p = 0.020). Waist 
circumference (113.35 vs. 99.32, p < 0.001) and 
SBP (126.22 vs. 121.06, p < 0.001) in diabetic pa-
tients were significantly higher than those in the 
unaffected group. Heart disease (9.6% vs. 4.2%), 
hypertension (68.5% vs. 46.0%, p < 0.001), arthri-
tis (35.4% vs. 20.9%, p < 0.001), stroke (35.4% 
vs. 20.9%, p < 0.001), asthma (25.0% vs. 18.5%,  
p = 0.016), chronic kidney disease (23.5% vs. 
9.3%, p < 0.001), hearing loss (11.5% vs. 9.3%, p < 
0.001). 5.5%, p < 0.001), and visual loss (12.7% vs. 
5.6%, p < 0.001) were more likely to occur in dia-
betic patients than in unaffected people. In addi-
tion, patients with diabetes also showed elevated 
scores of PHQ-9 (5.50 vs. 5.06, p = 0.01). 

Model performance comparison 

Table II shows the performance of five models on 
the test set. The decision tree model had an accura-
cy of 0.744, sensitivity of 0.714, specificity of 0.789, 
and AUC of 0.751. In contrast, the RF model had an 
accuracy of 0.784, sensitivity of 0.739, specificity of 
0.849, and AUC of 0.896, exhibiting better perfor-
mance in all aspects. The MLP model had an AUC 
of 0.900 on the test set, with high accuracy (0.822) 
and sensitivity (0.905), but slightly lower specifici-
ty (0.704). The AUC of the AdaBoost model on the 
test set was 0.895, with a specificity of 0.805 and 
good accuracy (0.837) and sensitivity (0.859). The 
XGBoost model had an accuracy of 0.815, sensitivi-
ty of 0.962, specificity of 0.602, and AUC of 0.903 on 
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Table I. Characteristics of NHANES participants

Characters Total Non-diabetes Diabetes P-value

Overall 2355 2095 (89.0) 260 (11.0)

Gender 0.952 

Female 1159 (49.2) 1032 (49.3) 127 (48.8)

Male 1196 (50.8) 1063 (50.7) 133 (51.2)

Age 39.95 (11.66) 39.15 (11.65) 46.37 (9.62) < 0.001

Race 0.259 

Mexican American 265 (11.3) 227 (10.8) 38 (14.6)

Other Hispanic 200 (8.5) 175 (8.4) 25 (9.6)

Non-Hispanic White 1020 (43.3) 920 (43.9) 100 (38.5)

Non-Hispanic Black 587 (24.9) 524 (25.0) 63 (24.2)

Other race 283 (12.0) 249 (11.9) 34 (13.1)

Education level 0.020 

Less than 9th grade 104 (4.4) 85 (4.1) 19 (7.3)

9th to 12th grade (no diploma) 401 (17.0) 346 (16.5) 55 (21.2)

High school graduate/GED equivalent 714 (30.3) 650 (31.0) 64 (24.6)

Some college or associate degree 848 (36.0) 757 (36.1) 91 (35.0)

College graduate or above 288 (12.2) 257 (12.3) 31 (11.9)

PIR 2.02 (1.48) 2.03 (1.49) 1.92 (1.41) 0.260 

Waist [cm] 100.87 (17.89) 99.32 (17.21) 113.35 (18.33) < 0.001

BMI [kg/m2] 28.96 (6.68) 29.04 (6.67) 28.27 (6.71) 0.131 

DBP [mm Hg] 72.12 (12.53) 71.95 (12.40) 73.46 (13.51) 0.067 

SBP [mm Hg] 121.63 (16.05) 121.06 (15.80) 126.22 (17.26) < 0.001

Heart disease < 0.001

No 2243 (95.2) 2008 (95.8) 235 (90.4)

Yes 112 (4.8) 87 (4.2) 25 (9.6)

Hypertension < 0.001

No 1214 (51.5) 1132 (54.0) 82 (31.5)

Yes 1141 (48.5) 963 (46.0) 178 (68.5)

Arthritis < 0.001

No 1826 (77.5) 1658 (79.1) 168 (64.6)

Yes 529 (22.5) 437 (20.9) 92 (35.4)

Cancer 0.408 

No 2231 (94.7) 1988 (94.9) 243 (93.5)

Yes 124 (5.3) 107 (5.1) 17 (6.5)

Stroke 0.001 

No 2291 (97.3) 2047 (97.7) 244 (93.8)

Yes 64 (2.7) 48 (2.3) 16 (6.2)

Asthma 0.016 

No 1902 (80.8) 1707 (81.5) 195 (75.0)

Yes 453 (19.2) 388 (18.5) 65 (25.0)

Chronic kidney disease < 0.001

No 2100 (89.2) 1901 (90.7) 199 (76.5)

Yes 255 (10.8) 194 (9.3) 61 (23.5)

Hearing loss < 0.001

No 2210 (93.8) 1980 (94.5) 230 (88.5)

Yes 145 (6.2) 115 (5.5) 30 (11.5)

Vision loss < 0.001

No 2205 (93.6) 1978 (94.4) 227 (87.3)

Yes 150 (6.4) 117 (5.6) 33 (12.7)

PHQ-9 score 4.39 (5.12) 4.27 (5.06) 5.40 (5.50) 0.010 

PIR – poverty income ratio, DBP – diastolic blood pressure, SBP – systolic blood pressure, PHQ-9 – Patient Health Questionnaire-9.
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the test set. Compared to MLP and AdaBoost, the 
XGBoost model had lower specificity but possessed 
the best sensitivity and classification ability.

Additionally, we calculated the MCC for each 
model to provide a more comprehensive evalua-
tion of model performance. As shown in Table II, 
the MCC for the decision tree model was 0.361, 
for the RF model was 0.418, for the MLP model 
was 0.447, for the Adaboost model was 0.463, 

and for the XGBoost model was 0.443. The results 
indicated that the Adaboost and MLP models per-
formed well in balancing sensitivity and specific-
ity. However, the MCC results further supported 
the conclusion that the RF and XGBoost models 
excelled in classification accuracy and recognition 
capability, respectively. The MCC values of these 
two models still demonstrated their good classi-
fication capabilities. Therefore, from an overall as-

Table II. Results from 10-fold cross-validation for diabetes classification

Model Accuracy Sensitivity Specificity AUC MCC

Decision tree 0.744 0.714 0.789 0.751 0.361

Random forest 0.784 0.739 0.849 0.896 0.418

MLP 0.822 0.905 0.704 0.900 0.447

Adaboost 0.837 0.859 0.805 0.895 0.463

XGBoost 0.815 0.962 0.602 0.903 0.443

AUC – area under the curve, MCC – Matthews correlation coefficient.

Figure 2. Summary plot and feature importance for SHAP values in the testing set. Summary SHAP plots (A) and 
bar plots (B) of the global SHAP values of the RF model
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Figure 2. Cont. Summary SHAP plots (C) and bar plots (D) of the global SHAP values of the XGBoost model. SHAP 
summary plot provides three aspects of information: (1) ranking indicates the relative importance of features; (2) 
Color gradients indicate the relative size of each feature, with red indicating high values of the feature (e.g., older 
age) and blue indicating the opposite (e.g., younger age), where females are shown in blue and males in red. A neg-
ative SHAP value indicates a decreased relative risk, whereas a negative SHAP value indicates an increased relative 
risk. (3) The discretization of points indicates whether the relationship between each feature and the outcome is 
linear. The bars show the global SHAP values

PIR – poverty income ratio, DBP – diastolic blood pressure, SBP – systolic blood pressure, PHQ – Patient Health Questionnaire.
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sessment of model performance, RF and XGBoost 
were the top-performing models.

Feature importance

Based on the comparison of model perfor-
mance above, we employed RF and XGBoost to 
calculate the importance of each feature. Figure 2 
shows the impact of the baseline values of the top 
10 features on the model output, i.e., the develop-
ment of relative risk for diabetes. Combining the 
SHAP summary plot (Figure 2A) with the bar plot 
(Figure 2B), the top three features in the RF mod-
el were age (SHAP = 0.11), waist circumference 
(SHAP = 0.11), and BMI (SHAP = 0.06), while sex, 
DBP, education level, SBP, PHQ-9 score, PIR, and 

race were the next most important features. Simi-
larly, in the XGBoost model, the top three features 
were waist circumference (SHAP = 2.1), age (SHAP 
= 1.7), and BMI (SHAP = 0.67), while sex, DBP, SBP, 
education level, PHQ score, PIR, and race were the 
next most important features (Figure 2C, D). In the 
RF and XGBoost models, waist circumference, age, 
BMI, and PHQ-9 score were positively correlated 
with diabetes risk, while education level and PIR 
were negatively correlated with diabetes risk, and 
women had a higher diabetes risk relative to men.

Discussion

In this project, 2,355 individuals at high risk of 
diabetes from the NHANES dataset in the years 
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2013–2018 were included to develop the risk 
model. We applied five machine learning methods 
(decision tree, RF, MLP, Adaboost, and XGBoost) 
and evaluated their performance, finding that 
the AUC values of the RF and XGBoost models in 
the test set were 0.896 and 0.903, respectively. 
The accuracy of the RF model on the test set was 
0.784, with sensitivity of 0.739 and specificity of 
0.849, while the XGBoost model had an accuracy 
of 0.815, with sensitivity of 0.962, indicating that 
these two machine learning algorithms possessed 
high predictive ability in diabetes risk assessment. 
Moreover, the MCC values of the RF and XGBoost 
models were 0.418 and 0.443, respectively, fur-
ther validating their robust classification perfor-
mance when handling imbalanced datasets. This 
also reinforces the suitability of RF and XGBoost 
for developing personalized diabetes risk assess-
ment tools. Furthermore, we also conducted fea-
ture importance analysis on these two models 
and found that waist circumference, age, and BMI 
were closely linked to the development of diabe-
tes, while gender, SBP, DBP, education level, PIR, 
PHQ score, and race were identified as import-
ant predictive factors. The present work provided 
important insights for innovating personalized 
disease risk assessment tools in the future, with 
great potential to refine the early prevention and 
management of diabetes.

In this study, XGBoost performed the best in 
overall performance with its gradient boosting 
architecture, which is consistent with the conclu-
sions of multiple studies. For example, XGBoost 
achieved an AUROC of 0.92 in health literacy 
prediction and nutrition score modeling, outper-
forming RF (0.90) and logistic regression (0.88), 
and leading in sensitivity (91%), specificity (84%), 
and other indicators [36]. Another NHANES study 
showed that the AUC of XGBoost (0.8168) was 
significantly higher than that of RF and logistic 
regression (about 0.79), and the three were sim-
ilar in accuracy (about 85%) [37]. In addition, in 
the Patient Generated Subject Global Assessment 
(PG-SGA) score prediction, the AUC values of 
XGBoost and RF were 0.75 and 0.77, respective-
ly, showing the best performance [38]. The high 
sensitivity of XGBoost (> 96% in this study) makes 
it an ideal tool for preliminary screening of large-
scale populations, minimizing missed diagnosis 
rates to the greatest extent possible. In contrast, 
although RF has slightly lower AUC (0.896) and 
sensitivity (0.739) than XGBoost, its specificity 
(0.849) is significantly higher. This “low false pos-
itive” advantage stems from its ability to capture 
non-linear relationships and feature interactions 
[39]. Therefore, the RF model is more suitable for 
clinical diagnosis, such as conducting secondary 
validation on individuals with XGBoost initial 

positive screening to reduce misdiagnosis rates 
and avoid wasting limited medical resources on 
false-positive individuals. This two-stage strategy 
(XGBoost preliminary screening + RF verification) 
can be effectively integrated into the existing man-
agement process of high-risk groups of diabetes. 
More specifically, the XGBoost model is used to 
quickly identify a large number of potential high-
risk individuals in community physical examina-
tion, health file system organization, or outpatient 
preliminary screening. Subsequently, for those 
who tested positive in the initial screening, the RF 
model was applied in the clinical environment for 
more accurate review and risk assessment, and 
intervention priorities were determined based on 
the doctor’s judgment. It is worth noting that tra-
ditional models still have value in specific scenar-
ios. Logistic regression often performs robustly in 
external validation sets. In comparisons of mod-
els such as Bayes logistic regression and decision 
trees, logistic regression repeatedly ranks among 
the top three [40], but its performance may be 
limited when dealing with nonlinear relationships 
[41]. Meanwhile, support vector machines (SVM) 
are comparable to the optimal model in certain 
tasks (such as AUROC 0.83) [42], but most studies 
show that their performance is slightly inferior to 
RF or XGBoost [43, 44].

This study found that BMI, age, waist circum-
ference, and depression were positively correlat-
ed with diabetes in high-risk groups, and these 
key predictors were highly consistent with the 
existing literature on diabetes risk. Firstly, waist 
circumference, as a core index to measure abdom-
inal obesity, was identified as the most important 
predictor (the highest SHAP value) in the RF and 
XGBoost models of this study, which is consistent 
with a  large body of evidence that abdominal 
visceral fat is the core pathophysiological mecha-
nism of diabetes [45]. The visceral adipose tissue 
has strong metabolic activity and secretes a large 
amount of pro-inflammatory factors and free 
fatty acids, directly leading to insulin resistance 
and β-cell dysfunction [45, 46]. Secondly, age, as 
a non-modifiable risk factor, has been consistently 
associated with the development of disease [47, 
48]. This study again supported the key role of 
β-cell function decline and insulin sensitivity de-
cline in the development of diabetes during aging 
[49, 50]. Thirdly, as an indicator of overall obe-
sity, BMI has a  strong association with diabetes 
[51–53]. This study confirmed that BMI is still an 
important risk marker in high-risk groups. Obesi-
ty (whether overall or abdominal) promotes the 
development of diabetes by increasing pancreat-
ic fat deposition, increasing the burden of β cells, 
and systemic insulin resistance [54, 55]. Finally, 
this study found that depression is an important 
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psychosocial risk factor, which is consistent with 
previous research [56, 57]. It is worth noting that 
this study not only confirmed the risk of depres-
sion, but also included the screening criterion of 
“continuous use of antidepressant drugs for more 
than 3 months.” The results also suggest that this 
population has a higher risk, which is consistent 
with the literature exploring the possible impact 
of antidepressant drug use on blood glucose con-
trol [58].

The positive correlation of BMI, age, waist cir-
cumference, and depression with the risk of dia-
betes in high-risk groups not only provides strong 
support for the study of diabetes risk mechanisms 
but also has a  clear application value in clinical 
practice and public health. From the perspective 
of clinical practice, these key predictors can direct-
ly guide the hierarchical management and precise 
intervention of high-risk groups. First, waist cir-
cumference can be included in the core indicators 
of routine screening of high-risk groups of diabetes 
in clinical practice, and individuals with markedly 
high waist circumference should be prioritized for 
in-depth tests such as fasting blood glucose and 
glycosylated hemoglobin. At the same time, tar-
geted abdominal fat reduction programs should 
be developed, such as combining diet control and 
core muscle group training, to reduce the risk of 
insulin resistance caused by visceral fat deposition 
[59]. Secondly, in response to the non-modifiable 
risk factor of aging, in clinical practice, it is neces-
sary to strengthen regular follow-up for high-risk 
populations over 40 years old, especially focusing 
on their blood glucose fluctuations and changes 
in β-cell function. Early initiation of lifestyle inter-
ventions can delay the decline of β-cell function. 
Thirdly, for individuals with high BMI, weight man-
agement should be the core intervention goal, 
achieved through personalized nutrition guidance 
and exercise prescriptions to reduce pancreatic 
fat burden and improve insulin sensitivity [60]. 
Fourthly, for high-risk populations with depres-
sion and long-term use of antidepressants, psy-
chiatric and endocrinology departments should 
collaborate to evaluate and prioritize the selec-
tion of antidepressants with a minimal impact on 
blood sugar. At the same time, regular monitoring 
of glycated hemoglobin and fasting blood sugar 
should be conducted to avoid adverse effects of 
medication on blood sugar control. In addition, 
from the perspective of public health applications, 
a simple risk scoring tool can be developed based 
on waist circumference, age, BMI, and depression 
status to enable primary healthcare institutions 
to quickly identify high-risk individuals. For high-
risk subgroups such as the elderly who are easily 
overlooked, theme health education should be im-
plemented by combining community resources to 

lower intervention thresholds. For the population 
using long-term antidepressant therapy, medical 
institutions should establish a linkage mechanism 
between medication and blood glucose monitor-
ing, and blood glucose indicators should be incor-
porated into the routine evaluation system for de-
pression treatment [61]. Through a  combination 
of clinical practice and public health measures, 
risk prediction can be transformed into active pre-
vention to ultimately reduce the incidence rate of 
diabetes and the burden of related complications.

In this study, SBP and DBP were also found to 
be associated with the risk of diabetes. Multiple 
population studies have confirmed the universal-
ity of this association. Among African Americans 
and Caucasians aged 35–54, higher blood pressure 
is associated with a higher risk of diabetes com-
pared with normal blood pressure [62]. The Kore-
an adult cohort study showed that even for peo-
ple in prehypertension (120–139/80–89 mm Hg),  
their risk of diabetes was significantly higher than 
that of normotension [63]. These studies indicate 
that blood pressure management should not be 
limited to patients with diagnosed hypertension. 
Blood pressure monitoring of high-risk groups (in-
cluding early status) should be the core component 
of diabetes prevention strategies. In addition, race 
has been identified as a key sociobiological pre-
dictor. American data show that the prevalence of 
diabetes among non-Hispanic blacks, Asians, and 
Hispanics (12–14%) is significantly higher than 
that of other ethnic groups [64], and this differ-
ence persists among high-risk elderly people [65]. 
It suggests that when developing public health in-
terventions, it is important to focus on high-risk 
racial/ethnic groups and integrate culturally sen-
sitive support programs in community screening 
and health management.

In our study, women in high-risk groups showed 
a higher risk of developing diabetes compared to 
men. This is closely related to the physiological 
changes unique to women, especially the lack of 
estrogen during menopause. Premature meno-
pause (< 40 years old) or surgical menopause 
significantly increases the risk of type 2 diabetes 
[66, 67]. Estrogen deficiency affects the develop-
ment of diabetes through multiple mechanisms, 
including changes in insulin secretion of pancreat-
ic β cells, decreased sensitivity of targeted organs 
and tissues to insulin, and increased sensitivity 
of major organs of diabetes-related pathology to 
glucose [67]. In addition, in an epidemiological 
study, the risk of insomnia in women of all ages 
was found to be generally 40% higher than that 
in men, and there is a close relationship between 
insomnia and diabetes [68]. Sleep disorders are 
closely related to obesity and insulin resistance 
[69]. Lack of sleep can disrupt key hormones that 
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regulate appetite and energy balance (such as 
leptin, ghrelin, and adiponectin), increase intake 
of high-calorie foods, and worsen blood sugar 
control [70–72]. This suggests that diabetes risk 
screening should routinely include women’s repro-
ductive history (such as menopausal age, surgical 
menopause history) and sleep quality evaluation. 
At the same time, for perimenopausal and post-
menopausal women, weight management and 
education and support for lifestyle intervention 
(healthy diet, regular exercise) should be strength-
ened.

Education level and income are equally cru-
cial social determinants. High levels of education 
typically promote healthier lifestyles, reduce shift 
work (lowering stress and obesity risk), and en-
hance health awareness and proactive prevention 
behaviors [73–76]. Conversely, low income and 
poverty significantly increased the risk of dia-
betes (the probability increased 2–3 times) [77]. 
Improving the socio-economic environment (such 
as moving out of high poverty areas) can reduce 
the prevalence of diabetes [78]. Poverty is often 
accompanied by resource limitations such as mal-
nutrition and lack of safe exercise space, exacer-
bating risk factors such as obesity [79]. Therefore, 
for interventions in groups at high risk of diabetes, 
we must pay attention to improving the health lit-
eracy of low-education/low-income groups, and 
provide culturally appropriate and easy-to-under-
stand educational materials and support services. 
At the same time, a sound social security system 
should be established to ensure their access to 
nutrition and basic medical services, and create 
a  supportive environment to encourage physical 
exercise [80].

This study showed that the RF and XGBoost 
models had the best risk prediction performance 
among groups with high-risk diabetes, effective-
ly identifying key risk factors such as waist cir-
cumference, age, BMI, depression, SBP, and DBP, 
as well as socioeconomic factors such as gender, 
education level, and income. These findings sup-
port the development of RF and XGBoost models 
as personalized risk assessment tools that can be 
embedded in electronic health records systems or 
mobile health applications to assist clinicians in 
achieving risk stratification management, improv-
ing the efficiency of early screening and interven-
tion for diabetes, and ultimately reducing the inci-
dence rate and burden of complications.

However, this study also has some limitations. 
Firstly, the study adopted a cross-sectional design 
and cannot directly infer causal relationships. 
Compared to longitudinal studies that can reveal 
the temporal correlation of disease occurrence 
through long-term follow-up data (such as track-
ing changes in blood glucose and dynamic evolu-
tion of risk factors), this study failed to capture 

such dynamic effects based on the cross-sectional 
data. Future research needs to adopt a prospec-
tive cohort design, combined with time series 
analysis, to more accurately clarify the causal path 
between various risk factors and the onset of dia-
betes. Secondly, although the feature variables in-
cluded in this study cover multidimensional infor-
mation, key predictive factors may still have been 
overlooked. In the future, genetic data, physical 
activity monitoring data, dietary habits, and other 
information can be further integrated to improve 
the predictive accuracy of the model. In addition, 
considering the high specificity of the RF model 
and the high sensitivity of the XGBoost model, 
the exploration of the integration algorithm of the 
two may further optimize the classification perfor-
mance, balancing the missed diagnosis rate and 
misdiagnosis rate. Finally, this study only evaluat-
ed the performance of the model through internal 
validation, and external generalizability still needs 
to be verified. In the future, external validation 
should be conducted among different popula-
tions, especially focusing on the applicability of 
the model in resource-limited areas and under-
served populations. Based on the above direction, 
future research can further develop a personalized 
risk assessment tool that integrates multi-source 
data, assisting medical personnel and patients 
to make joint decisions, ultimately achieving the 
transformation from risk prediction to accurate 
prevention, and especially providing feasible solu-
tions for diabetes prevention and control in re-
source-scarce regions to promote the fairness of 
global diabetes prevention.
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