

Metabolic profiles of IgA nephropathy, membranous nephropathy, and diabetic nephropathy

Keywords

IgA nephropathy, diabetic nephropathy, metabolomics, membranous nephropathy, bioinformatics

Abstract

Introduction

Immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and diabetic nephropathy (DN) are prominent contributors to chronic kidney disease burden. Our main objective was to contribute to understanding of metabolic profiles of these three major types of nephropathies and identify potential metabolic biomarkers.

Material and methods

Kidney samples of 20 sex- and age-matched patients with biopsy-proven IgAN, MN, DN, and controls without any kidney diseases were included. Ultra high performance liquid chromatography-mass spectrometry analysis was conducted. t-test was used to calculate statistical significance of the identified metabolites. Metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Specificity, sensitivity and area under the curve (AUC) were calculated to evaluate the predictive performance of metabolites.

Results

Among 557 identified differential metabolites, only 118 were found in all three comparison groups. Differential metabolites of IgAN vs controls were significantly enriched in arachidonic acid metabolism, starch and sucrose metabolism, ferroptosis, and other pathways. In the DN group, metabolites were mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. MN-enriched pathways included steroid hormone biosynthesis, neuroactive ligand-receptor interaction, and bile secretion. In the positive mode, cumulative AUC values for comparison pairs IgAN vs controls, MN vs controls, and DN vs controls were 0.965, 0.972, and 0.573, respectively, whereas in the negative mode the AUC values of all three pairs were slightly above 0.65.

Conclusions

IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of IgAN and MN exhibited great predictive performance.

Abstract: *Background and Objectives:* Immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and diabetic nephropathy (DN) are prominent contributors to chronic kidney disease burden. Our main objective was to contribute to understanding of metabolic profiles of these three major types of nephropathies and identify potential metabolic biomarkers. *Materials and Methods:* Kidney samples of 20 sex- and age-matched patients with biopsy-proven IgAN, MN, DN, and controls without any kidney diseases were included. Ultra high performance liquid chromatography-mass spectrometry analysis was conducted. t-test was used to calculate statistical significance of the identified metabolites. Metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Specificity, sensitivity and area under the curve (AUC) were calculated to evaluate the predictive performance of metabolites. *Results:* Among 557 identified differential metabolites, only 118 were found in all three comparison groups. Differential metabolites of IgAN vs controls were significantly enriched in arachidonic acid metabolism, starch and sucrose metabolism, ferroptosis, and other pathways. In the DN group, metabolites were mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. MN-enriched pathways included steroid hormone biosynthesis, neuroactive ligand-receptor interaction, and bile secretion. In the positive mode, cumulative AUC values for comparison pairs IgAN vs controls, MN vs controls, and DN vs controls were 0.965, 0.972, and 0.573, respectively, whereas in the negative mode the AUC values of all three pairs were slightly above 0.65. *Conclusion:* IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of IgAN and MN exhibited great predictive performance.

Keywords: IgA nephropathy; membranous nephropathy; diabetic nephropathy; metabolomics; bioinformatics 18

1. Introduction 20

Chronic kidney diseases (CKDs) include various conditions characterized by progressive loss of renal function, leading to significant morbidity and mortality worldwide [1,2]. Among these, immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and diabetic nephropathy (DN) are prominent contributors to CKD burden, each with distinct etiologies and pathological mechanisms [2]. IgAN is the most common type of primary glomerulonephritis globally, characterized by the deposition of IgA immune complexes in the glomerular mesangium [3]. MN, another leading cause of nephrotic syndrome in adults, is characterized by the immune-mediated thickening of the glomerular basement membrane [4]. DN, a complication of diabetes mellitus, represents the most common cause of end-stage renal disease worldwide, driven by metabolic and inflammatory pathways induced by chronic hyperglycemia [5].

Metabolomics, an omics approach focused on the systematic study of small molecule metabolites within biological systems, has become an extremely popular approach to study the pathophysiological processes of various disorders, including CKDs [6-8]. Liquid chromatography-mass spectrometry (LC-MS), a robust analytical technique, provides high-resolution detection and quantification of metabolites, thereby enabling comprehensive profiling of metabolic alterations associated with disease states [9,10]. In this study, we employed LC-MS-based metabolomics to investigate and compare the metabolic profiles of kidney tissues from IgAN, MN, and DN patients with healthy controls. Our main

objective was to contribute to understanding of metabolic profiles of these three major types of nephropathies and identify potential metabolic biomarkers for early diagnosis and prompt treatment. 35
36

2. Materials and Methods 37

2.1. Data Collection 38

A prospective sex- and age-matched cohort study was performed at Shanxi Provincial Peoples' Hospital from June 39
2019 to June 2020. The goal was to include 20 patients with biopsy-proven IgAN (group A), MN (group B), DN (group 40
C), and controls without any kidney diseases (group D). Exclusion criteria: age <18 years old, BMI <18 or >24 kg/m², 41
secondary nephropathy, autoimmune diseases, hepatitis, cirrhosis, malignancies, recent steroid or immunosuppression 42
treatment within six months, or use of metabolic medications (e.g., statins, fibrates, ezetimibe, febuxostat, benzbromarone, 43
compound α -ketoacid tablets, fish oil) within seven days. The study was approved by the institutional ethics 44
committee and written informed consent was obtained from each patient. 45

2.2. Metabolite Extraction 46

First, 100 mg of tissue were grounded with liquid nitrogen. The resulting homogenate was then resuspended with 47
a chilled solution of 80% methanol and 0.1% formic acid, followed by thorough vortexing. The samples were placed on 48
ice for 5 minutes and centrifuged at 15,000 rpm and 4°C for 5 minutes. A portion of the supernatant was diluted with 49
LC-MS grade water to achieve a final methanol concentration of 53%. These samples were transferred to a new Eppen- 50
dorf tube and centrifuged again at 15,000 rpm and 4°C for 10 minutes. Finally, the supernatant was injected into the 51
LC-MS system for analysis. 52

For liquid samples, 100 μ L of sample with 400 μ L of chilled methanol were mixed and vortexed. For cell samples, 53
mix with 80% chilled methanol (four times the sample volume), vortex well, and sonicate for 6 minutes. Repeat soni- 54
cation, then proceed with the same steps as for tissue samples. 55

2.3. Liquid Chromatography-Mass Spectrometry Analysis 56

Ultra high performance LC-MS analysis was conducted using a Vanquish LC system (Thermo Fisher, Germany) 57
connected to an Orbitrap Q Exactive™ HF-X mass spectrometer (Thermo Fisher, Germany) at Novogene Co., Ltd. 58
(Beijing, China). Samples were injected into a Hypesil Gold column (100 \times 2.1 mm, 1.9 μ m) using a 17-minute linear 59
gradient at 0.2 mL/min flow rate. For positive polarity mode, eluent A was 0.1% formic acid in water, and eluent B was 60
methanol. For negative polarity mode, eluent A was 5 mM ammonium acetate at pH 9.0, and eluent B was methanol. 61
The solvent gradient was programmed as follows: 2% B for 1.5 minutes, 2-100% B over 12.0 minutes, 100% B for 14.0 62
minutes, 100-2% B for 14.1 minutes, and 2% B until 17 minutes. The mass spectrometer was operated in positive/neg- 63
ative polarity mode with a spray voltage of 3.2 kV, capillary temperature of 320°C, sheath gas flow rate of 40 arb, and 64
auxiliary gas flow rate of 10 arb. 65

2.4. Data Processing and Metabolite Identification 66

The raw data files from the LC-MS were processed using Compound Discoverer 3.1 (CD3.1, Thermo Fisher) for peak alignment, peak picking, and quantification of each metabolite. Key parameters were set to a retention time tolerance of 0.2 minutes, mass tolerance of 5 ppm, signal intensity tolerance of 30%, a signal-to-noise ratio of 3, and a minimum intensity of 100,000. Peak intensities were normalized to the total spectral intensity. The normalized data was used to predict molecular formulas based on additive ions, molecular ion peaks, and fragment ions. Peaks were matched against mzCloud, mzVault, and MassList databases to obtain accurate qualitative and relative quantitative results. Statistical analyses were conducted using R Python and CentOS. The metabolites with coefficient of variance (CV) >30% in the quality control (QC) samples were removed.

2.5. Data Analysis

Metabolites were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolome Database (HMDB), and LIPID Maps databases. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed using metaX. Univariate analysis (t-test) was used to calculate statistical significance. Metabolites with VIP > 1, P-value < 0.05, and fold change (FC) ≥ 1.2 or ≤ 0.833 were considered differential metabolites. Data for clustering heat maps were normalized using z-scores of differential metabolites' intensity areas and plotted with the Pheatmap package in R. Correlations between differential metabolites were analyzed using the cor() function in R with the Pearson method, and significance was calculated with cor.mtest(). Metabolic pathways were analyzed using KEGG (hypergeometric test, adjusted by Benjamini and Hochberg method), and pathway enrichment was considered significant with a ratio of $x/n > y/N$ and P-value < 0.05. Specificity and sensitivity were calculated, receiver operating characteristic (ROC) curve was plotted and area under the curve (AUC) were calculated to assess the predictive performance of metabolites.

3. Results

3.1. Quality Control

Pearson correlation revealed a high correlation among QC samples (Supplementary Figure 1A, D). The peaks extracted from all the experimental and QC samples were subjected to PCA analysis after univariate scaling. As shown in the PCA plot, closely clustered QC samples indicate good stability of the whole method and high data quality. Except for QC samples in the positive mode, samples in every group were mixed with each other (Supplementary Figure 1B, C, E, F).

3.2. Screening of Differential Metabolites

A total of 795 and 457 metabolites were identified in the positive and negative modes, respectively. In both positive and negative modes, the first two principal components capture a significant proportion of the variance in the data (23.28% - 28.32% for PC1 and 6.78% - 12.88% for PC2). However, all groups are mixed, indicating that the variance captured by the principal components does not significantly differentiate the groups (Figure 1). In contrast, PLS-DA revealed significant separation between each nephropathy group and control group (A vs D, B vs D, and C vs D) in both modes (Figure 2A-C, G-I). This is because PLS-DA uses group information to maximize the variance between groups,

leading to better discrimination. Moreover, the corresponding permutation test plots support the statistical significance of the PLS-DA model (Figure 2D-F, J-L). Importantly, the model is not overfitted, as evidenced by the following indicators: the R² value is larger than the Q² value, and the intercept of the Q² regression line with the Y-axis is less than 0. 101
102
103
104

According to KEGG enrichment analysis, metabolites were mainly enriched in amino acid and lipid metabolism and involved in the digestive system (Figure 3A, B). HMDB revealed that most of the metabolites were lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzoids (Figure 3C, D). LIPID MAPS annotation showed that metabolites were linked with steroids, isoprenoids, flavonoids, fatty acids and conjugates, etc. (Figure 3E, F). 105
106
107
108
109

Table 1 shows the number of differential metabolites after application of cutoff values (VIP > 1, FC > 1.2 and FC < 0.833, P-value < 0.05) for each comparison pair. Volcano plots are illustrated in Figure 4. A total of 341 and 216 significantly differential metabolites were identified in the positive and negative modes, respectively, among which 71 and 47 metabolites were present in all three comparison groups (Supplementary Table 1 and Supplementary Table 2). Hierarchical clustering analysis was performed for all the differential metabolites among four groups and within each comparison pair (Supplementary Figure 2). 110
111
112
113
114
115

3.3. Correlation and Enrichment Analyses

 116

Correlation analysis of metabolites was conducted to understand the relationships between individual metabolites within the dataset. Pearson correlation coefficients were calculated for all pairwise comparisons of metabolites, and the results are illustrated in Figure 5. In the positive mode, most of the metabolites were highly positively correlated with each other except for 4-Phenyl-3-buten-2-one, (12Z)-9,10,11-trihydroxyoctadec-12-enoic acid, and PC (18:2/20:5) in the IgAN vs controls comparison pair. In the negative mode, many metabolite pairs exhibited mild-to-moderate correlation. KEGG pathway enrichment analysis was used to identify the main biological functions of metabolites. Metabolites were found to be enriched in various pathways (Supplementary Table 3). Based on the KEGG enrichment results, bubble charts were plotted (Figure 6). 117
118
119
120
121
122
123
124

3.4. Predictive Modelling

 125

Logistic regression was performed to evaluate the predictive performance of differential metabolites (Figure 7). In the positive mode, cumulative AUC values for comparison pairs IgAN vs controls and MN vs controls were 0.965 and 0.972, respectively. Thus, AUC values for the first two pairs indicate excellent discriminatory ability as shown by strong performance in distinguishing between IgAN or MN and controls. In contrast, the AUC value for DN was 0.573, occasionally falling below the random classifier curve. In the negative mode, the AUC values of the three comparison pairs were generally lower compared to the positive mode and were slightly above 0.65. 126
127
128
129
130
131

4. Discussion

 132

Understanding the metabolic profiles of IgAN, MN, and DN is crucial for advancing diagnostic precision, treatment effectiveness, and accurate prognosis in the field of nephrology. Detailed metabolic profiling facilitates accurate disease differentiation and identification of specific biomarkers, which may aid in the development of new early and 133
134
135

precise diagnostic strategies [11]. Insights into the underlying pathophysiological mechanisms derived from these profiles can guide the development of targeted and personalized therapies, as well as monitor treatment responses. Furthermore, metabolic markers offer prognostic value by predicting disease progression and stratifying patient risk, which is essential for effective management [12,13]. Researching metabolic pathways is important for advancing our understanding of nephropathies by revealing unique and shared pathways across different nephropathies, ultimately contributing to improved patient outcomes and scientific advancements [14].

Our study shows that there are distinct differences in metabolic profiles of IgAN, MN, and DN compared to healthy controls. Among 557 identified differential metabolites, only 118 (21.2%) were found in all three comparison groups. Differential metabolites of IgAN were significantly enriched in arachidonic acid metabolism, starch and sucrose metabolism, ferroptosis, and other pathways. Arachidonic acid metabolism plays a crucial role in kidney disorders and is associated with glomerular and interstitial inflammation [15]. Altered expression of metabolites responsible for arachidonic acid metabolism in IgAN was recently reported [16]. Interestingly, certain pathways, such as starch and sucrose metabolism, were mostly reported in studies investigating metabolic profiles of diabetes [17,18]. However, in our case, starch and sucrose metabolism was impaired in the IgAN group rather than the DN group. In the DN group, differential metabolites were mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. Phenylalanine, tyrosine and tryptophan as well as histidine play important roles in glucose transport and metabolism. A recent study reported that higher expression levels of tyrosine but not phenylalanine or tryptophan were associated with an increased risk of DN in the Chinese population [19]. However, large cohort studies are needed to validate differences in expression levels of these aromatic amino acids between DN patients and healthy controls as several studies obtained opposite results [20,21]. Finally, MN-enriched pathways included steroid hormone biosynthesis, neuroactive ligand-receptor interaction, and bile secretion, which is consistent with several reports on metabolic profiles of IgAN and DN in animal and human models [22-25]. Specifically, altered bile secretion was discovered in rats with IgAN and DN mice with DN [22,23]. Many kidney diseases are marked by changes in bile acid levels in the plasma, kidney, and urine. Increased levels of bile acids are associated with oxidative damage of renal tubular cell membranes, which results in poor glomerular filtration rates and renal function [26].

The predictive modeling of differential metabolites using logistic regression has demonstrated varying levels of discriminatory ability across different nephropathy types when compared to controls. Our study analyzed the performance in both positive and negative ion modes, yielding various results for IgAN, MN, and DN. In the positive mode, the cumulative AUC values for IgAN vs controls and MN vs controls were 0.965 and 0.972, respectively. The strong performance characterized by near-perfect AUC values with high sensitivity and specificity in these comparison pairs highlights the potential of these metabolites as reliable biomarkers for IgAN and MN. In contrast, the AUC value for DN vs controls was 0.573, which is significantly lower and close to the performance of a random classifier (AUC = 0.5). This suggests that the metabolites identified in the positive mode are less effective in distinguishing DN from controls. The lower discriminatory ability may be due to the heterogeneous nature of DN or the overlapping metabolic features between DN and controls. Further investigation is needed to identify more specific biomarkers or to refine the metabolic profiling techniques for better differentiation of DN. The AUC values obtained in the negative ion mode were generally lower compared to the positive mode, with values slightly above 0.65 for all comparisons. Although these

values indicate a moderate level of discriminatory power, they are not as high as those observed in the positive mode. 173
The lower performance in the negative mode is likely attributed to differences between the modes, affecting the identifi- 174
cation and quantification of metabolites [27,28]. All studies that analyzed differences in metabolic profiles of IgAN, 175
MN, or DN that we were able to find calculated predictive performance of one metabolite rather than reported AUC of 176
the combined model, and we are thus unable to compare the results. 177

Our study has several limitations that warrant consideration. First, the small, single-center cohort (n=20 per group) 178
and strict exclusion criteria may limit statistical power and applicability of our results to broader populations. Thus, 179
Future multicenter studies with larger, demographically diverse cohorts are necessary to validate findings and build 180
robust, generalizable biomarker panels. Second, as this is a cross-sectional analysis, we could not assess temporal sta- 181
bility or causality of identified biomarkers. Prospective longitudinal metabolomics studies are critical to understand 182
biomarker kinetics, evaluate prognostic potential, and assess how metabolomic signatures evolve with therapeutic in- 183
terventions. Third, the suboptimal performance of logistic regression models in positive mode, especially for DN, could 184
be a result of incomplete metabolite coverage and sensitivity of the LC-MS system. Future studies should employ dual- 185
mode ionization, untargeted and targeted LC-MS/MS, and integrative platforms (e.g., NMR + MS) to enhance metabo- 186
lome coverage and improve detection sensitivity across nephropathy types. Fourth, our study did not account for poten- 187
tial confounders, such as unrecorded comorbidities and genetic background. These confounders can influence metabolic 188
profiles and may differ between nephropathy subtypes. Metabolomic analyses should be integrated with comprehensive 189
clinical metadata, including genetic, pharmacological, and lifestyle information. Statistical techniques such as multivar- 190
iable regression, mixed-effects modeling, and propensity score matching can further help mitigate confounding effects. 191
Future studies can use multi-omic integration (e.g., transcriptomics, proteomics) and tissue specific pathway analysis 192
(e.g., using Reactome or kidney-specific metabolic atlases) to improve biological interpretability and enhance mecha- 193
nistic understanding. In conclusion, the excellent performance of the predictive models in the positive mode for IgAN 194
and MN underscores the potential clinical application of the metabolic biomarkers for early diagnosis and monitoring. 195
However, the suboptimal performance for DN, particularly in the positive mode, clearly shows the need for further 196
research to improve the metabolic profiling and identification of specific biomarkers for DN. Future studies should focus 197
on optimizing the metabolomic analysis protocols, potentially integrating both ionization modes, to enhance the overall 198
predictive accuracy. Moreover, expanding the sample size and including a broader range of metabolites could improve 199
the accuracy and generalizability of the predictive models. 200

5. Conclusions

In conclusion, IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of 202
IgAN and MN exhibited great predictive performance. 203

Supplementary Materials: The following supporting information can be downloaded at: <https://zenodo.org/doi/10.5281/zenodo.13224489> **Supplementary Figure 1** Quality control analysis (A) Pearson correlation 204
between quality control samples (positive mode) (B) principal component (PC) plot of five groups (positive mode, 2 205
dimensions) (C) PC plot of five groups (positive mode, 3 dimensions) (D) Pearson correlation between QC samples 206
(negative mode) (E) PC plot of five groups (negative mode, 2 dimensions) (F) PC plot of five groups (negative mode, 3 207
208

dimensions). Supplementary Figure 2 Heatmaps of differential metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode). Supplementary table 1 List of differential metabolites in three comparison pairs (positive mode). Supplementary table 2 List of differential metabolites in three comparison pairs (negative mode). Supplementary table 3 KEGG enrichment pathways.	209 210 211 212 213 214
Author Contributions: Conceptualization, Y.A.S., L.G., R.L., methodology, Y.A.S., L.G., R.L.; software, Y.A.S., ..; validation, Y.A.S., X.F.; formal analysis, Y.A.S.; investigation, Y.A.S., L.G.; resources, R.L.; data curation, R.L.; writing—original draft preparation, Y.A.S.; writing—review and editing, Y.A.S.; visualization, Y.A.S.; supervision, R.L.; project administration, R.L.; funding acquisition, R.L. All authors have read and agreed to the published version of the manuscript.	215 216 217 218 219
Funding: This work was supported by the Key Laboratory Project of Shanxi Province, grant number 201805D111020, and the Key Laboratory Construction Plan Project of Shanxi Provincial Health Commission, grant number 2020SYS01.	220 221
Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Shanxi Provincial People's Hospital, Shanxi Medical University.	222 223
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.	224
Data Availability Statement: All data not available within the manuscript or supplementary material can be obtained from the corresponding author upon reasonable request.	225 226
Acknowledgments: None.	227
Conflicts of Interest: The authors declare no conflicts of interest.	228
References	229
1. Vahedian-Azimi A, Beni FH, Fras Z, et al. Effects of statins on the incidence and outcomes of acute kidney injury in critically ill patients: a systematic review and meta-analysis. <i>Arch Med Sci</i> 2023;19(4):952-64.	230 231
2. Katsiki N, Kolovou G, Melidonis A, Banach M. The Cardiac-Kidney-Liver (CKL) syndrome: the "real entity" of type 2 diabetes mellitus. <i>Arch Med Sci</i> 2024;20(1):207-15.	232 233
3. Guo X, Tie X, Zhang Y, et al. Management and Clinical Outcomes of Membranous Nephropathy, IgA Nephropathy, and Minimal Change Disease Two Years Post-Kidney Biopsy. <i>Kidney Blood Press Res</i> 2024;49(1):345-54.	234 235
4. Stamellou E, Seikrit C, Tang SCW, et al. IgA nephropathy. <i>Nat Rev Dis Primers</i> 2023;9(1):67.	236
5. Nieto-Gañán I, Iturrieta-Zuazo I, Rita C, Carrasco-Sayalero Á. Revisiting immunological and clinical aspects of membranous nephropathy. <i>Clin Immunol</i> 2022;237:108976.	237 238
6. Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. <i>Lancet</i> 2012;380(9854):1662-73.	239 240
7. Furlani IL, da Cruz Nunes E, Canuto GAB, Macedo AN, Oliveira RV. Liquid Chromatography-Mass Spectrometry for Clinical Metabolomics: An Overview. <i>Adv Exp Med Biol</i> 2021;1336:179-213.	241 242

8. Pereira PR, Carrageta DF, Oliveira PF, Rodrigues A, Alves MG, Monteiro MP. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. *Med Res Rev* 2022;42(4):1518-44. 243
244

9. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and fecal and serum metabolomes are associated with chronic kidney disease severity. *Microbiome* 2023;11(1):3. 245
246

10. Harvey FC, Collao V, Bhattacharya SK. High-Resolution Liquid Chromatography-Mass Spectrometry for Lipidomics. *Methods Mol Biol* 2023;2625:57-63. 247
248

11. González-Domínguez Á, Armeni M, Savolainen O, Lechuga-Sancho AM, Landberg R, González-Domínguez R. Untargeted Metabolomics Based on Liquid Chromatography-Mass Spectrometry for the Analysis of Plasma and Erythrocyte Samples in Childhood Obesity. *Methods Mol Biol* 2023;2571:115-22. 249
250
251

12. Saucedo AL, Perales-Quintana MM, Paniagua-Vega D, Sanchez-Martinez C, Cordero-Perez P, Minsky NW. Chronic Kidney Disease and the Search for New Biomarkers for Early Diagnosis. *Curr Med Chem* 2018;25(31):3719-47. 252
253
254

13. Li H, Li D, Ledru N, et al. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. *Cell Metab* 2024;36(5):1105-25.e10. 255
256

14. Lecamwasam A, Mansell T, Ekinci EI, Saffery R, Dwyer KM. Blood Plasma Metabolites in Diabetes-Associated Chronic Kidney Disease: A Focus on Lipid Profiles and Cardiovascular Risk. *Front Nutr* 2022;9:821209. 257
258

15. Fromentin S, Forslund SK, Chechi K, et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. *Nat Med* 2022;28(2):303-14. 259
260

16. Uwaezuoke SN, Muoneke UV, Mbanefo NR. The Supportive Treatment of IgA Nephropathy and Idiopathic Nephrotic Syndrome: How Useful are Omega-3 Polyunsaturated Fatty Acids? *Int J Nephrol Renovasc Dis* 2020;13:27-35. 261
262

17. Wu H, Tang D, Yun M, et al. Metabolic Dysfunctions of Intestinal Fatty Acids and Tryptophan Reveal Immuno-Inflammatory Response Activation in IgA Nephropathy. *Front Med (Lausanne)* 2022;9:811526. 263
264

18. Cui C, Wang C, Han S, Yu D, Zhu L, Jiang P. Impact of a long-term high-fructose diet on systemic metabolic profiles of mice. *FASEB Bioadv* 2022;4(8):560-72. 265
266

19. Wang X, He Q, Chen Q, et al. Network pharmacology combined with metabolomics to study the mechanism of Shenyang Kangfu Tablets in the treatment of diabetic nephropathy. *J Ethnopharmacol* 2021;270:113817. 267
268

20. Zhang S, Li X, Luo H, Fang ZZ, Ai H. Role of aromatic amino acids in pathogeneses of diabetic nephropathy in Chinese patients with type 2 diabetes. *J Diabetes Complications* 2020;34(10):107667. 269
270

21. Luo HH, Li J, Feng XF, et al. Plasma phenylalanine and tyrosine and their interactions with diabetic nephropathy for risk of diabetic retinopathy in type 2 diabetes. *BMJ Open Diabetes Res Care* 2020;8(1). 271
272

22. Liu Y, Chen X, Liu Y, et al. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. *Chem Biol Interact* 2019;314:108815. 273
274

23. Zhao J, He K, Du H, et al. Bioinformatics prediction and experimental verification of key biomarkers for diabetic kidney disease based on transcriptome sequencing in mice. *PeerJ* 2022;10:e13932. 275
276

24. Li J, Cao Y, Lu R, et al. Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang. *Front Pharmacol* 2020;11:606689. 277
278
279

25. Xue R, Wang Y, Geng L, et al. Comprehensive analysis of the gene expression profile of the male and female BTBR mice with diabetic nephropathy. *Int J Biol Macromol* 2024;257(Pt 2):128720. 280
281

26. Ren H, Lv W, Shang Z, et al. Identifying functional subtypes of IgA nephropathy based on three machine learning 282
algorithms and WGCNA. *BMC Med Genomics* 2024;17(1):61. 283

27. Yang J, Pontoglio M, Terzi F. Bile acids and Farnesoid X Receptor in renal pathophysiology. *Nephron* 2024. 284

28. Niessen WM. Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography-tandem mass 285
spectrometry. *Mass Spectrom Rev* 2011;30(4):626-63. 286

29. Niessen WM. Fragmentation of toxicologically relevant drugs in negative-ion liquid chromatography-tandem 287
mass spectrometry. *Mass Spectrom Rev* 2012;31(6):626-65. 288

30. Ye M, Tang D, Li W, et al. Serum metabolomics analysis reveals metabolite profile and key biomarkers of idiopathic 289
membranous nephropathy. *PeerJ* 2023;11:e15167. 290

31. Dong L, Tan J, Zhong Z, Tang Y, Qin W. Altered serum metabolic profile in patients with IgA nephropathy. *Clin 291
Chim Acta* 2023;549:117561. 292

32. Lin HT, Cheng ML, Lo CJ, Lin G, Liu FC. Metabolomic Signature of Diabetic Kidney Disease in Cerebrospinal 293
Fluid and Plasma of Patients with Type 2 Diabetes Using Liquid Chromatography-Mass Spectrometry. *Diagnostics 294
(Basel)* 2022;12(11). 295

33. Liu S, Gui Y, Wang MS, et al. Serum integrative omics reveals the landscape of human diabetic kidney disease. 296
Mol Metab 2021;54:101367. 297
298

Tables

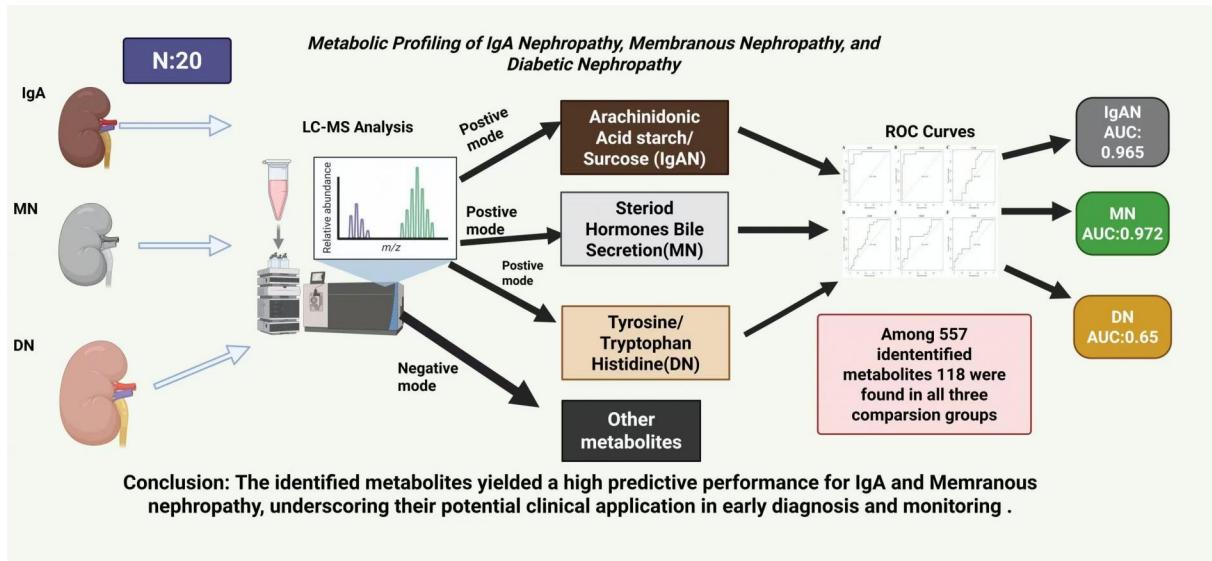
Table 1 Number of differential metabolites

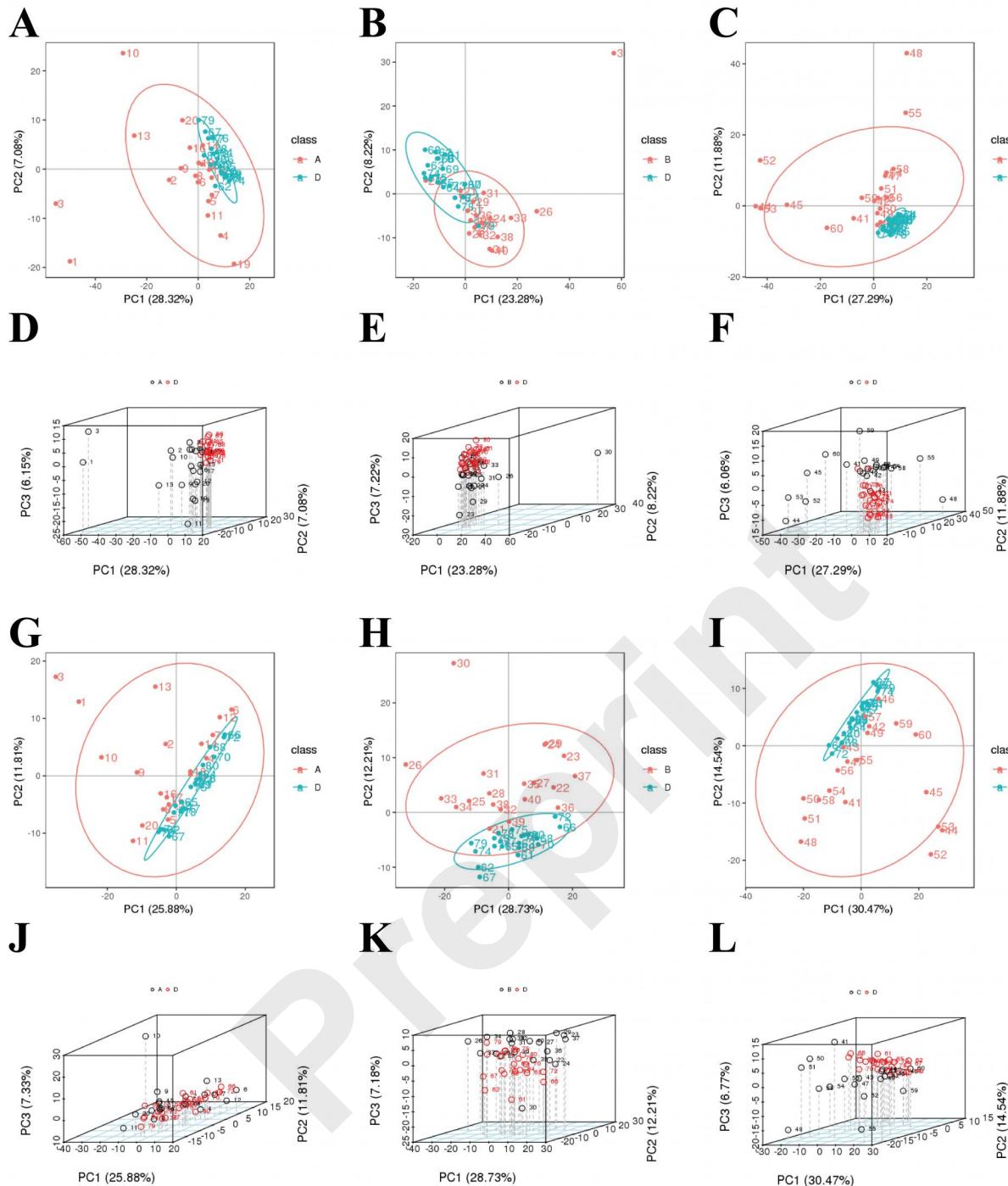
Ionization mode	Comparison pair	Total number of identified metabolites	Significantly upregulated	Significantly downregulated
Positive	IgAN vs N	795	45	140
	MN vs N	795	28	151
	DN vs N	795	80	135
Negative	IgAN vs N	457	37	69
	MN vs N	457	53	67
	DN vs N	457	80	55

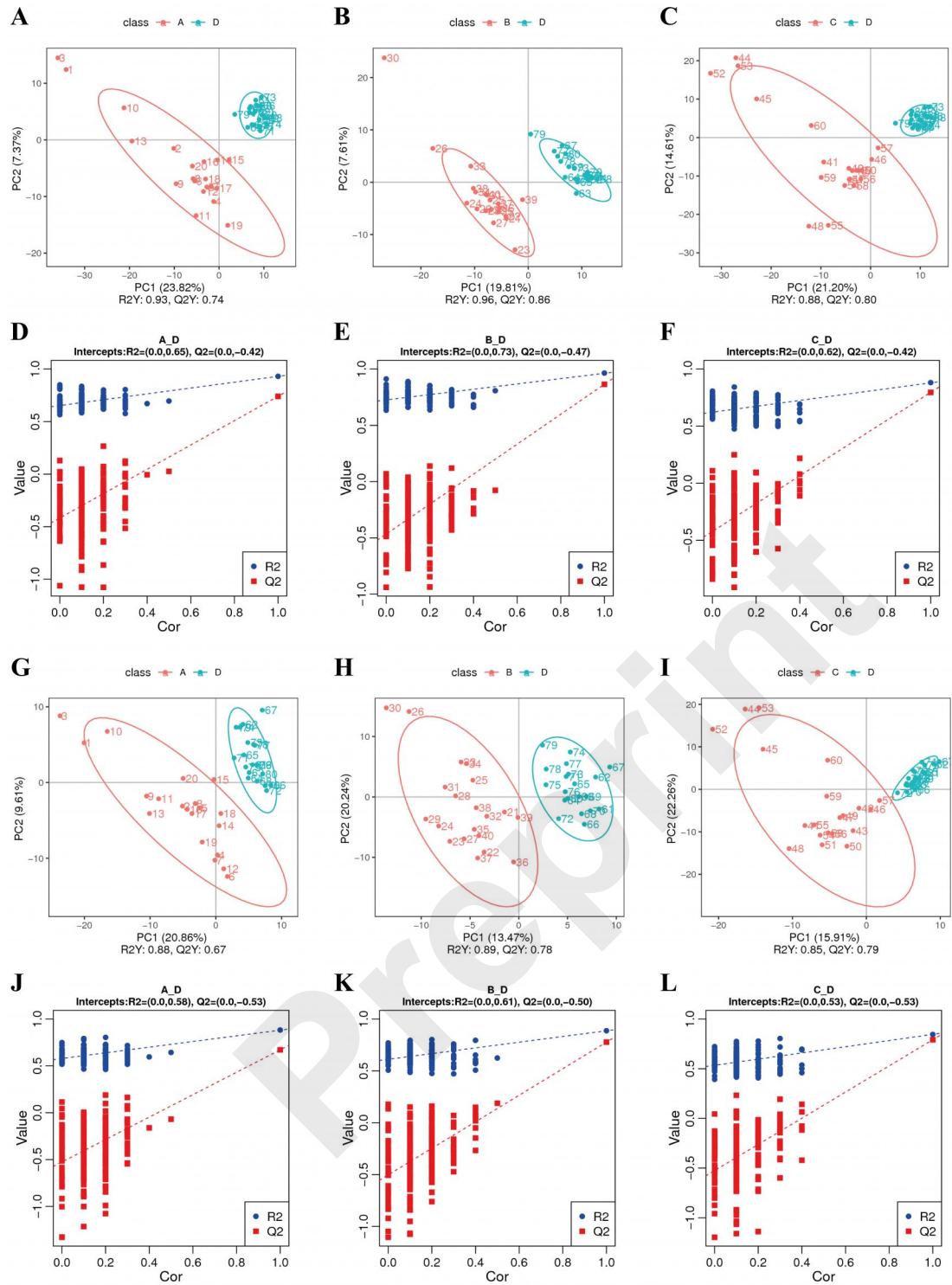
IgAN - IgA nephropathy, MN – membranous nephropathy, DN – diabetic nephropathy, N – controls.

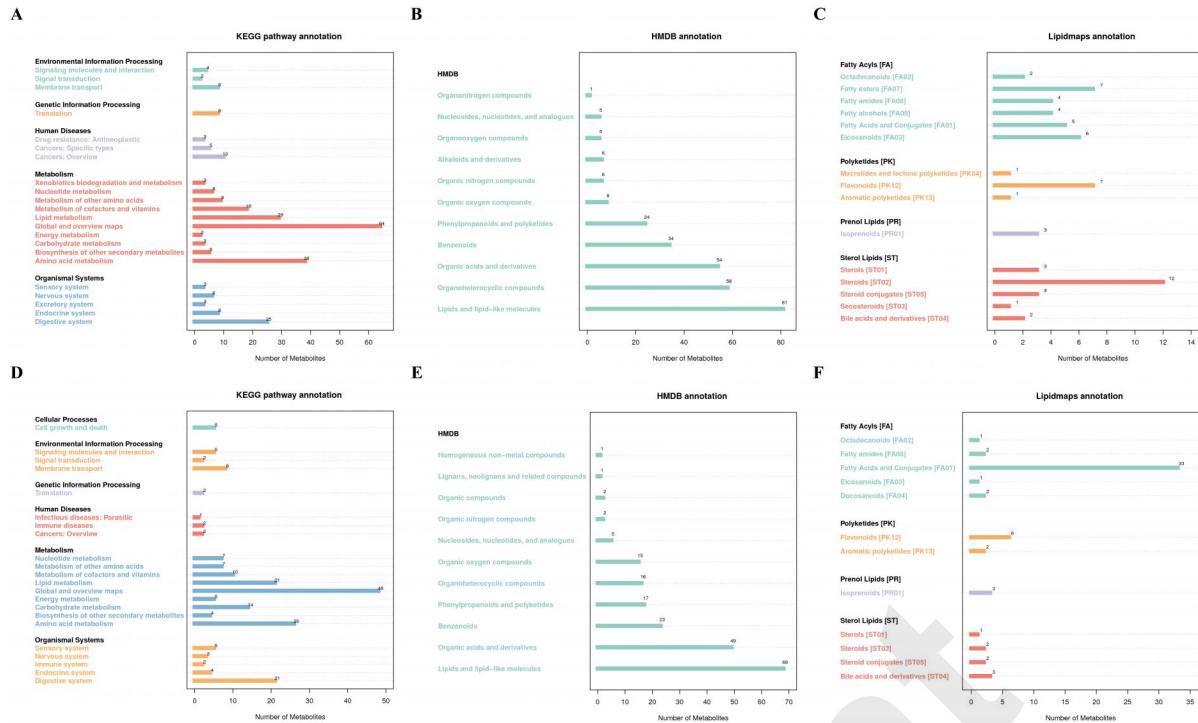
301

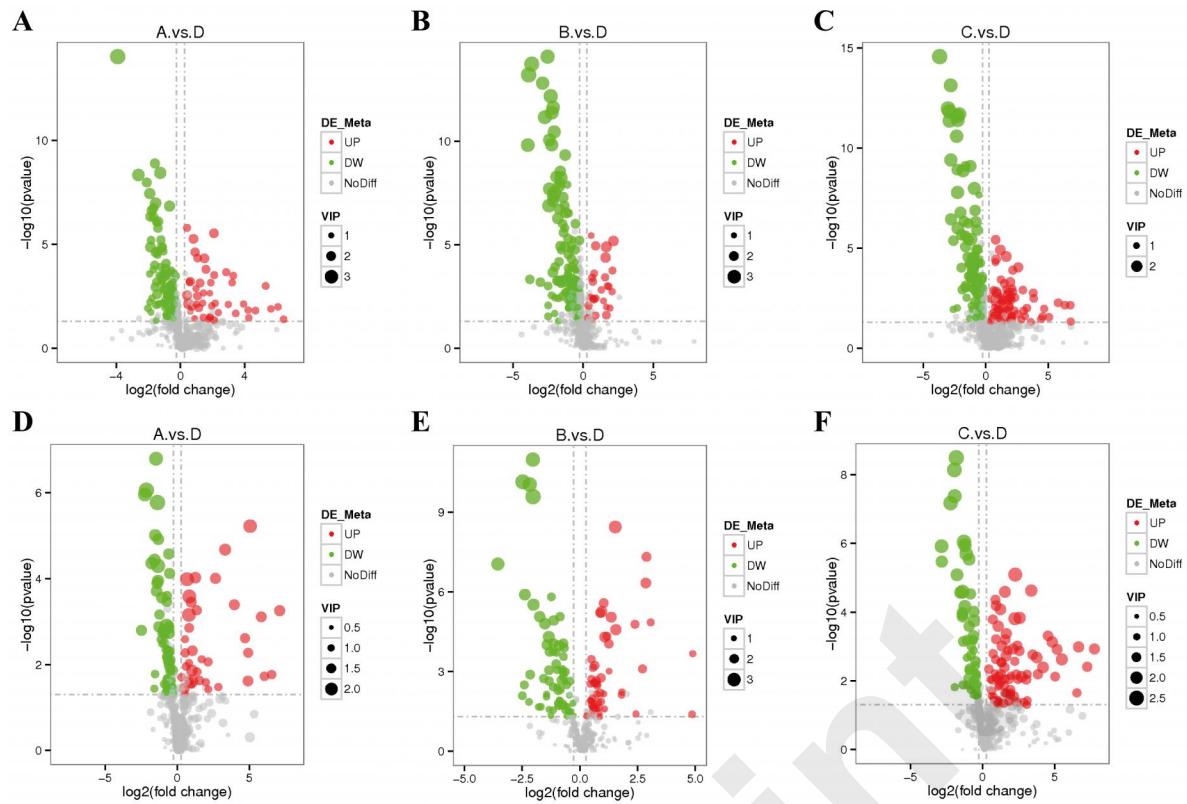
302




	303
Figure legends	304
Figure 1 Principal component analysis (PCA) plots (A) IgA nephropathy (IgAN) vs controls pair (positive mode, 2 dimensions) (B) membranous nephropathy (MN) vs controls pair (positive mode, 2 dimensions) (C) diabetic nephropathy (DN) vs controls pair (positive mode, 2 dimensions) (D) IgAN vs controls pair (positive mode, 3 dimensions) (E) MN vs controls pair (positive mode, 3 dimensions) (F) DN vs controls pair (positive mode, 3 dimensions) (G) IgAN vs controls pair (negative mode, 2 dimensions) (H) MN vs controls pair (negative mode, 2 dimensions) (I) DN vs controls pair (negative mode, 2 dimensions) (J) IgAN vs controls pair (negative mode, 3 dimensions) (K) MN vs controls pair (negative mode, 3 dimensions) (L) DN vs controls pair (negative mode, 3 dimensions).	305
Figure 2 Partial least squares discriminant analysis (A) principal component (PC) plot, IgA nephropathy (IgAN) vs controls pair (positive mode) (B) PC plot, membranous nephropathy (MN) vs controls pair (positive mode) (C) PC plot, diabetic nephropathy (DN) vs controls pair (positive mode) (D) Permutation test (PT) plot, IgAN vs controls pair (positive mode) (E) PT plot, MN vs controls pair (positive mode) (F) PT plot, DN vs controls pair (positive mode) (G) PC plot, IgAN vs controls pair (negative mode) (H) PC plot, MN vs controls pair (negative mode) (I) PC plot, DN vs controls pair (negative mode) (J) PT plot, IgAN vs controls pair (negative mode) (K) PT plot, MN vs controls pair (negative mode) (L) PT plot, DN vs controls pair (negative mode).	313
Figure 3 Metabolite annotation (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation (positive mode) (B) Human Metabolome Database (HMDB) annotation (positive mode) (C) LIPID Maps annotation (positive mode) (D) KEGG pathway annotation (negative mode) (E) HMDB annotation (negative mode) (F) LIPID Maps annotation (negative mode)	320
Figure 4 Volcano plots of metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)	324
Figure 5 Correlation between differential metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)	327




Figure 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)	331
Figure 7 Receiver operating characteristic (ROC) curve of differential metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)	335
	339


Preprint

