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A b s t r a c t

Introduction: The N6-methyladenosine (m6A)-related competing endoge-
nous RNA (ceRNA) network plays a critical role in the occurrence and pro-
gression of lung adenocarcinoma (LUAD). This study aimed to investigate 
the characteristics of m6A-related ceRNAs.
Material and methods: Gene expression matrices and clinical data were 
obtained from The Cancer Genome Atlas (TCGA) database, along with the 
GSE176348 dataset sourced from the Gene Expression Omnibus (GEO) data-
base. Differential expression analysis was performed using the “GEO2R” tool 
and the “limma” R package to identify differentially expressed genes (DEGs). 
By integrating results from CIBERSORTx and m6A-related databases, we fur-
ther identified m6A-associated and immune-related genes. The tumor immune 
microenvironment (TIME) was characterized utilizing the TIMER and TISIDB 
databases. Finally, differential expression of key molecules between LUAD and 
normal lung tissues was validated through polymerase chain reaction (PCR).
Results: We found 220 DEGs related to multiple classical tumor pathways 
using the DAVID and Metascape databases, such as regulation of ERK1, ERK2 
cascade, PI3K-AKT signaling pathway and regulation of cell adhesion. By 
combining the m6A and CIBERSORTx databases, we selected ANGPT1, which 
was involved in the PI3K-AKT pathways. ANGPT1 expression was lower in 
LUAD cells than in normal lung cells and associated with patients’ prognosis 
(p < 0.01). ANGPT1 expression was correlated with PD-L1 (p < 0.01) and 
multiple immune cells. The PCR results showed that ANGPT1 was expressed 
at significantly lower levels in A549 cells than in BEAS-2B cell lines. 
Conclusions: A  validated signature of the m6A-related ceRNA network 
demonstrated prognostic utility for predicting survival and provides new 
insights into potential novel therapeutic targets.

Key words: N6-methyladenosine, competing endogenous RNA, tumor 
immune microenvironment, polymerase chain reaction.

Introduction

Lung cancer is the leading cause of cancer-related deaths world-
wide [1–3]. Non-small cell lung cancer (NSCLC) accounts for 80% of all 
lung cancer patients, more than half of whom are elderly patients [4]. 
Although comprehensive treatment strategies, including surgery, ra-
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diotherapy, chemotherapy, targeted therapy, and 
checkpoint inhibitors, have significantly advanced 
the management of lung cancer, the 5-year sur-
vival rate among patients remains unsatisfactory 
[5–7]. Therefore, this study was designed to iden-
tify novel prognostic molecular biomarkers and 
therapeutic targets for patients with lung adeno-
carcinoma (LUAD).

m6A is the most common internal modification 
of mRNAs and plays an important role in regulat-
ing mRNA splicing, localization, translation, stabil-
ity [8] and biological processes [9]. However, their 
roles in tumorigenesis remains unclear [10]. Mul-
tiple m6A-related studies have been conducted 
on different cancers, such as ovarian cancer [11], 
bladder cancer [12], pancreatic cancer [13] and 
gastric cancer [14]. The ceRNA network links the 
functions of protein-coding RNAs and non-coding 
RNAs [15]. Long non-coding RNAs (lncRNAs) are 
associated with the occurrence of cancers, includ-
ing DNA methylation, histone modification, cell 
proliferation, and apoptosis [16]. 

The tumor immune environment (TME) is im-
portant for patients receiving immunotherapy. 
The T cell-mediated antitumor immune response 
is the basis of tumor immunotherapy and is as-
sociated with a favorable prognosis [17]. In recent 
years, immune checkpoint inhibitors have been 
used to treat a variety of cancers and have shown 
achieved good curative effects [18]. The growing 
field of immune metabolism has revealed prom-
ising indications of metabolic targets to modulate 
anticancer immunity [19]. However, the TME-relat-
ed mechanisms in NSCLC remain unclear.

Material and methods

Data collection

The TCGA database (https://portal.gdc.can-
cer.gov/) includes gene transcriptome data and 
basic clinical data of patients with LUAD. The 
GSE176348 was downloaded from the GEO da-
tabase (https://www.ncbi.nlm.nih.gov/). CIBER-
SORTx [20] (https://cibersortx.stanford.edu/in-
dex.php) is an analytical tool that imputes gene 
expression profiles and provides an estimation of 
the abundances of member cell types in a mixed 
cell population, using gene expression data. The 
m6A related gene matrix data were downloaded 
from the m6A2 target database (http://m6a2tar-
get.canceromics.org). 

Differential expression analysis of mRNAs 
and lncRNAs

The Arraystar Human m6A-mRNA and m6A- 
lncRNA epitranscriptomic microarray analysis 
(GSE176348) was performed on six pairs of LUAD 
tissues and adjacent non-tumor tissues to com-

pare and screen the m6A-regulated genes of LUAD, 
thus offering a new avenue for targets and strat-
egies for LUAD diagnosis and treatment. “GEO2R” 
was used to analyze differentially expressed  
mRNAs (DEmRNAs) and lncRNAs (DElncRNAs). 
The R package “limma” was used to explore DEln-
cRNAs of the TCGA database.

Functional enrichment analysis  
of DEmRNAs in GEO database

We screened out 222 m6A-related DEmR-
NAs-encoded proteins, and explored their mo-
lecular functions (MF), biological processes (BP), 
cellular components (CC), and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways using 
DAVID (https://david.ncifcrf.gov/). Metascape 
(https://metascape.org/gp/index.html) was used 
to further validate the functional enrichment of 
DEmRNAs.

Survival analysis

We screened the DElncRNAs in TCGA data-
base from “limma” R package. The Venn diagram 
(http://bioinformatics.psb.ugent.be/webtools/
Venn/) was used to analyze differentially ex-
pressed m6A-related lncRNAs from the GEO data-
base and DElncRNAs from the TCGA database. The 
Kaplan-Meier Plotter database (https://kmplot.
com/analysis/) was used to explore the prognos-
tic-related DEmRNAs and DElncRNAs.

Construction of m6A-related ceRNA 
network

Based on the above analysis, we selected the 
functionally enriched prognostic mRNAs. Four da-
tabases were used to identify potential miRNAs: 
starBase (http://starbase.sysu.edu.cn/starbase2/
index.php), TargetScan (http://www.targetscan.
org/vert_72/), miRWalk (http://mirwalk.umm.
uni-heidelberg.de/), and miRDB (http://mirdb.org/).

Further comprehensive verification of 
angiopoietin-1 

Several databases were used to perform the 
expression, methylation, mutation, and surviv-
al analyses. Ualcan [21] (http://ualcan.path.uab.
edu) and TNM plot (https://tnmplot.com/analy-
sis/) show the expression of ANGPT1 in LUAD and 
pan-cancer. We studied the correlation between 
the ANGPT1 expression and cancer stage, patient 
race, sex, age, and smoking habits. GEPIA (http://
gepia.cancer-pku.cn) showed the chromosome lo-
cation of ANGPT1 and expression. Prognostic re-
lated analyses were performed using the Progno
Scan software. Meta-analysis effectively combines 
statistical strength from multiple datasets, which 
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allows for greater precision than using any single 
study. Forest plots were constructed to summarize 
the tumor–normal standardized mean difference 
for tumor vs normal meta-analysis and hazard 
ratios for survival meta-analysis of lung cancer 
(https://lce.biohpc.swmed.edu/lungcancer/meta-
genename.php). We also explored the ANGPT1 
methylation levels in LUAD using MEXPRESS 
(https://mexpress.be/old/mexpress.php) and Fire-
Browse (http://firebrowse.org/). 

Immune infiltration analysis of ANGPT1 in 
LUAD

The Tumor Immune Estimation Resource  
(TIMER) database (https://cistrome.shinyapps.io/
timer/) is a comprehensive resource for systemat-
ical analysis of immune infiltrates across diverse 
cancer types. This version of the webserver provides 
immune infiltrates’ abundances estimated using 
multiple immune deconvolution methods. We com-
pared ANGPT1 expression levels and immune cell 
infiltration between normal and LUAD tissues. Cor-
relations between ANGPT1 expression and various 
immune cells, such as B cells, CD4+ T cells, CD8+ T 
cells, macrophages, neutrophils, and dendritic cells, 
were analyzed. TISIDB (http://cis.hku.hk/TISIDB/) is 
an integrated repository portal for tumor-immune 
system interactions. TISIDB was used to analyze the 
association between ANGPT1 expression and abun-
dance of tumor-infiltrating lymphocytes (TILs).

Construction of ANGPT1-related immune 
co-expression gene network

Using the cBioPortal database (https://www.
cbioportal.org/), we explored ANGPT1-related 
genes. The Coexpedia (https://www.coexpedia.
org/search.php) database was used to identify 
ANGPT1-related co-expression genes. Additionally, 
we analyzed the correlation of gene expression and 
immune cell infiltration in the CIBERSORT database. 

ANGPT1 expression was verified by 
polymerase chain reaction (PCR)

We performed PCR verification in normal pul-
monary bronchial epithelial cells (BEAS-2B cell 
line) and the LUAD cell line (A549, H1299). Pro-
fessional PCR instruments were used to count CT 
values. GraphPad Prism (https://www.graphpad.
com/scientific-software/prism/) was used for 
analysis of data. The experiments were conducted 
in triplicate. 

Statistical analysis

Differential expression analysis between LUAD 
and normal tissues was performed using the R pack-
age “limma”. Genes with an adjusted p-value (Ben-

jamini-Hochberg method) < 0.01 and an absolute 
log

2 fold change |logFC| > 1 were considered statis-
tically significant and defined as DEGs. For survival 
analysis, the Kaplan-Meier method and the log-rank 
test were used to assess significance, with a p-value 
< 0.05 considered significant. Correlation analyses 
(e.g., between ANGPT1 expression and immune cell 
infiltration) were conducted using Spearman’s cor-
relation method. Results are presented with correla-
tion coefficients (r) and p-values. A p-value < 0.05 
was considered statistically significant for all analy-
ses unless otherwise specified

Results

Identification of DEmRNAs and DElncRNAs 
in LUAD patients

The overall workflow of the study is shown in 
Figure 1. “GEO 2R” was used to analyze DEm6A-re-
lated genes from the GEO database. A total of 220 
DEmRNAs and 23 DElncRNAs were included ac-
cording to the screening criteria, p < 0.01 in the 
volcano plot (Figures 2 A, B). The R package “lim-
ma” was used to analyze DElncRNAs in TCGA da-
tabase. Up-regulated and down-regulated genes 
are shown in a histogram (Figure 2 D). The com-
mon lncRNAs were identified in a Venn diagram; 
3 lncRNAs (AC008268.1, AFAP1-AS1, BLACAT1) 
were considered (Figure 2 C). Through K-M plot-
ter, AFAP1-AS1, and BLACAT1 were significant for 
the survival of patients with lung adenocarcinoma  
(p < 0.01) (Figures 2 E, F). Combining the m6A-relat-
ed database and immune database, we found that 
DEmRNAs and DElncRNAs were associated with 
m6A modification and immune response levels. 

Function enrichment analyses of DEmRNAs 
in GEO database

Metascape software was used to analyze the 
function of 220 DE mRNAs. We found that these 
DEmRNAs were associated with many cancer-re-
lated signaling pathways, e.g. regulation of ERK1, 
ERK2 cascade; the PI3K-AKT signaling pathway; 
and regulation of cell adhesion (Table I, Figure 3 A).  
Numerous genes were interrelated with each oth-
er through the network, such as ANGPT1, NCK1, 
KDR, FGFR4, ERBB2, FGF2, FGF1, and others (Fig-
ures 3 B–E). The DAVID database identified the GO, 
BP, CC, MF, and KEGG of DE mRNAs. We identified 
participation of the targeted molecule ANGPT1 in 
the PI3K-AKT signaling pathway. 

Construction of ANGPT1-related ceRNA 
network

K-M plotter revealed that ANGPT1 expression 
was significant in LUAD tissues and normal tis-
sues (Figure 4 A). StarBase (8 miRNAs), Target-
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https://www.cbioportal.org/
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Figure 1. Flow chart of the whole study
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Scan (533 miRNAs), miRWalk (1945 miRNAs), 
and mirDB (145 miRNAs) were used to explore 
ANGPT1-related miRNAs. A  Venn diagram [22] 
was used to identify common miRNAs associated 
with ANGPT1, and hsa-mir-448 was included in 
the above 4 databases (Figure 4 B). Mir-448 ex-
pression was higher in LUAD tissues than normal 
lung tissues and it was associated with the prog-
nosis of LUAD patients (Figure 4 C).

Further expression and immune infiltration 
level of ANGPT1

ANGPT1 expression was lower in multiple can-
cers than normal tissues, such as BLCA, BRCA, 
CESC, COAD, KIRC, KIRP, LUAD, LUSC, PAAD, PRAD, 

READ, SARC, SKCM, THCA, THYM, STAD, and 
UCEC (p < 0.01) (Figure 4 D). Next, we explored 
the correlation between ANGPT1 expression and 
patients’ race, sex, age (higher expression in old-
er people), smoking habits (lower expression in 
smoker), TP53 mutation status (lower expression 
in TP53 mutation), individual cancer stages (the 
later the stage, the lower the ANGPT1 expres-
sion) (p < 0.01) (Figures 4 E–J). ANGPT1 is a pro-
tein-coding gene, located at 8q23.1 (Figure 5 A). 
ANGPT1 expression was lower in 483 tumor tis-
sues than 347 normal lung tissues (Figures 5 B, C). 
The prognostic relevance of ANGPT1 was further 
verified by PrognoScan (Figure 5 D). A meta-anal-
ysis showed that ANGPT1 was significant in dif-

Venn diagram

GEO2R GEO2R
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Figure 2. Differentially expressed m6A-related mRNAs and lncRNAs in LUAD. A, B – DE mRNAs of GEO database 
are shown in volcano plots. C – Three m6A-related lncRNAs were explored in TCGA and GEO databases. D – Distri-
bution of differential genes (protein coding RNAs, long non-coding RNAs and other ncRNAs) in TCGA database. E, 
F – Survival curves of two long non-coding RNAs (AFAP1-AS1, BLACAT1)
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Table I. Function enrichment analyses of DEmRNAs in GSE176348 from GEO database

GO Category Description Count % Log10(p) Log10(q)

GO,0048017 GO Biological Processes Inositol lipid-mediated 
signaling

11 5.76 –7.34 –2.98

GO,0070372 GO Biological Processes Regulation of ERK1 and 
ERK2 cascade

13 6.81 –6.57 –2.72

GO,0001659 GO Biological Processes Temperature homeostasis 10 5.24 –6.47 –2.72

GO,0050801 GO Biological Processes Ion homeostasis 20 10.47 –6.29 –2.72

GO,0001822 GO Biological Processes Kidney development 12 6.28 –6.05 –2.6

GO,0007264 GO Biological Processes Small GTPase mediated 
signal transduction

15 7.85 –5.71 –2.38

R-HSA-9012999 Reactome Gene Sets RHO GTPase cycle 14 7.33 –5.58 –2.3

GO,0003013 GO Biological Processes Circulatory system process 16 8.38 –5.45 –2.23

GO,0050918 GO Biological Processes Positive chemotaxis 6 3.14 –5.23 –2.13

R-HSA-5654720 Reactome Gene Sets PI-3K cascade, FGFR4 4 2.09 –5.04 –2.02

GO,0009617 GO Biological Processes Response to bacterium 17 8.9 –4.82 –1.97

GO,0030155 GO Biological Processes Regulation of cell adhesion 17 8.9 –4.8 –1.96

GO,0032970 GO Biological Processes Regulation of actin filament-
based process

12 6.28 –4.74 –1.94

M92 Canonical Pathways PID angiopoietin receptor 
pathway

5 2.62 –4.69 –1.93

R-HSA-372790 Reactome Gene Sets Signaling by GPCR 16 8.38 –4.57 –1.84

ko05418 KEGG Pathway Fluid shear stress and 
atherosclerosis

7 3.66 –4.26 –1.64

GO,0048661 GO Biological Processes Positive regulation of 
smooth muscle cell 

proliferation

6 3.14 –4.1 –1.54

hsa00982 KEGG Pathway Drug metabolism - 
cytochrome P450

5 2.62 –3.94 –1.45

GO,0006936 GO Biological Processes Muscle contraction 10 5.24 –3.86 –1.41

GO,0042391 GO Biological Processes Regulation of membrane 
potential

11 5.76 –3.7 –1.32

Figure 3. Metascape software was used to analyze functional enrichment of 220 DE mRNAs in the GEO database. 
A – DEmRNAs were associated with many cancer-related signaling pathways
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Figure 3. Cont. B – Networks were constructed based on pathways involving differential genes. C – The network 
was constructed according to the p-values of functional enrichment
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NCODE1
NCODE2
NCODE3
NCODE4
NCODE5

D

E

Figure 3. Cont. D – Hub genes were selected using 
Cytoscape software. E – Functional enrichment re-
sults are presented in a circular diagram

ferent LUAD data sets (heterogeneity, I2 = 80%,  
p = 0.001; test for overall effect, z  = –9.96, p = 
2.2e-23) (Figure 5 E). ANGPT1 expression was an-
alyzed in pan-cancer and LUAD (p = 1.59e-118) 
(Figures 5 F, G). ANGPT1 had different methylation 
and mutation levels in LUAD (Figures 5 H, I).

Correlation of ANGPT1 expression and 
immune cell infiltration

The TIMER [23] database was used to analyze 
ANGPT1 expression in different cancers, and it was 

lower in tumor tissues than normal tissues, such 
as BLCA, BACA, KIAC, KIRP, LUAD, LUSC, and AEAD 
(Figure 6 A). There was an association between 
ANGPT1 expression and immune cells, including 
B cells (p = 4.06e-04, CD8+T cells (p = 1.35e-12, 
CD4+T cells (p = 6.93e-03), macrophages (p = 
7.15e-16), neutrophils (p = 2.72e-3), and dendritic 
cells (p = 1.16e-07) (Figures 6 B–D) (Table II). We 
explored whether ANGPT1 expression was associ-
ated with PD‑L1 reaction. Figures 6 E, F shows the 
difference in expression between responders and 
non-responders. Relations between abundance of 
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Figure 4. Further analyses of ANGPT1 and construction of ceRNA network in LUAD. A – ANGPT1 expression was 
lower in LUAD tissues than normal lung tissues (p < 0.01). B – Identification of ANGPT1-related ceRNA network 
through different databases, such as starBase, TargetScan, miRWalk, mirDB. C – Effect of miRNA448 on survival of 
patients with LUAD. D – ANGPT1 expression in multiple cancers
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tumor-infiltrating lymphocytes (TILs) and expres-
sion, copy number, and methylation of ANGPT1 
are shown in Figures 6 G–I. There were certain 
correlations between the expression of ANGPT1 
and immune inhibitors and immune stimulators 
(Figures 6 J, K). Co-expression genes of ANGPT1 
were screened using cBioPortal and Coexpedia; 
combining these with CIBERSORTx, co-expression 
and immune related genes are shown in Figure 6 L.  
qRT-PCR verification demonstrated that ANGPT1 
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Figure 4. Cont. E–J – Correlation between ANGPT1 expression and LUAD patients’ race, sex, age (higher expression 
in older people), smoking habits (lower expression in smokers), TP53 mutation status (lower expression in TP53 
mutation), and individual cancer stages (the later the stage, the lower expression of ANGPT1) (p < 0.01)

expression was lower in tumor tissues (A549 
and H1299 cell lines) than normal lung tissues  
(BEAS-2B cell line) (p < 0.01) (Figure 6 M). 

Discussion

In the present study, we identified prognostic 
m6A-related mRNAs and lncRNAs. GO and KEGG 
function enrichment revealed classic tumor path-
ways of these DE genes, such as the PI3K-AKT 
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signaling pathway [24, 25], MARK pathway [26], 
and cell adhesion. Three lncRNAs (AC008268.1, 
AFAP1-AS1, BLACAT1) were included in the TCGA 
database and m6A-related non-coding genes. 
However, only two lncRNAs (AFAP1-AS1, BLACAT1) 
were related to the prognosis of LUAD patients. 
Some studies have shown that AFAP1-AS1 and 
BLACAT1 participated in different cancers [27, 

28]. Combining functional and prognostic anal-
ysis, we selected ANGPT1 as the targeted mole-
cule. Through various databases, we found that 
ANGPT1 expression was lower in LUAD tissues 
than normal lung tissues (p < 0.01). The ceRNA 
network for ANGPT1 was constructed using var-
ious databases. In recent years, ceRNA networks 
have been shown to be important regulators in 

5%
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Figure 6. Cont. D – Associations between ANGPT1 expression and immune cells (p < 0.01). E, F – Difference in 
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immune inhibitors and immune stimulators. L – Identification of immune-related co-expression gene network.  
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cancers; for example, lncRNA HOTAIR functions as 
a  ceRNA to regulate HER2 expression by spong-
ing miR-331-3p in gastric cancer [29]. In our study, 
miRNA 448 [30] was found to act as a sponge to 
regulate ANGPT1 in LUAD. Contextualizing miR-
448, it has been previously implicated in other 
cancer types. Its known roles often involve tar-

geting oncogenes or tumor suppressors related 
to apoptosis and proliferation. We are the first to 
identify and propose miR-448 as a direct regulator 
of ANGPT1 specifically in LUAD. More important-
ly, we place this miRNA-mRNA interaction within 
a broader regulatory context – the m6A-modified 
ceRNA network. We hypothesize that the m6A 



Construction of m6A-related ceRNA networks via epitranscriptomic profiling and their association with immune infiltration  
in lung adenocarcinoma

Arch Med Sci� 15

modification on the lncRNAs identified in our net-
work may influence their stability or their ability 
to sponge miR-448, thereby adding a critical layer 
of epitranscriptomic regulation to the control of 
ANGPT1 expression. This moves beyond a simple 
miRNA-target relationship and proposes a sophis-
ticated multi-component regulatory circuit. Most 
significantly, our study is the first to connect this 
novel miR-448/ANGPT1 axis to the regulation of 
tumor immune infiltration. We propose that this 
axis represents a  crucial link between RNA epi-
genetics (m6A), post-transcriptional regulation 
(ceRNA crosstalk), and immune remodeling. This 
provides a  fundamentally new perspective on 
potential mechanisms of immune modulation in 
LUAD.

During cancer progression, tumor cells devel-
op several mechanisms to prevent killing and to 
shape the immune system into a  tumor-promot-
ing environment [31]. Various immune cells (mac-
rophages, neutrophils, dendritic cells, natural killer 
cells) influence the tumor microenvironment. Dif-
ferent immune microenvironments may have dif-
ferent reactivity to immunotherapy [32]. We stud-
ied the correlation between ANGPT1 expression 
and various immune cells: B cells (p = 4.06e-04),  
CD8+ T cells (p = 1.35e-12), CD4+ T cells  
(p = 6.93e-03), macrophages (p = 7.15e-16), neu-
trophils (p = 2.72e-3), and dendritic cells (p = 
1.16e-07). ANGPT1 was a prognostic immune-re-
lated biomarker and potential immunotherapy 
target. Beyond its well-established role in angio-
genesis and vascular stability, our bioinformatic 
findings prompted us to investigate and discuss 
the potential immunomodulatory functions of 
ANGPT1 in the LUAD TME in greater depth. In our 
research, we propose a  dual mechanistic model: 
1) Indirect modulation via vascular normalization: 
We elaborate on the hypothesis that the loss of 
ANGPT1, a key agonist for the Tie2 receptor, likely 
contributes to aberrant, leaky, and immature tu-
mor vasculature. This dysfunctional state creates 
a hypoxic and immunosuppressive TME. It acts as 
a physical barrier, hindering the infiltration of cy-
totoxic T cells and other anti-tumor immune ef-
fectors into the tumor core while promoting the 

recruitment of pro-tumorigenic immune cells such 
as M2 macrophages and regulatory T cells. There-
fore, the downregulation of ANGPT1 we observed 
may not just be a passenger effect but an active 
driver of an immune-excluded phenotype, poten-
tially explaining the resistance to immunotherapy 
observed in many LUAD patients; 2) Direct immu-
nomodulatory signaling: Furthermore, emerging 
evidence suggests that the ANGPT1/Tie2 axis is 
not limited to endothelial cells. Tie2 is expressed 
on a  subset of pro-angiogenic and immuno-
suppressive macrophages (often referred to as 
Tie2-expressing macrophages). Signaling through 
this receptor can promote a pro-tumorigenic M2-
like polarization. The downregulation of ANGPT1 
in tumor cells could potentially disrupt this sig-
naling axis, but the net effect on the immune 
landscape is complex and context-dependent. We 
discuss this nuance, stating that our observed cor-
relations suggest a significant, albeit complex, role 
for ANGPT1 in shaping the immune contexture of 
LUAD. Construction of the immune-related ceRNA 
network provided a  novel insight for revealing 
potential immune therapeutic targets in RNA epi-
genetics [33].

ANGPT1 has been implicated in various diseas-
es, such as hereditary angioedema [34], breast 
cancer [35], and colorectal cancer [36] . However, 
the underlying mechanism of ANGPT1 involve-
ment remained unclear. The advantage of our 
study was that, for the first time, we construct-
ed an m6A-related ceRNA network focused on 
ANGPT1. We combined immune, methylation, and 
m6A databases, and deeply analyzed ANGPT1-re-
lated gene epigenetic characteristics. The rela-
tionships of ANGPT1 expression and immune in-
filtrating cells were shown in detail in our research  
(p < 0.01). A signature of m6A-related ceRNA net-
work provided a new vision for immunotherapy of 
LUAD. Bioinformatics and basic experimental veri-
fication improve the reliability of our study.

This study identified ANGPT1-related ceRNA 
networks and their immune correlations in LUAD. 
However, several limitations should be acknowl-
edged: The predicted m6A-mediated regulatory re-
lationships (miR-448/ANGPT1 axis) requires exper-

Table II. Relations of ANGPT1 expression and multiple immune cell purity in LUAD 

Cancer Variable Partial.cor P-value

LUAD Purity –0.158489535 0.000406148

LUAD B cell 0.122851718 0.006809772

LUAD CD8+ T cell 0.313886112 1.35E-12

LUAD CD4+ T cell 0.1225802 0.006934358

LUAD Macrophage 0.355243102 7.15E-16

LUAD Neutrophil 0.249550125 2.72E-08

LUAD Dendritic cell 0.237070154 1.16E-07
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imental validation using RIP-seq or dual-luciferase 
assays. The findings rely on TCGA/GEO bioinfor-
matics analyses. Inclusion of multicenter clinical co-
horts could strengthen prognostic generalizability.

In summary, we identified differentially ex-
pressed m6A-related mRNAs and long non-coding 
RNAs and constructed a ceRNA network. Focusing 
on ANGPT1, we found an association between its 
expression and immune cells (p < 0.01). We iden-
tified ANGPT1-related co-expression genes (2) 
using Coexpedia in LUAD, which provided novel 
insights regarding new therapeutic targets.

In conclusion, by integrating TCGA, GEO, CIBER-
SORTx, and Coexpedia databases, we identified 
an ANGPT1-associated ceRNA network and co-ex-
pression genes. These molecules show significant 
correlations with immune infiltration levels and 
may represent RNA epigenetics-based regulato-
ry candidates. Further experimental validation is 
needed to confirm their mechanistic roles.
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