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Systematic druggable genome-wide Mendelian 
randomization identifies therapeutic targets for basal 
cell carcinoma
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A b s t r a c t 

Introduction: Basal cell carcinoma (BCC) is the most common type of skin 
cancer, with its incidence increasing annually, posing a significant challenge 
to public health. Currently, the treatment of BCC mainly includes surgical re-
section, radiotherapy, and pharmacotherapy. However, for high-risk or recur-
rent BCC cases, traditional treatments may be limited in efficacy, and there 
is an urgent need to explore more effective targeted therapeutic strategies. 
This study aims to identify and validate potential druggable genes for BCC 
treatment by integrating multi-omics and pharmacogenomics approaches.
Material and methods: Utilizing pharmacogenomics, transcriptomics, pro-
teomics, and genome-wide association study (GWAS) data, we employed 
Mendelian randomization (MR) and Bayesian colocalization analyses to 
identify genes associated with BCC development. Phenome-wide Mendelian 
randomization (Phe-MR) analysis was further conducted to elucidate the 
causal relationships between these genes and various disease phenotypes.
Results: The study identified PSMB9, TGM3, CTSS, HLA-DQA2, and RNASET2 
as potential drug targets, with PSMB9 and RNASET2 positively correlated 
with BCC risk, while CTSS showed a negative correlation. Additionally, carfil-
zomib and L-glutamine were identified as existing compounds with poten-
tial therapeutic agents.
Conclusions: The strength of this study lies in its integrative approach, 
which not only enhances the reliability of the findings but also provides 
new possibilities for targeted drug development. Phe-MR analysis ensured 
the safety of the candidate genes and provided guidance for future targeted 
drug development. The results highlight the importance of further exploring 
these druggable genes and underscore the value of MR analysis in drug dis-
covery, offering new therapeutic strategies for BCC and directions for future 
research.

Key words: basal cell carcinoma, pharmacogenomics, Mendelian 
randomization, eQTL, pQTL, phenome-wide MR analysis.

Introduction

Basal cell carcinoma (BCC) is one of the most common malignant 
skin tumors worldwide, with an incidence rate that has been increasing 
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annually, particularly among the elderly [1, 2]. It 
is estimated that more than 4 million new cases 
of BCC are diagnosed globally each year. With the 
intensification of population aging, the incidence 
of BCC in the elderly population is projected to 
increase by 48% by 2050 [3, 4]. Meanwhile, the 
cost of BCC treatment remains high. In the United 
States alone, annual expenditures for BCC treat-
ment have exceeded 4.5 billion US dollars, and the 
treatment costs for recurrent or advanced cases 
are 6.4 times higher than those for early-stage 
cases [5–7].

Traditional BCC treatment methods mainly in-
clude surgical resection, radiotherapy, and photo-
dynamic therapy [8–11]. Although these methods 
have shown some clinical efficacy, they also have 
many limitations [12, 13]. Surgical resection may 
lead to severe tissue trauma, radiotherapy may 
cause complications such as skin fibrosis, and 
the efficacy of photodynamic therapy is signifi-
cantly limited by tumor depth and location. Giv-
en the limitations of these traditional treatment 
methods, the development of new therapeutic 
approaches is particularly urgent.

The pathogenesis of BCC is complex and di-
verse, mainly involving gene mutations and sun 
damage. Among them, the abnormal activation 
of the Hedgehog (HH) signaling pathway is one 
of the key driving factors for the occurrence of 
BCC. The abnormal activation of the HH pathway 
is usually manifested as inactivating mutations in 
PTCH1 (a tumor suppressor gene) (approximately 
85–90% of sporadic BCCs have such mutations) or 
activating mutations in SMO (an oncogene) (ap-
proximately 10–20% of sporadic BCCs have such 
mutations), which in turn leads to the abnormal 
activation of the GLI (transcription factor) family, 
thereby promoting the development of BCC [14]. 
In addition, the HH pathway can also regulate the 
activity of GLI through non-canonical pathways 
(such as the EGFR, PI3K/AKT, and NF-κB signaling 
networks), bypassing the canonical HH-PTCH1-
SMO activation pathway. Other gene mutations 
(such as inactivating mutations in LATS1/2 and 
PTPN14 in the Hippo-YAP pathway) and the ac-
tivation of the WNT signaling pathway are also 
closely related to the occurrence of BCC.

With the in-depth understanding of the patho-
genesis of BCC, targeted therapy has gradually 
attracted widespread attention as an emerging 
therapeutic strategy. Currently, inhibitors target-
ing the Hedgehog (Hh) signaling pathway (such as 
sonidegib and vismodegib) are applied in clinical 
practice. However, although these drugs have cer-
tain effects in the treatment of advanced BCC, the 
recurrence rate is high, especially in cases related 
to SMO mutations. In addition, adverse reactions 
are relatively common, with approximately 30% 

of patients discontinuing treatment due to toxic 
side effects, and the problem of drug resistance 
is also becoming increasingly prominent, with 
cross-resistance being relatively common. There-
fore, identifying new drug targets and developing 
more effective drugs are of great significance for 
the treatment of BCC [15–17].

Against this background, the present study 
aimed to systematically identify potential drug-
gable genes of BCC by integrating multi-omics 
data, including pharmacogenomics, transcrip-
tomics, proteomics, and summary data from ge-
nome-wide association studies (GWAS). Based on 
these druggable genes, we further explored po-
tential drug targets and available drugs, providing 
a solid theoretical basis for future drug develop-
ment. Through this interdisciplinary research ap-
proach, we hope to provide new ideas and strat-
egies for the precision treatment of BCC, thereby 
significantly improving patient prognosis.

Material and methods

Ethical approval

The current study strictly adhered to the steps 
outlined in the predetermined flowchart (Figure 1).  
In this study, the dataset we utilized is publicly 
accessible. The data had obtained the necessary 
informed consent from participants and had been 
approved by the appropriate ethical review in the 
original research. This study complied with the re-
quirements of the Ethics Committee of Shandong 
Provincial Hospital, Shandong First Medical Uni-
versity, China (SWYX: No. 2019-115).

Related data sources

Drug genome

In this study, the sources of pharmacogenom-
ic data were primarily twofold (Table I): First, we 
utilized the Drug-Gene Interaction Database (DG-
Idb v5.0.7, https:// www.dgidb.org/downloads) 
(Supplementary Tables SI) [18], a comprehensive 
online resource that consolidates drug-gene in-
teraction information from various publications, 
databases, and other online resources. Second, 
we referred to the research by Finan et al. (Sup-
plementary Table SII) [19]. which links the loci as-
sociated with complex diseases identified through 
GWAS to pharmacogenomics, providing signifi-
cant scientific support for the identification and 
validation of druggable genes.

eQTL and pQTL datasets

Considering that cis-regulatory elements typ-
ically have more direct and specific effects on 
gene expression [20, 21], we prioritized the use 
of cis-expression quantitative trait loci (eQTL) and 
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cis-protein quantity trait loci (pQTL) data derived 
from human blood samples, which encompass 
genetic variations within a  1 Mb range flanking 
the druggable genomic coding sequences. Fur-
thermore, to investigate the mechanisms of gene 
expression regulation in skin tissue, we also in-
cluded cis-eQTL data for this tissue type (Table I).

The blood cis-eQTL data encompass transcrip-
tome information for 16,989 genes from 31,684 
individuals, sourced from the eQTLGen Consor-
tium [22]. The blood cis-pQTL data, reported by 
Ferkingstad et al., include information on 4,907 
proteins from 35,559 individuals. Additionally, we 
obtained cis-eQTL data for skin tissue from the 
Genotype-Tissue Expression (GTEx) Consortium 
(GTEx, V8), which include transcriptome informa-
tion for genes across 517 samples [23].

GWAS dataset of BCC

In this study, we specifically focused on the 
genome-wide association study (GWAS) datasets 
related to BCC, sourced from the FinnGen project 
(https://r11.finngen.fi/pheno/C3_BASAL_CELL_
CARCINOMA_EXALLC). We amassed GWAS sum-
mary data from 26,953 individuals.

Instrument choice

For the Mendelian randomization (MR) meth-
odology, we meticulously selected single nucle-
otide polymorphisms (SNPs) that are strongly 
correlated with specific exposure factors as in-
strumental variables (IVs). To ensure the rigor and 
accuracy of MR analysis, the selected IVs had to 
strictly meet the following three key assumptions:

1. �Relevance: The IV must have a significant cor-
relation with the exposure of interest.

2. �Independence: Once genetic variation is ac-
counted for, the IV should be independent of 
potential confounders.

3. �Exclusion restriction: The IV should not directly 
affect the outcome variable, except through the 
exposure factor [24].
Only when all three key assumptions are met 

can Mendelian randomization (MR) effectively 
serve as a tool for causal inference, providing us 
with compelling evidence regarding the causal 
relationship between exposure factors and out-
comes.

We analyzed 6,889 potential pharmacogenom-
ic loci, intersecting them with blood eQTL/pQTL 
data and skin tissue eQTL data to identify genetic 
variations closely associated with drug-gene ex-
pression (Figure 1). Subsequently, we focused on 
cis-variants located within a  1  Mb range of the 
drug-gene coding region to evaluate their direct 
impact on drug-gene expression.

To mitigate the potential interference of pleiotro-
py on our study outcomes and to ensure adherence 
to the assumptions of MR analysis, we established 
stringent selection criteria. We utilized a  human 
blood eQTL genome-wide significance threshold  
(p < 5 × 10–8) and an F-statistic ≥ 10, while for hu-
man blood pQTL and skin tissue eQTL, we applied 
a  genome-wide significance threshold (p < 5 × 
10–5) [25, 26] and an F-statistic ≥ 10. Furthermore, 
we set the linkage disequilibrium (LD) coefficient  
r2 to 0.001, the LD window width to 10 Mb, and 
employed the clumping function of the Two-Sam-
ple MR package to select appropriate IVs [27].

Table I. Data sources 

Type of dataset Data subtype Source Sample size Population Download site

Druggable 
genome

DGIdb 4.0 Freshour SL, 
et al. 2020

https://www.dgidb.org/
downloads.

Prior druggable 
gene

Finan C,  
et al. 2017

Finan C, et al. PMID: 28356508.

QTL datasets Blood cis-eQTL eQTLGen 
Consortium

31684 European https://eqtlgen.org/

Skin cis-eQTL eQTLGen 
Consortium

1980 European https://yanglab.westlake.edu.cn/
software/smr/

Blood cis-pQTL deCODE 35559 European https://www.decode.com/
summarydata/

GWAS summary Basal cell 
carcinoma

GWAS 
Catalog

20506case : 
314193con

European https://storage.googleapis.com/
finngen-public-

data-r10/summary_stats/
finngen_R10_C3_

BASAL_b-CELL_CARCINOMA_
EXALLC.gz

1373Phenotypes UK Biobank 408961 European https://www.leelabsg.org/
resources

DGIdb – drug-gene interaction database; eQTL – expression quantitative trait loci; eQTLGen Consortium – expression quantitative trait loci 
generation consortium; GTEx – genotype-tissue expression; GWAS – genome-wide association study; pQTL – protein quantitative trait loci.

https://yanglab.westlake.edu.cn/software/smr/
https://yanglab.westlake.edu.cn/software/smr/
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Figure 1. Research flowchart. Initially, we obtained 6,889 known druggable genes from the DGIdb database and 
the study by Finan et al. Subsequently, utilizing eQTL/pQTL data from human blood and skin tissues, we developed 
a tool targeting druggable genes to screen for independent genetic variants significantly associated with the ex-
pression of these genes (as instrumental variables, IV), primarily located within 1 Mb upstream and downstream 
of the coding region (cis). In the MR analysis, we preliminarily identified potential pathogenic genetic variants for 
basal cell carcinoma. Ultimately, we employed the Phe-MR method to assess the druggability of these 5 druggable 
genes and explored their potential for clinical development.

eQTL – expression quantitative trait loci, pQTL – protein quantitative trait loci, Phe-MR – phenome-wide Mendelian randomization 
analysis.

Druggable Gene

DGIDB Finan C (2017) 

5012 genes 4479 genes 

Exposures

Outcome

cis-eqtl of skin 

p < 5e-5, F ≥ 10, 
r2 < 0.001 

3629 SNPs 
of 3068 genes 

6889 genes 

Mendel randomization 
analysis 

BH correction 
Steiger filtering analysis 

Heterogeneity test 
Pleiotropy test 

Leave-one-out sensitivity 
test 

5 genes Fdr < 0.05 in blood 
pQTL & p-value < 0.05  

in blood eQTL & p-value  
< 0.05 in skin eQTL 

PSMB9, TGM3, CTSS,  
HLA-DQA2, RNASET2 

Identification of  
actionable drugs 

Database 
– ChEMBL database 

(release 30, https://
www.ebi.ac.uk/chembl/) 

– ClinicalTrials (https:/
www.ClinicalTrials.gov) 
– DrugBank (https://
go.drugbank.com/) 

cis-eqtl of blood 

p < 5e-8, F ≥ 10, 
r2 < 0.001 

8291 SNPs 
of 3776 genes 

1373 Phenotypes  
from UKBB GWAS 

Side-effects and 
additional indications 

cis-pqtl of blood 

p < 5e-5, F ≥ 10, 
r2 < 0.001 

6492 SNPs 
of 1445 proteins 

Phe-MR

Basal cell carcinoma 
(20506case : 314193con) 

Mendelian randomization and Steiger 
filtering analysis

We employed the Wald ratio or inverse vari-
ance weighting (IVW) method to estimate the as-
sociation between exposure and outcome within 
the framework of a random-effects model (REM) 
[28]. Furthermore, to control the false positive rate 

associated with multiple comparisons, we adjust-
ed the p-values of the drug genes using the Ben-
jamini-Hochberg procedure (BH correction), with 
a  threshold set at a  significance level of eQTL/
pQTL Fdr < 0.05 [29].

In the process of conducting sensitivity analy-
ses, we employed the MR Egger regression model 
to assess potential bias. This approach enables us 
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to quantify the extent to which our study results 
may be subject to bias and adjust our conclusions 
accordingly [30]. Additionally, we used the weight-
ed mode and weighted median methods, both 
of which allow us to account for heterogeneity 
between studies, thereby providing an addition-
al check on the stability of our results. Through 
these comprehensive analytical approaches, we 
can more thoroughly evaluate the reliability of our 
findings and evaluate potential sources of bias.

To assess heterogeneity among studies, we 
employed the IVW (inverse variance weighted) Q 
statistic. Furthermore, the intercept from the MR-
Egger regression allowed us to evaluate potential 
pleiotropy issues. In the context of a  GWAS, we 
applied the MR-PRESSO method to detect outli-
ers [31, 32]. Any SNP (single nucleotide polymor-
phism) identified as a  significant outlier during 
the analysis was removed. In the heterogeneity 
and pleiotropy analyses, p < 0.05 was considered 
statistically significant. Finally, by employing the 
Steiger filtering method through the TwoSample-
MR R package, we could more accurately deter-
mine the direction of causality and reduce biases 
arising from reverse causation [21, 24, 33].

Our research findings are presented in the form 
of categorical variables to more clearly elucidate 
the direction of causality. Specifically, if the di-
rection of effect from exposure to outcome was 
confirmed and the p-value was less than 0.05, it 
was marked as “true”. Conversely, if the direction 
of effect reversed under the condition of p < 0.05, 
it was marked as “false”. If p ≥ 0.05, the result was 
considered indeterminate. To ensure the precision 
and consistency of the analysis, we employed R 
software (version 4.1.2) along with a  suite of R 
packages including TwoSampleMR, MR-PRESSO, 
and RMediation to perform all data analyses.

Bayesian colocalization

Bayesian colocalization analysis is an advanced 
statistical technique aimed at investigating 
whether specific genetic variants exert a common 
association signal on two distinct traits (1: poten-
tial pharmacogenomics, 2: basal cell carcinoma) 
[34, 35]. This conclusion is drawn by evaluating 
the posterior probabilities of five different hypoth-
eses:

PPH0: Neither trait is associated with genetic 
variants.

PPH1: Only trait 1 is associated with genetic 
variants.

PPH2: Only trait 2 is associated with genetic 
variants.

PPH3: Both traits are associated with genetic 
variants, but caused by different genetic variants.

PPH4: Both traits are associated with genetic 
variants, and caused by the same genetic variants.

When the posterior probability of hypothesis 
H4 exceeds 80%, it can be concluded that the 
potential pharmacogenomics shares the same ge-
netic variants with BCC. To conduct Bayesian colo-
calization analysis, we used the ‘coloc’ package in 
R (http://cran.r-project. org/web/packages/coloc).

Phe-MR analysis

This study employed the phenome-wide Men-
delian randomization (Phe-MR analysis) approach 
to explore the potential causal chains between 
identified pharmacogenomics and various dis-
ease traits. Through this analysis, we were able 
to assess the potential side effects of these ge-
nomes and investigate their possible applications 
in other medical conditions. Zhou et al. employed 
the SAIGE method – a  highly efficient and ac-
curate implementation of a  generalized linear 
mixed model – to conduct an in-depth analysis of 
more than 1400 binary phenotype samples from 
408,961 UK Biobank participants of European 
ancestry. Through SAIGE GWAS analysis (https://
www.leelabsg.org/ resource), we identified 1373 
non-basal cell carcinoma diseases or traits (Table I 
and Supplementary Table SXII).

Actionable drugs

To identify potential candidate drugs targeting 
the selected pharmacogenomics, we conducted an 
exhaustive database search, including DrugBank 
(version 5.1.10, https:// go.drugbank.com), ChEM-
BL (version 33, https:// www.ebi.ac.uk/chembl), 
and ClinicalTrials.gov (https://www. clinicaltrials.
gov). This process involved collecting detailed in-
formation about the drug molecules, the specific 
drug targets they act upon, and the current de-
velopment status of these drugs in clinical trials.

Results

Druggable genome

To ensure that the pharmacogenomics we se-
lected are not only reliable in data but also have 
the potential to become effective druggable 
genes, we followed these steps: First, we retrieved 
5012 potential druggable genes from the DGIdb 
database (Supplementary Table SI) [18] version 
5.0.7, a widely recognized resource that includes 
a vast array of gene information related to drug 
responses. Next, we referred to the study by Finan 
et al. (Supplementary Table SII) [19], from which 
we extracted 4479 pharmacogenomic data. To 
broaden our scope, we merged these two data-
sets, resulting in 6889 unique pharmacogenom-
ics. To further enhance the accuracy and reliability 
of the data, we analyzed these genomes further, 
retaining those officially named by the Human 

D:/%E7%99%BE%E5%BA%A6%E7%BF%BB%E8%AF%91/baidu-translate-client/resources/app.asar/app.html#/#
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Genome Organisation’s Gene Nomenclature Com-
mittee (HGNC). Through this series of selection 
and validation steps, we aimed to ensure the data 
quality of the selected pharmacogenomics and 
their potential as druggable genes (Supplementa-
ry Table SIII).

Candidate druggable genes

To identify genetic variations associated with 
a  drug response, we undertook the following 
steps: First, we compared 6889 potential phar-
macogenomics with human blood eQTL/pQTL and 
skin tissue eQTL datasets to identify overlapping 
genes. Subsequently, we extracted genetic vari-
ations from within 1 Mb regions upstream and 
downstream of the coding sequences of these 
overlapping druggable genes. After selecting and 
quality controlling the genetic variations, we 
screened 3629 SNPs from human skin tissue cis-
eQTL data, which are associated with 3068 drug-
gable genes (Supplementary Table SV). Similarly, 
we screened 8291 SNPs from human blood cis-
eQTL data, which are associated with 3776 drug-
gable genes (Supplementary Table SIV). Further-
more, we screened 6492 SNPs from human blood 
cis-pQTL data, which are associated with 1445 
drug-expressing genes (Supplementary Table SVI). 

These selected SNPs will serve as instrumental 
variables (IVs), representing the exposure in MR 
analysis to assess the causal relationship between 
genetic variations and drug response (Figure 1).

Next, we conducted an MR analysis on the 
GWAS summary data for basal cell carcinoma. The 
analysis revealed potential causal associations 
between basal cell carcinoma and 366 druggable 
genes in skin tissue eQTL (Supplementary Table 
SVIII), 401 druggable genes in human blood eQTL 
(Supplementary Table SVII), and 121 druggable 
genes in human blood pQTL (p < 0.05) (Supple-
mentary Table SIX). After adjusting for multiple 
testing, we identified 20 potential pharmacog-
enomic loci in human blood pQTL (BH correction 
Fdr < 0.05), 18 potential pharmacogenomic loci 
in human blood eQTL (BH correction Fdr < 0.05), 
and 57 potential pharmacogenomic loci in human 
skin eQTL (BH correction Fdr < 0.05) that showed 
a significant causal relationship with BCC (Supple-
mentary Tables SVII–SIX).

To enhance the precision and persuasiveness 
of our findings, we selected pharmacogenomics 
that exhibit significant causal relationships across 
three datasets as potential druggable genes for 
BCC of the skin. The specific criteria were: Fdr < 
0.05 in blood pQTL, p-value < 0.05 in blood eQTL, 

Figure 2. Druggable genes associated with basal cell carcinoma etiology identified through MR and Bayesian 
colocalization analysis. A – Relationship between five druggable genes in blood pQTL and basal cell carcinoma.  
B illustrate the gene identifiers, research methods, number of SNPs, forest plots, confidence intervals of the OR val-
ues, and p-values for druggable genes in blood eQTL, blood pQTL, and skin eQTL, respectively. In all three datasets, 
the five druggable genes have passed Mendelian randomization and Bayesian colocalization analysis. Definition 
of OR value: If OR > 1, the exposure may promote the outcome; if OR < 1, the exposure may inhibit the outcome.
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Figure 2. Cont. C – Relationship between five druggable genes in blood pQTL and basal cell carcinoma. E – Rela-
tionship between five druggable genes in skin eQTL and basal cell carcinoma. D, F illustrate the gene identifiers, 
research methods, number of SNPs, forest plots, confidence intervals of the OR values, and p-values for druggable 
genes in blood eQTL, blood pQTL, and skin eQTL, respectively. In all three datasets, the five druggable genes have 
passed Mendelian randomization and Bayesian colocalization analysis. Definition of OR value: If OR > 1, the expo-
sure may promote the outcome; if OR < 1, the exposure may inhibit the outcome.
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and p-value < 0.05 in skin eQTL. Given the close 
relationship between proteins and the physiolog-
ical processes of diseases, to enhance the preci-
sion of our research findings, this study employed 
the Fdr as the statistical method of description. 
Ultimately, we identified five promising pharma-
cogenomics: PSMB9, TGM3, CTSS, HLA-DQA2, and 
RNASET2 (Supplementary Table SX and Figure 2).

Firstly, we observed that the transcriptional lev-
el of the RNASET2 gene is positively correlated with 
the risk of BCC in blood eQTL analysis (odds ratio 
(OR) = 1.183, 95% confidence interval CI: 1.106–
1.266, p = 1.02 × 10–6), as well as in skin tissue (per 
1 SD increase) (OR = 1.070, 95% CI: 1.026–1.116, 
p = 1.75 × 10–3). Additionally, in blood, the protein 
abundance of the RNASET2 gene correspondingly 
elevates the risk of BCC. As the expression level 
of the RNASET2 gene rises (per 1 SD increase), the 
risk of BCC increases accordingly.

Secondly, we found that the protein abundance 
of PSMB9 and TGM3 (per 1 SD increase) encod-
ed by the corresponding genes is significantly 
positively correlated with the risk of BCC, with 
an increase in BCC risk. Specifically, the PSMB9 
gene (OR = 6.862, 95% confidence interval CI: 
4.098–11.492, p = 2.43 × 10–13) and TGM3 gene 
(OR = 1.208, 95% CI: 1.113–1.311, p = 5.69 × 10–6) 
both conform to this pattern. However, upon fur-
ther analysis of the transcriptional levels of these 
two genes in the blood, the results showed that 
the transcriptional levels of PSMB9 (OR = 0.941,  
95% CI: 0.899–0.985, p = 8.48 × 10–3) and TGM3 
(OR = 0.602, 95% CI: 0.541–0.670, p = 8.69 × 
10–21) are negatively correlated with BCC risk, 
meaning that as the transcriptional levels of these 
two genes increase (per 1 SD increase), the risk 
of BCC decreases. Additionally, an increase in the 
transcriptional level of PSMB9 (per 1 SD increase) 
in skin tissue (OR = 1.043, 95% CI: 1.010–1.076,  
p = 9.46 × 10–3) is associated with an increased risk 
of BCC; conversely, an increase in the transcription-
al level of TGM3 (per 1 SD increase) in skin tissue 
(OR = 0.407, 95% CI: 0.333–0.498, p = 2.56 × 10–18) 
is associated with a decreased risk of BCC.

Lastly, we confirmed the association of CTSS 
and HLA-DQA2 genes (per 1 SD increase) with an 
increased risk of BCC across multiple distinct QTL 
datasets. Specifically, this includes the eQTL analy-
sis in blood (CTSS: OR = 0.792, 95% confidence in-
terval CI: 0.747–0.839, p = 3.70 × 10–15; HLA-DQA2: 
OR = 0.860, 95% CI: 0.802–0.923, p = 2.76 × 10–5), 
the pQTL analysis in blood (CTSS: OR = 0.801, 95% 
CI: 0.716–0.897, p = 1.15 × 10–4; HLA-DQA2: OR = 
0.662, 95% CI: 0.585–0.749, p = 6.32 × 10–11), and 
the eQTL analysis in skin tissue (CTSS: OR = 0.755, 
95% CI: 0.704–0.809, p = 2.41 × 10–15; HLA-DQA2: 
OR = 0.880, 95% CI: 0.829–0.934, p = 2.82 × 10–5) 
(Figure 2 and Supplementary Tables SVII–SIX).

Phe-MR analysis of BCC candidate 
druggable genes

We conducted a Phe-MR analysis on 1373 dis-
eases and traits from the UK Biobank (Supple-
mentary Table SXII). In this analysis, the IVs we 
used were consistent with those previously iden-
tified to be associated with traits related to BCC 
of the skin, involving 15 SNPs across 5 pharmaco-
genes (for details, see Supplementary Table SXI). 
In the Phe-MR analysis, statistical significance 
was considered if the adjusted Fdr < 0.05 (BH-ad-
justed). Our study found that upregulation of the  
RNASET2 gene may reduce the risk of certain 
diseases. Specifically, upregulation of the RNA-
SET2 gene in blood and skin was associated with 
lower risk of hypothyroidism (OR = 0.83, 0.85, re-
spectively) and hypothyroidism NOS (OR = 0.82, 
0.84, respectively), and upregulation of the RNA-
SET2 gene in skin (OR = 0.78) was associated 
with lower risk of thyrotoxicosis with or without 
goiter. Similarly, upregulation of RNASET2 in the 
skin (OR = 0.78) was associated with lower risk 
of thyrotoxicosis with or without goiter. Further-
more, we found that increased expression of the 
PSMB9 gene in the blood (OR = 0.59) and skin (OR 
= 0.47) may be associated with reduced risk of 
iron metabolism disorders. It is also noteworthy 
that increased expression of the PSMB9 gene in 
the blood (OR = 0.73) and skin (OR = 0.63) was as-
sociated with a reduced risk of multiple sclerosis.

The results of the Phe-MR analysis further in-
dicate that a decrease in the expression level of 
the PSMB9 gene may be associated with reduced 
risk of other diseases such as asthma (blood  
OR = 1.09, skin OR = 1.13), chronic hepatitis (blood 
OR = 1.87), hypothyroidism (blood OR = 1.59, skin  
OR = 1.23), type 1 diabetes (blood OR = 1.48, skin 
OR = 1.77), and celiac disease (blood OR = 3.27, 
skin OR = 5.75). Notably, downregulation of RNA-
SET2 and PSMB9 genes is associated with a  re-
duced risk of BCC. This implies that drug targeting 
of RNASET2 and PSMB9 may not only be bene-
ficial for BCC but could also have a  positive im-
pact on certain diseases. However, the other three 
genes (TGM3, CTSS, HLA-DQA2) are not related to 
1373 diseases and traits (Supplementary Table 
SXIII), indicating that drugs targeting these genes 
may not have potential side effects (Supplemen-
tary Table SXIII).

Actionable drugs

In our study, the preclinical or clinical develop-
ment activities of five potential pharmacological 
targets for BCC were assessed (Table II). Although 
formulations related to the PSMB9, TGM3, and 
CTSS genes have been evaluated in clinical trials 
for other diseases, they have not yet been used 
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for the treatment of BCC. To date, we have not 
found any drugs related to the HLA-DQA2 gene. 
Formulations related to the RNASET2 gene are 
currently in the experimental stage. Carfilzomib, 
which inhibits expression of the PSMB9 gene, 
has shown potential in the treatment of BCC. 
On the other hand, L-glutamine, as a  substrate 

of TGM3, may significantly affect the tumor im-
mune microenvironment and the effectiveness 
of immunotherapy by regulating the activity of 
TGM3 in the tumor microenvironment. However, 
fostamatinib and petesicatib, which are inhibi-
tors and antagonists of CTSS, respectively, may 
not be ideal drug choices, as their mechanisms of 

Table II. Actionable drugs. Information on operable drugs involving four druggable genes, along with the molecular 
functions of these genes

Druggable 
gene

Molecule 
type

Compounds Action 
type

Clinical development 
activities

Druggable gene molecular 
function

RNASET2 Small 
molecule

Adenosine 
3’,5’-diphosphate

* Experimental This ribonuclease gene 
is a novel member of the 

Rh/T2/S-glycoprotein 
class of extracellular 

ribonucleases. It is a single 
copy gene that maps to 

6q27, a region associated 
with human malignancies 

and chromosomal 
rearrangement.

Small 
molecule

Adenosine-2’-5’-
diphosphate

* Experimental

PSMB9 Small 
molecule

Carfilzomib Inhibitor Carfilzomib-approved, 
investigational

• �For the treatment of 
adults with relapsed 
or refractory multiple 
myeloma

The proteasome is 
a multicatalytic proteinase 

complex with a highly 
ordered ring-shaped 20S 
core structure. This gene 

is located in the class 
II region of the MHC 

(major histocompatibility 
complex).

CTSS Small 
molecule

Ethanol Inhibitor Ethanol: approved
• �Topical disinfectant
• �Pharmaceutical solvent/

preservative/alcoholic 
beverage iongredient

The preproprotein encoded 
by this gene, a member 

of the peptidase C1 
family, is a lysosomal 
cysteine proteinase 

that participates in the 
degradation of antigenic 
proteins to peptides for 

presentation on MHC class 
II molecules.

Small 
molecule

Fostamatinib Inhibitor Fostamatinib-approved, 
investigational

• �Used for the treatment 
of rheumatoid arthritis 
and ITP.

• �Potential treatment 
for controlling ARDS 
in severe COVID-19 
patients.

TGM3 Small 
molecule

5’-guanosine-
diphosphate-

monothiophosphate

* Experimental Transglutaminases are 
enzymes that catalyze the 
crosslinking of proteins by 
epsilon-gamma glutamyl 
lysine isopeptide bonds.

Small 
molecule

Guanosine-5’-
monophosphate

* Experimental

Small 
molecule

B-2-octylglucoside * Experimental

Small 
molecule

Guanosine-5’-
diphosphate

* Experimental

Small 
molecule

L-glutamine Substrate L-glutamine: approved, 
investigational, 
nutraceutical

• �It is a non-essential 
amino acid.

• �Used for the treatment 
of sickle cell disease.
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action may be contrary to the desired effects for 
the treatment of BCC.

Discussion

In our study, by integrating and analyzing the 
data, we have obtained preliminary evidence for 
the genetic association between five druggable 
genes – PSMB9, TGM3, CTSS, HLA-DQA2, RNASET2 
– and BCC. Pharmacogenetic analysis indicates 
that PSMB9 and RNASET2 may be associated with 
adverse effects during treatment. In assessing 
the therapeutic potential of drugs targeting these 
genes, we found that carfilzomib may treat BCC 
by inhibiting PSMB9. Furthermore, L-glutamine, as 
a substrate of TGM3, may influence the progres-
sion of the disease by modulating its activity.

The PSMB9 proteasome, a  multicatalytic pro-
teinase complex located in the MHC class II re-
gion, plays a crucial role in the immune response 
[36]. It degrades aberrant proteins and generates 
antigenic peptides, promoting antigen presen-
tation by MHC class I  molecules and activating 
T-cell responses. Furthermore, increased expres-
sion of PSMB9 is associated with better prog-
nosis in cancer patients, helping to enhance the 
presentation of tumor antigens and improving the 
immune system’s ability to recognize and elimi-
nate cancer cells [37]. Although the relationship 
between PSMB9 and BCC is not yet fully under-
stood, PSMB9 may play a role in BCC through sim-
ilar mechanisms, and further research is needed 
to establish a  direct link between the two. It is 
important to note that our Phe-MR analysis did 
not show significant adverse reactions associated 
with PSMB9. On the contrary, we found that in-
creased expression of PSMB9 may reduce the risk 
of iron metabolism disorders and multiple sclero-
sis. Carfilzomib, an inhibitor of the PSMB9 gene, is 
currently used in clinical settings to treat patients 
with relapsed or refractory multiple myeloma [38].

TGM3 (transglutaminase 3) is a  calcium-de-
pendent enzyme that plays a  crucial role in the 
physiological processes of the skin and hair fol-
licles, particularly in cell differentiation, prolifera-
tion, and apoptosis [39]. Studies have shown that 
TGM3 is involved in the regulation of cell prolif-
eration, migration, and invasion, and may pro-
mote epithelial-mesenchymal transition (EMT) by 
activating signaling pathways such as PI3K/AKT, 
MAPK/ERK, and NF-κB, thereby facilitating tumor 
development [40, 41]. Our research indicates that 
an increase in TGM3 protein abundance may be 
associated with an increased risk of BCC. Although 
the potential mechanism of TGM3 in BCC is not 
fully elucidated, some studies provide possible 
clues. In BCC, the expression pattern of TGM3 is 
different from that in normal skin, showing strong 
staining in the cytoplasm and nucleus, and its ex-

pression level is significantly upregulated in BCC, 
but downregulated in other types of skin cancer 
[42]. This suggests that the expression pattern of 
TGM3 may make it a potential specific marker for 
BCC diagnosis, and TGM3 may play a role in the 
development of BCC by affecting cell prolifera-
tion, differentiation, and migration processes [43]. 
Over 90% of BCCs exhibit genetic activation of the 
Hedgehog (HH) signaling pathway [44]. However, 
studies have shown that TGM3 may be regulat-
ed by the HH signaling pathway through the GLI2 
transcription factor [42]. In addition, L-glutamine 
is a  common amino acid in total parenteral nu-
trition, which is very important for various phys-
iological processes such as intestinal health, im-
mune system function, and cell repair [45].

The CTSS gene encodes cathepsin S, a protein 
that plays a  crucial role in a  variety of physio-
logical and pathological processes. Although the 
relationship between CTSS and BCC is not yet 
fully understood, studies have indicated that the 
expression of CTSS in BCC is closely associated 
with the tumor’s invasiveness and metastatic po-
tential. CTSS facilitates the spread of tumor cells 
by promoting angiogenesis and degrading the 
extracellular matrix surrounding the tumor, thus 
potentially playing a role in the invasive process of 
tumor cells [46]. Furthermore, the activity of CTSS 
varies among different subtypes of BCC, suggest-
ing that it may play a key role in the process of 
tumor invasion. Therefore, the expression level of 
CTSS could serve as a prognostic marker for BCC, 
aiding in timely recognition, treatment, and pre-
vention [47]. Currently, research on CTSS inhibi-
tors is underway, which may offer new strategies 
for the treatment of BCC.

The HLA-DQA2 gene, a key component of the 
major histocompatibility complex (MHC) class II 
molecules, plays an essential role in immune re-
sponses [48]. Studies have indicated that HLA-
DQA2 is crucial for immune surveillance and is 
associated with susceptibility to basal cell carci-
noma (BCC) [49]. Tumor cells may evade immune 
surveillance by downregulating the expression 
levels of HLA-DQA2 and other MHC molecules, 
reducing the presentation of tumor-specific an-
tigens, and thus decreasing the recognition and 
attack of tumor cells by T cells. Furthermore, the 
expression level of HLA-DQA2 may also regulate 
the infiltration and function of immune cells in the 
tumor microenvironment, thereby affecting the 
growth and metastatic potential of tumors [50]. 
Our study found a  negative correlation between 
the HLA-DQA2 gene and basal cell carcinoma. This 
finding suggests that finely tuning the activity 
or expression of HLA-DQA2 may help inhibit the 
growth and spread of tumor cells, thereby improv-
ing therapeutic outcomes.
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The RNASET2 gene belongs to the Rh/T2/S-gly-
coprotein family, encoding an enzyme with ribo-
nuclease activity, and is located in the 6q27 chro-
mosomal region, which is associated with human 
malignant tumors and chromosomal rearrange-
ments [51]. RNASET2 plays a role in anti-angiogen-
esis and immune regulation in tumor development, 
potentially limiting tumor growth and metastasis 
by inhibiting angiogenesis [52]. Although a direct 
relationship between RNASET2 and basal cell car-
cinoma (BCC) has not been previously established, 
recent studies suggest that RNASET2 may promote 
the development of BCC by affecting the tumor 
microenvironment and cellular stress responses. In 
some studies, RNASET2 has been highlighted as an 
effective biomarker and therapeutic target for BCC 
across the full phenotypic spectrum of human dis-
eases [53]. However, no drugs specifically targeting 
the RNASET2 gene have been developed to date. 
Given the key role of the RNASET2 gene in multiple 
physiological processes, the development of drugs 
targeting the RNASET2 gene may offer potential 
therapeutic advantages for the treatment of basal 
cell carcinoma.

The strengths of this study lie in its rigorous 
methodology and in-depth data analysis. First-
ly, we utilized genetic variations as instrumental 
variables, effectively reducing the impact of con-
founding factors, and thereby providing more 
precise causal inferences. Secondly, this study not 
only combined genetic and protein expression 
analyses but also integrated data from GWAS of 
basal cell carcinoma, further enhancing the per-
suasiveness of the results. Crucially, we conducted 
meticulous multiple corrections on our results, em-
ployed Bayesian co-localization analysis, and per-
formed cross-validation on multiple independent 
datasets. This not only enhanced the credibility of 
our conclusions but also ensured the robustness, 
accuracy, and universality of our findings. Lastly, 
through pharmacogenetic analysis (Phe-MR), we 
were able to predict adverse drug events, opti-
mize drug usage, and protect patient health. This 
provides new perspectives and strategies for the 
prevention and treatment of basal cell carcinoma.

While this study shows significant potential in 
the field of pharmacogenomics, it also inevitably 
presents some challenges and limitations. Firstly, 
the accuracy of MR analysis depends on the ap-
propriateness of the selected SNPs as instrumen-
tal variables, which need to meet specific assump-
tions. Secondly, the genetic heterogeneity across 
different ethnicities and populations may limit the 
universality of MR analysis, affecting the general-
izability of the results, and caution should be ex-
ercised in their application. It is important to note 
that MR analysis is an innovative method for ex-
ploring the links between drugs and diseases, but 

it serves only as a supplementary tool and cannot 
replace the traditional drug development process. 
The safety, efficacy, and applicability of drugs need 
to be verified through rigorous clinical trials and 
evaluations. In future drug development, we look 
forward to MR analysis being combined with tra-
ditional methods to jointly promote drug repur-
posing and the discovery of new druggable genes. 
At the same time, we will continue to optimize 
and improve MR analysis methods to enhance 
their value and accuracy in drug development.

This study is based purely on data analysis, and 
the conclusions drawn will require subsequent 
experimental validation. Based on these con-
clusions, we can use cellular and animal models 
to evaluate the in vivo and in vitro efficacy and 
safety of the PSMB9 inhibitor carfilzomib and the 
TGM3 substrate L-glutamine. This can be further 
confirmed through prospective clinical trials to as-
sess their clinical applicability. We have integrated 
data from 26,953 GWAS samples, eQTL/pQTL, and 
Phe-MR triple evidence, which significantly reduc-
es the false-positive rate (FDR < 0.05). Compared 
with traditional high-throughput screening, this 
strategy is less costly and has a shorter duration, 
providing a rapid decision-making basis for phar-
maceutical companies and clinical practice. If val-
idated successfully, it can be directly advanced to 
the preclinical or repurposing stage, maximizing 
translational efficiency.

In conclusion, our study offers new perspec-
tives for the future treatment of basal cell carcino-
ma, highlighting the importance of five identified 
druggable genes (PSMB9, TGM3, CTSS, HLA-DQA2, 
RNASET2) as potential therapeutic targets, and 
emphasizing the necessity for in-depth research 
on these druggable genes. Carfilzomib, which in-
hibits expression of the PSMB9 gene, shows sig-
nificant potential in the treatment of basal cell 
carcinoma. L-glutamine may play a role in the tu-
mor microenvironment by regulating the activity 
of TGM3. Through Phe-MR analysis, we revealed 
potential causal relationships between identified 
pharmacogenomics and a broad range of disease 
traits, which will help in predicting the side effects 
of druggable genes and exploring their potential 
applications in other medical conditions.
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