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A b s t r a c t

Introduction: Sepsis is a systemic inflammatory response syndrome caused 
by infection and remains a leading cause of mortality worldwide. Abnormal 
body temperature, especially hypothermia (body temperature < 36°C), is 
a key clinical feature in sepsis patients and is closely associated with disease 
severity, impaired immune function, and poor prognosis. Early prediction of 
hypothermia is crucial for timely intervention and improving prognosis. 
Material and methods: This study used machine learning algorithms to train 
and validate a prediction model for early temperature changes in critically 
ill sepsis patients. Data were extracted from the MIMIC-IV database and five 
models were established: XGBoost, LR, SVM, KNN, and ANN. 
Results: The XGBoost model demonstrated the best predictive performance 
with AUC values of 0.92 in the training cohort and 0.98 in the validation 
cohort. \
Conclusions: This model can assist clinicians in identifying sepsis patients 
at high risk for early hypothermia and implementing early intervention to 
reduce mortality.

Key words: hypothermia, sepsis, machine learning, prediction model, 
MIMIC-IV database.

Introduction

Sepsis is a  systemic inflammatory response syndrome triggered by 
infection, often accompanied by organ dysfunction, and is one of the 
leading causes of high morbidity and mortality worldwide [1–3]. Abnor-
mal body temperature is a key clinical feature of sepsis, including both 
fever and hypothermia [4]. Compared to fever, hypothermia occurs less 
frequently in sepsis but carries more significant clinical implications [5]. 
Studies have shown that hypothermia in sepsis patients is often associ-
ated with impaired immune function, metabolic disturbances, and micro-
circulatory dysfunction [6]. More importantly, hypothermia is closely re-
lated to disease severity and poor prognosis, including higher in-hospital 
mortality and organ dysfunction [7].

Despite the significant harm hypothermia poses to sepsis patients, its 
early identification and prediction remain a major clinical challenge. Tra-
ditional physiological scoring systems (such as SOFA, APACHE II) and lab-
oratory indicators are typically based on static information [8, 9], making 
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it difficult to comprehensively capture the dynamic 
process of hypothermia onset, which may result 
in delayed risk assessment [10]. Furthermore, the 
mechanisms underlying hypothermia are complex, 
involving multiple factors such as the source of 
infection, inflammatory response, immune regula-
tion, patient-specific factors, and therapeutic inter-
ventions, which further complicate prediction [11].

With the rapid development of medical big data 
and artificial intelligence technologies, machine 
learning (ML) offers a  new solution for predict-
ing sepsis-related hypothermia. ML can integrate 
multimodal patient data (such as physiological 
parameters, laboratory indicators, and medical 
history) and, through complex algorithms, uncov-
er hidden patterns to build efficient prediction 
models [12, 13]. Compared to traditional meth-
ods, ML models can dynamically and in real-time 
capture potential risks, offering higher sensitivity 
and specificity [14], thereby providing opportuni-
ties for early intervention.

The primary objective of this study was to de-
velop a ML-based model that accurately predicts 
the risk of early hypothermia in sepsis patients. 
Additionally, this study aimed to identify key fac-
tors influencing early hypothermia onset and pro-
vide a clinically actionable tool to facilitate timely 
intervention and improve patient prognosis.

Material and methods

Data source

This study used a large-scale intensive care da-
tabase for model training, specifically the Medical 
Information Mart for Intensive Care IV (MIMIC-IV), 
version 3.0. MIMIC-IV is a database that includes 
data from all ICU and emergency department pa-
tients at Beth Israel Deaconess Medical Center 
from 2008 to 2019. The database contains patient 
vital signs, medications, laboratory measurements, 
provider-recorded observations and notes, fluid 
balance, procedure codes, diagnostic codes, imag-
ing reports, length of stay, survival data, and more. 
To access the database, the author (Li Ji) passed the 
human research participant protection review and 
obtained certification (ID: 59720689). The MIM-
IC-IV database was accessed using PostgreSQL 
software (Version 14.5-1) and Navicat Premium 
15, and structured query language (SQL) was used 
to extract data for the training cohort. The external 
validation cohort was manually collected from the 
ICU of three comprehensive hospitals in Zhejiang 
Province, including sepsis patients diagnosed be-
tween January 1, 2023, and December 31, 2023.

Participants

According to the Third International Consensus 
Definitions for Sepsis and Septic Shock (Sepsis 

3.0), sepsis is a life- threatening organ dysfunction 
caused by infection and impaired host response, 
characterized by an increase of 2 or more points in 
the Sequential Organ Failure Assessment (SOFA) 
score. We included 2,623 sepsis patients in the 
training cohort and 599 sepsis patients in the vali-
dation cohort. Patients were excluded if they were 
under 18 years old, were admitted to the ICU for 
less than 24 h, or had pre-existing hypothermia 
(body temperature < 36.0°C) upon admission.

Data extraction and processing

Patient data from the first 24 h after admission 
were retrieved from the MIMIC-IV database [15] 
for training, and data from sepsis patients diag-
nosed in the ICU of Zhejiang University School of 
Medicine Second Affiliated Hospital, Hangzhou 
Normal University Affiliated Hospital, and the 
Third People’s Hospital of Deqing between January 
1, 2023, and December 31, 2023, were collected 
for validation. To facilitate the practical implemen-
tation and promotion of the prediction model, 
variables were selected based on their early avail-
ability and easy accessibility. A  total of 29 input 
variables were used in this study, categorized as 
follows:
•	 Demographic features: sex, age, body mass in-

dex (BMI);
•	 Vital signs: temperature, heart rate, respiratory 

rate, mean arterial pressure, 24-hour tempera-
ture variability at admission;

•	 Treatment and clinical management: mechan-
ical ventilation within 24 h of admission, use 
of vasopressors, continuous renal replacement 
therapy, antibiotic treatment, timing and types 
of antibiotics, total fluid infusion within 24 h of 
admission, red blood cell transfusion volume, 
and plasma transfusion volume;

•	 Laboratory parameters: white blood cell count, 
absolute lymphocyte count, absolute neutro-
phil count, hemoglobin, and blood lactate at 
admission;

•	 SOFA score: with only the initial test value in-
cluded for analysis.

Missing data handling

Variables with missing data are common in the 
MIMIC-IV, and directly eliminating patients with 
missing values or analyzing variables with missing 
values will cause bias. We excluded variables with 
more than 20% of values missing. For variables 
with less than 5% of values missing, in the case of 
continuous variables with normal distribution, the 
missing values were replaced with the mean for 
the patient group; in the case of continuous vari-
ables with skewed distributions, the missing values 
were replaced with their median. Multiple imputa-
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tion can impute each missing value with multiple 
plausible possible values. This method takes into 
account uncertainty behind the missing value and 
can produce several datasets from which parame-
ters can be estimated, and these coefficients are 
combined to give an effective estimate of the co-
efficients. For variables with more than 5% of val-
ues missing, we used multiple imputation with the 
‘mice’ package in R to handle the data.

Given the potential for class imbalance in our 
dataset, we addressed this issue using synthetic 
oversampling techniques. Specifically, we applied 
the Synthetic Minority Over-sampling Technique 
(SMOTE) to the training set. This technique gen-
erates synthetic samples for the minority class 
(patients who developed hypothermia) to balance 
the number of instances in each class. By doing 
so, we aimed to prevent the model from being bi-
ased towards the majority class and to improve 
the overall performance of the predictive models.

Statistical analysis

Patients were divided into two groups based on 
whether they developed hypothermia within 24 h 
of admission. For continuous variables, values are 
presented as mean ± standard deviation (SD) if 
normally distributed, or as median ± interquartile 
range (IQR) if non-normally distributed. Categor-
ical variables are expressed as total count (per-
centage). Continuous variables were compared 
using the t-test or Wilcoxon rank-sum test, while 
proportions were compared using the c2 test or 
Fisher’s exact test, as appropriate.

Feature selection and model construction

We utilized the Boruta algorithm, a  feature 
selection method based on random forest theo-
ry, to identify truly important features from the 
given feature set while filtering out those with 
an insignificant impact. After feature selection, 
we constructed models using five ML algorithms: 
Extreme Gradient Boosting (XGBoost), Logistic Re-
gression (LR), k-Nearest Neighbors (KNN), Support 
Vector Machine (SVM), and Artificial Neural Net-
works (ANN).

To prevent overfitting, we implemented 10-fold 
cross-validation during training. This method in-
volves dividing the training data into ten subsets, 
using nine subsets for training and one subset 
for validation in each iteration. The process is re-
peated ten times, with each subset serving as the 
validation set once. The final model performance 
is then averaged across all iterations. Additionally, 
we applied L1 and L2 regularization techniques to 
Logistic Regression and XGBoost to penalize over-
ly complex models and reduce the risk of overfit-
ting. For XGBoost and ANN, we implemented early 

stopping to halt training when the validation per-
formance began to degrade.

Hyperparameter tuning was performed using 
grid search with cross-validation. This method 
systematically evaluates a range of hyperparam-
eter values to identify the combination that yields 
the best performance for each model. The specific 
hyperparameters and their ranges are detailed in 
the supplementary material.

For model validation, we assessed the perfor-
mance of the models on an independent valida-
tion set using metrics including the area under 
the receiver operating characteristic (ROC) curve 
(AUC), accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive val-
ue (NPV). The best-performing model was select-
ed based on its performance on the validation set. 
Additionally, we designed a simplified nomogram 
for predicting the occurrence of hypothermia to 
facilitate clinical application. All analyses were 
performed using R software.

Results

Baseline characteristics

A total of 27,139 patients were diagnosed with 
sepsis upon admission, and 24,516 patients were 
excluded based on the exclusion criteria (Fig- 
ure 1). Ultimately, 2,623 patients were included in 
the analysis.

The detailed process of data extraction

The differences in characteristics between sep-
sis patients who developed hypothermia and those 
who did not in the training and validation cohorts 
are shown in Tables I  and II. Male patients had 
a higher likelihood of developing hypothermia with-
in 24 h of ICU admission compared to female pa-
tients. Compared to patients who did not develop 
hypothermia, those who did were older, had lower 
BMI, temperature, heart rate, and blood pressure at 
admission, a  slower respiratory rate, higher SOFA 
score, higher blood lactate levels, greater 24-hour 
temperature variability, higher total fluid infusion, 
red blood cell transfusion, and platelet transfusion 
volumes within 24 h. They also had a lower rate of 
antibiotic use within 24 h, but the antibiotics used 
were more diverse, with earlier initiation of antibi-
otics after ICU admission. Additionally, mechanical 
ventilation, vasopressor, and continuous blood puri-
fication therapy were used less frequently (p < 0.05).

Feature selection

The feature selection results based on the 
Boruta algorithm are shown in Figure 2, sorted by 
Z-scores. The 16 variables most closely associat-
ed with the occurrence of hypothermia are age, 
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Figure 1. The detailed process of data extraction

Patients were diagnosed as ‘sepsis” 
(n = 27139)

Patient for further selection 

Patient for final analysis  
(n = 2623) 

Patient without hypothermia  
(n = 2373) 

Patient with hypothermia  
(n = 250)

Excluded patients with multiple admission records except  
for the first admission (n = 7987) 

The following patients were excluded: 
Less than 18 years old (n = 5884) 
ICU stay less than 24 h (n = 3660)

Admission temperature is below 36°C (n = 2876) 
No demographic data (n = 954) 

More than 20% variables missing (n = 3155) 

Table I. Baseline characteristics of training cohort

Characteristics Total
(n = 2623)

Non-hypothermia
(n = 2373)

Hypothermia
(n = 250)

P-value

Male, n (%) 1609 (61.3) 1449 (90.06) 160 (9.94) 0.364

Age [years] mean (SD) 65.14 ±15.37 64.89 ±15.43 67.46 ±14.61 0.012

BMI [kg/m2] mean (SD) 29.43 ±7.34 29.57 ±7.40 28.07 ±6.53 0.001

First temperature [°C] mean (SD) 36.95 ±0.60 36.98 ±0.59 36.69 ±0.58 0.001

First heart rate [beats/minute] mean (SD) 92.44 ±21.52 93.08 ±21.45 86.38 ±21.30 0.001

First mean BP [mm Hg] mean (SD) 81.34 ±18.15 81.58 ±18.15 79.03 ±18.00 0.034

First respiratory rate [breaths/min]  
mean (SD)

20.14 ±6.87 20.33 ±6.92 18.37 ±6.17 0.001

SOFA score, mean (SD) 6.95 ±3.90 6.82 ±3.82 8.20 ±4.44 0.001

Total infusion volume in 24 h [ml]  
mean (SD)

2455.36 ±2239.08 2421.32 ±2208.92 2778.50 ±2489.06 0.016

Total red blood cell transfusion  
in 24 h [ml], mean (SD)

197.84 ±681.32 170.48 ±622.92 457.52 ±1056.76 0.001

Total plasma transfusion in 24 h [ml] 
mean (SD)

56.67 ±225.03 47.41 ±195.77 144.52 ±399.48 0.001

WBC [109/l] mean (SD) 14.98 ±12.85 15.03 ±13.03 14.50 ±10.99 0.536

Neutrophils, mean (SD) 11.83 ±8.34 11.78 ±8.17 12.26 ±9.82 0.392

Lymphocytes, mean (SD) 1.89 ±10.32 1.89 ±10.71 1.86 ±5.47 0.964

Hemoglobin [g/dl] 10.87 ±2.37 10.44 ±2.35 9.67 ±2.34 0.001

Lactate [mmol/l] mean (SD) 2.38 ±1.84 2.33 ±1.72 2.84 ±2.67 0.003

24-hour temperature variation, mean (SD) 0.014 ±0.070 0.01 ±0.05 0.04 ±0.17 0.022

Time of first antibiotic use, mean (SD) 15.70 ±32.32 16.30 ±33.22 9.95 ±21.28 0.001

Kinds of antibiotic, mean (SD) 1.81 ±1.23 1.80 ±1.24 1.96 ±1.17 0.047

Vasopressor, n (%) 1086 (41.4) 955 (87.94) 131 (12.06) 0.001

Continuous renal replacement therapy, 
n (%)

91 (3.5) 55 (60.44%) 36 (39.56%) 0.001

Mechanical ventilation, n (%) 1450 (55.3) 1275 (87.93) 175 (12.07) 0.001

Antibiotic treatment, n (%) 2203 (84.0) 1973 (89.56) 230 (10.44) 0.001
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Table II. Baseline characteristics of validation cohort

Characteristics Total
(n = 599)

Non-hypothermia
(n = 473)

Hypothermia
(n = 126)

P-value

Male, n (%) 392 (65.44) 361 (92.10) 31 (7.91) 0.923

Age [years] mean (SD) 68.07 ±15.93 68.22 ±15.95 69.51 ±15.90 0.658

BMI [kg/m2] mean (SD) 22.37 ±4.20 22.56 ±4.08 21.66 ±4.57 0.032

First temperature [°C] mean (SD) 37.20 ±0.88 37.08 ±0.82 37.05 ±0.79 0.001

First heart rate [beats/min] mean (SD) 102.54 ±22.29 103.52 ±21.64 102.29 ±22.48 0.584

First mean BP [mm Hg] mean (SD) 85.72 ±16.38 86.78 ±16.06 81.75 ±17.02 0.001

First respiratory rate [breaths/min] 
mean (SD)

20.04 ±6.07 20.13 ±6.03 20.04 ±6.09 0.882

SOFA score, mean (SD) 10.49 ±3.89 9.96 ±3.74 12.48 ±3.81 0.001

Total infusion volume in 24 h [ml], 
mean (SD)

1262.23 ±1089.99 1185.57 ±1002.38 1550.01 ±1335.70 0.001

Total red blood cell transfusion  
in 24 h [ml], mean (SD)

62.23 ±172.97 29.21 ±120.98 208.73 ±248.52 0.001

Total plasma transfusion  
in 24 h [ml] mean (SD)

113.19 ±310.48 82.07 ±280.04 230.00 ±348.25 0.001

WBC [109/l] mean (SD) 13.17 ±8.86 13.21 ±8.82 13.01 ±9.04 0.819

Neutrophils, mean (SD) 12.01 ±10.52 11.91 ±8.20 12.39 ±16.59 0.749

Lymphocytes, mean (SD) 0.81 ±1.09 1.01 ±1.91 0.75 ±0.73 0.150

Hemoglobin [g/dl] 9.90 ±2.81 10.10 ±2.70 9.13 ±3.09 0.001

Lactate [mmol/l] mean (SD) 3.40 ±6.69 2.65 ±3.50 6.20 ±12.56 0.001

24-hour temperature variation, mean (SD) 0.03 ±0.19 0.02 ±0.04 0.04 ±0.22 0.03

Time of first antibiotic use, mean (SD) 5.37 ±5.93 5.38 ±6.26 5.33 ±4.50 0.931

Kinds of antibiotic, mean (SD) 1.36 ±0.67 1.34 ±0.67 1.44 ±0.65 0.128

Vasopressor, n (%) 359 (59.93%) 264 (73.54%) 95 (26.46%) 0.001

Continuous renal replacement therapy, 
n (%)

128 (21.37) 49 (38.28) 79 (61.72) 0.001

Mechanical ventilation, n (%) 422 (70.45) 319 (75.59) 103 (24.41) 0.001

Antibiotic treatment, n (%) 594 (99.17) 469 (78.96) 125 (21.04) 0.955

temperature at admission, heart rate, respiratory 
rate, white blood cell count, absolute neutrophil 
count, absolute lymphocyte count, hemoglobin, 
blood lactate, total fluid infusion within 24 h, total 
red blood cell transfusion within 24 h, total plas-
ma transfusion within 24 h, 24-hour temperature 
variability, continuous renal replacement therapy 
(CRRT) treatment, mechanical ventilation, and the 
timing of antibiotic use.

Feature selection based on the Boruta 
algorithm

Feature selection based on the Boruta algo-
rithm is shown here. The x-axis represents the 
names of the variables, and the y-axis represents 
their Z-scores. The boxplot displays the Z-scores 
of each variable during the model computation 
process. The green boxes represent the top 16 
important variables, yellow indicates provisional 
attributes, and red denotes unimportant vari-
ables. MV: mechanical ventilation, BMI: body 
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first antibiotic use, WBC: white blood cell count, 
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NEUT: absolute neutrophil count, HB: hemoglo-
bin, Plasma: total plasma transfusion in 24 h, HR: 
heart rate, RCS: total red blood cell transfusion in 
24 h, CRRT: continuous renal replacement therapy, 
Temp: temperature, Tvariation: 24-hour tempera-
ture variation.

Model performance comparison

We constructed five ML models to predict the 
occurrence of hypothermia in sepsis patients 
within 24 h of ICU admission. Figure 3 shows the 
ROC curve discrimination performance of the five 
models in both the training and validation co-
horts. Among the five models in the training co-
hort, the XGBoost model (AUC = 0.92) performed 
best in predicting hypothermia in sepsis patients, 
followed by SVM (AUC = 0.91), Logistic Regression 
(AUC = 0.75), KNN (AUC = 0.54), and ANN (AUC = 
0.52). Among the five models in the validation co-

hort, the XGBoost model (AUC = 0.98) again per-
formed best in predicting hypothermia in sepsis 
patients, followed by SVM (AUC = 0.96), Logistic 
Regression (AUC = 0.92), KNN (AUC = 0.71), and 
ANN (AUC = 0.59). Table III presents a set of de-
tailed performance metrics for the five models. In 
the training cohort, the XGBoost model demon-
strated the best discrimination with an AUC of 
0.92, accuracy of 0.93, specificity of 0.84, and 
NPV of 0.98, ranking first. Sensitivity was 0.83, 
and PPV was 0.34. In the validation cohort, the 
XGBoost model also demonstrated the best dis-
crimination, with an AUC of 0.98, accuracy of 0.95, 
specificity of 0.94, and NPV of 0.98, ranking first. 
Sensitivity was 0.93, and PPV was 0.80.

Nomogram model construction

A nomogram model was constructed based on 
the variables identified through Boruta analysis 

Figure 3. Plots (A) and (B) show the ROC curves of the five models in the training and validation groups
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Table III. Analysis of sensitivity and specificity

Variable Model Accuracy Sensitivity Specificity NPV PPV AUC

Training 
sets XGB

XGBoost  0.93 0.83 0.84 0.98 0.34 0.92

LR 0.92 0.99 0.03 0.43 0.91 0.75

SVM 0.91 0.99 0.03 0.43 0.91 0.91

KNN 0.92 0.99 0.08 0.71 0.92 0.54

ANN 0.91 1 0 0.43 0.91 0.52

Validation 
sets

XGBoost 0.95 0.93 0.94 0.98 0.80 0.98

LR 0.90 0.96 0.67 0.81 0.92 0.92

SVM 0.90 0.96 0.67 0.81 0.79 0.96

KNN 0.85 0.95 0.46 0.71 0.87 0.71

ANN 0.8 1 0.06 0.89 0.80 0.59

PPV  – positive predictive value,  NPV  – negative predictive value, AUC  – area under the curve, XGBoost  – Extreme Gradient Boosting,  
LR – logistic regression, SVM – Support Vector Machine, KNN – k-Nearest Neighbors, ANN – Artificial Neural Network.
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(Figure 4). Each independent variable on the no-
mogram is assigned a point by drawing a line from 
the independent variable scale to the point scale 
(e.g., an age of 20 years is assigned 0 points). The 
total score is calculated by summing the points 
assigned to each independent variable on the no-
mogram. The final score for the occurrence of hy-
pothermia is calculated by drawing a line from the 
total point scale to the bias risk scale. The score 
can be used to predict the likelihood of early hy-
pothermia in sepsis patients. The higher the total 
score is, the greater is the likelihood of hypother-
mia. Clinicians and nurses can use these readily 
available indicators to assess the risk of hypo-
thermia in a visual, personalized, and quantitative 
manner.

Discussion

This study used data from the MIMIC database 
and applied various ML techniques to construct 
a  risk prediction model for early hypothermia in 
sepsis patients, which was subsequently validat-
ed using ICU data from three domestic centers. 
Our study suggests that the key variables influ-
encing the occurrence of hypothermia include pa-

tient age, temperature at admission, heart rate, 
respiratory rate, white blood cell count, absolute 
neutrophil count, absolute lymphocyte count, 
hemoglobin, blood lactate, 24-hour temperature 
variability, total fluid infusion within 24 h, total 
red blood cell transfusion, total plasma trans-
fusion, duration of antibiotic use, and whether 
continuous blood purification therapy was admin-
istered. The ML models effectively predicted the 
risk of early hypothermia in hospitalized sepsis 
patients, with the XGBoost model demonstrating 
the best performance among all models.

Sepsis is a  systemic inflammatory response 
triggered by infection, with body temperature 
being a  key indicator of this response [16, 17]. 
When hyperthermia fails to effectively alleviate or 
control sepsis and the condition worsens, it may 
result in a decrease in body temperature, leading 
to hypothermia. This often indicates disease de-
terioration, such as shock or multiple organ fail-
ure [18–20]. Temperature variability refers to the 
degree of fluctuation in body temperature over 
a specific period. Patients with greater tempera-
ture fluctuations often experience disruptions 
in immune system responses or metabolic insta-
bility [6, 11]. Excessive temperature fluctuations 

Figure 4. ???????

MV – mechanical ventilation, BMI – body mass index, Kantibiotic – kinds of antibiotic, MAP – mean arterial pressure,  
LYM – absolute lymphocyte count, RR – respiratory rate, Tantibiotic – time of first antibiotic use, WBC – white blood cell count, 
NEUT – absolute neutrophil count, HB – hemoglobin, Plasma – total plasma transfusion in 24 hours, HR – heart rate, RCS – total 
red blood cell transfusion in 24 h, CRRT – continuous renal replacement therapy, Temp – temperature, Tvariation – 24-hour 
temperature variation.
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may lead to rapid energy depletion, making it 
difficult to maintain normal body temperature 
levels, thereby increasing the risk of hypothermia 
[21]. In sepsis patients, the heart rate is typically 
elevated, reflecting sympathetic nervous system 
activation and enhanced systemic inflammation 
[22]. In the later stages of sepsis, an excessive-
ly rapid heart rate may lead to heart failure and 
poor circulation, thereby impairing temperature 
regulation and increasing the likelihood of hypo-
thermia [23]. An increased heart rate may indicate 
a  reduced compensatory capacity of the body, 
particularly when accompanied by hemodynamic 
instability, which increases the risk of hypother-
mia [24]. Increased respiratory rate is a common 
manifestation of sepsis, suggesting that the body 
is attempting to compensate for metabolic acido-
sis or hypoxia, particularly during shock or mul-
tiple organ failure, when blood lactate levels rise 
[25]. Elevated lactate levels reflect tissue hypoxia, 
metabolic dysregulation, and cellular dysfunction. 
High lactate levels cause metabolic disturbances, 
affecting energy metabolism and heat production, 
leading to reduced thermogenesis and increasing 
the risk of hypothermia [26]. In sepsis, white blood 
cell count is often elevated, reflecting the immune 
response. An increase in neutrophils is commonly 
associated with bacterial infections and may trig-
ger a systemic inflammatory response (SIRS) [27]. 
Excessive inflammatory responses may suppress 
the function of the temperature-regulating center, 
leading to a decrease in body temperature rath-
er than an increase, thereby increasing the risk 
of hypothermia. Moreover, severe leukopenia or 
functional suppression (e.g., in late-stage sepsis) 
may weaken the immune response, subsequent-
ly affecting normal temperature regulation [28]. 
Lymphocyte count typically decreases in sepsis 
patients, especially in immunosuppressed states, 
where the ability of lymphocytes to combat infec-
tion diminishes, further impairing temperature 
regulation. A  reduction in lymphocytes is also 
closely associated with immune dysregulation 
in sepsis, potentially leading to temperature re-
sponse disturbances and the onset of hypother-
mia [29, 30]. Sepsis patients often present with 
anemia, and low hemoglobin levels may impair 
oxygen delivery, particularly under hypoxic condi-
tions, where the body may be unable to maintain 
body temperature through normal metabolic ther-
mogenesis [31]. Anemia may also exacerbate cir-
culatory dysfunction in sepsis, reducing tempera-
ture regulation capacity and increasing the risk of 
hypothermia [32].

Sepsis patients have a higher risk of hypother-
mia during bundled treatments such as fluid re-
suscitation, blood transfusion, antibiotic therapy, 
and continuous blood purification. Sepsis patients 

require fluid resuscitation and blood transfusion 
to restore blood volume, correct anemia, restore 
hemoglobin levels, and improve oxygen delivery. 
During fluid resuscitation, the fluids used are typ-
ically at room temperature (e.g., saline, crystal-
loids, or colloids), and in the intensive care unit, 
the temperature of the fluids may be lower due 
to environmental conditions. During large-volume 
and rapid infusion of fluids and blood, the body 
attempts to adapt by adjusting blood flow and 
metabolism. If the fluid temperature is too low, it 
may impair normal temperature regulation [33]. If 
sepsis patients develop acute kidney injury (AKI), 
they may require continuous renal replacement 
therapy (CRRT) to remove metabolic waste and ex-
cess fluid. During CRRT, blood passing through the 
filter typically cools slightly. Although devices of-
ten include heating mechanisms, some may cause 
blood temperature to drop during the purification 
process, potentially leading to hypothermia. CRRT 
not only removes waste products but also depletes 
essential electrolytes, leading to fluctuations in 
metabolic function, which may indirectly affect the 
maintenance of body temperature [34, 35].

Age is an important factor influencing tem-
perature regulation in sepsis patients and has 
a  significant impact on the early occurrence of 
hypothermia. Studies show that the incidence of 
hypothermia in patients over 65 years old reach-
es 30–40%, and prognosis is often poor [36]. This 
may be related to several factors. First, the aging 
population experiences an immune system de-
cline, with slower initiation of the inflammatory 
response, resulting in a less noticeable increase in 
body temperature, enhanced anti-inflammatory 
responses, and suppression of the fever mecha-
nism, making them more prone to hypothermia 
[37]. Additionally, the basal metabolic rate gradu-
ally decreases with age, and the function of major 
thermogenic organs, such as the liver and mus-
cles, weakens, impairing heat production ability. 
At the same time, with aging, the sensitivity of 
the hypothalamic temperature-regulating center 
decreases, and the response speed slows. The 
ability to thermoregulate in response to infection 
decreases, and the body cannot quickly respond 
to sepsis-induced stress by increasing metabolic 
rate. Finally, elderly individuals have poor microcir-
culation, with reduced ability to redistribute blood 
flow, making it difficult to maintain organ perfu-
sion and thermal balance [38]. Therefore, as age 
increases, the probability of early hypothermia in-
creases. This also serves as a reminder that sepsis 
in elderly patients should be closely monitored, 
and preventive measures against hypothermia 
should be implemented [39].

The prediction model for early hypothermia in 
sepsis patients holds significant clinical potential. 
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It relies on readily available clinical variables and 
can be integrated into existing electronic health 
record (EHR) systems for real-time monitoring 
and alerting. To ensure its real-world effective-
ness, we propose several validation strategies: 
prospective validation in diverse populations 
across different regions and healthcare systems; 
validation in various clinical settings beyond the 
ICU; long-term follow-up to assess its impact on 
patient outcomes; and implementation in clin-
ical practice to evaluate its effectiveness in hy-
pothermia prevention and management. Future 
work should focus on comprehensive validation 
and seamless integration into clinical workflows 
to enhance sepsis management and improve pa-
tient outcomes.

This study has several limitations. First, we ac-
knowledge that the data in the MIMIC-IV database 
are incomplete, particularly with the potential 
absence of key clinical variables (e.g., SCRP, PCT), 
which may affect the accuracy of the model’s pre-
dictions. Future research should include more com-
prehensive data to improve the model and further 
validate it to enhance its accuracy. Secondly, since 
this was a  retrospective study, the data primari-
ly come from ICU patients, which may introduce 
selection bias and limit the generalizability of the 
model in other clinical settings. Therefore, we rec-
ommend that future studies use multicenter data 
to validate this model, to reduce selection bias and 
increase its generalizability. Additionally, the im-
balance between hypothermic and non-hypother-
mic patients in the dataset may affect the model’s 
performance in predicting mortality.

In conclusion, our study developed a ML model 
using the XGBoost algorithm to predict early hy-
pothermia in sepsis patients, achieving an AUC of 
0.98 in the validation cohort. The model leverages 
patient demographics, vital signs, laboratory pa-
rameters, and clinical treatments as key predic-
tors. While our findings demonstrate the model’s 
strong predictive performance, we acknowledge 
limitations such as potential selection bias from 
the MIMIC-IV and three ICUs, class imbalance in 
the dataset, and the need for further validation 
in independent datasets. The nomogram provides 
a  useful tool for clinicians, but its real-world ef-
fectiveness requires prospective evaluation. Our 
study underscores the potential of ML for early 
risk assessment but emphasizes the need for fur-
ther validation and careful clinical application.
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