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Abstract

Introduction

Immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and diabetic nephropathy
(DN) are prominent contributors to chronic kidney disease burden. Our main objective was to
contribute to understanding of metabolic profiles of these three major types of nephropathies and
identify potential metabolic biomarkers.

Material and methods

Kidney samples of 20 sex- and age-matched patients with biopsy-proven IgAN, MN, DN, and controls
without any kidney diseases were included. Ultra high performance liquid chromatography-mass
spectrometry analysis was conducted. t-test was used to calculate statistical significance of the
identified metabolites. Metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG). Specificity, sensitivity and area under the curve (AUC) were calculated to evaluate
the predictive performance of metabolites.

Results

Among 557 identified differential metabolites, only 118 were found in all three comparison groups.
Differential metabolites of IgAN vs controls were significantly enriched in arachidonic acid metabolism,
starch and sucrose metabolism, ferroptosis, and other pathways. In the DN group, metabolites were
mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. MN-
enriched pathways included steroid hormone biosynthesis, neuroactive ligand-receptor interaction,
and bile secretion. In the positive mode, cumulative AUC values for comparison pairs IgAN vs
controls, MN vs controls, and DN vs controls were 0.965, 0.972, and 0.573, respectively, whereas in
the negative mode the AUC values of all three pairs were slightly above 0.65.

Conclusions
IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of IgAN
and MN exhibited great predictive performance.
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1. Introduction

Chronic kidney diseases (CKDs) include various conditions characterized by progressive loss of renal function,
leading to significant morbidity and mortality worldwide [1,2]. Among these, immunoglobulin A nephropathy (IgAN),
membranous nephropathy (MN), and diabetic nephropathy (DN) are prominent contributors to CKD burden, each with
distinct etiologies and pathological mechanisms [2]. IgAN is the most common type of primary glomerulonephritis
globally, characterized by the deposition of IgA immune complexes in the glomerular mesangium [3]. MN, another
leading cause of nephrotic syndrome in adults, is characterized by the immune-mediated thickening of the glomerular
basement membrane [4]. DN, a complication of diabetes mellitus, represents the most common cause of end-stage renal
disease worldwide, driven by metabolic and inflammatory pathways induced by chronic hyperglycemia [5].

Metabolomics, an omics approach focused on the systematic study of small molecule metabolites within biological
systems, has become an extremely popular approach to study the pathophysiological processes of various disorders,
including CKDs [6-8]. Liquid chromatography-mass spectrometry (LC-MS), a robust analytical technique, provides
high-resolution detection and quantification of metabolites, thereby enabling comprehensive profiling of metabolic al-
terations associated with disease states [9,10]. In this study, we employed LC-MS-based metabolomics to investigate

and compare the metabolic profiles of kidney tissues from IgAN, MN, and DN patients with healthy controls. Our main
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objective was to contribute to understanding of metabolic profiles of these three major types of nephropathies and iden-
tify potential metabolic biomarkers for early diagnosis and prompt treatment.

2. Materials and Methods

2.1. Data Collection

A prospective sex- and age-matched cohort study was performed at Shanxi Provincial Peoples’ Hospital from June
2019 to June 2020. The goal was to include 20 patients with biopsy-proven IgAN (group A), MN (group B), DN (group
C), and controls without any kidney diseases (group D). Exclusion criteria: age <18 years old, BMI <18 or >24 kg/m2,
secondary nephropathy, autoimmune diseases, hepatitis, cirrhosis, malignancies, recent steroid or immunosuppression
treatment within six months, or use of metabolic medications (e.g., statins, fibrates, ezetimibe, febuxostat, benzbromar-
one, compound o-ketoacid tablets, fish oil) within seven days. The study was approved by the institutional ethics com-

mittee and written informed consent was obtained from each patient.

2.2. Metabolite Extraction

First, 100 mg of tissue were grounded with liquid nitrogen. The resulting homogenate was then resuspended with
a chilled solution of 80% methanol and 0.1% formic acid, followed by thorough vortexing. The samples were placed on
ice for 5 minutes and centrifuged at 15,000 rpm and 4°C for 5 minutes. A portion of the supernatant was diluted with
LC-MS grade water to achieve a final methanol concentration of 53%. These samples were transferred to a new Eppen-
dorf tube and centrifuged again at 15,000 rpm and 4°C for 10 minutes. Finally, the supernatant was injected into the
LC-MS system for analysis.

For liquid samples, 100 pL of sample with 400 pL of chilled methanol were mixed and vortexed. For cell samples,
mix with 80% chilled methanol (four times the sample volume), vortex well, and sonicate for 6 minutes. Repeat soni-

cation, then proceed with the same steps as for tissue samples.

2.3. Liquid Chromatography-Mass Spectrometry Analysis

Ultra high performance LC-MS analysis was conducted using a Vanquish LC system (Thermo Fisher, Germany)
connected to an Orbitrap Q Exactive™ HF-X mass spectrometer (Thermo Fisher, Germany) at Novogene Co., Ltd.
(Beijing, China). Samples were injected into a Hypesil Gold column (100%2.1 mm, 1.9 um) using a 17-minute linear
gradient at 0.2 mL/min flow rate. For positive polarity mode, eluent A was 0.1% formic acid in water, and eluent B was
methanol. For negative polarity mode, eluent A was 5 mM ammonium acetate at pH 9.0, and eluent B was methanol.
The solvent gradient was programmed as follows: 2% B for 1.5 minutes, 2-100% B over 12.0 minutes, 100% B for 14.0
minutes, 100-2% B for 14.1 minutes, and 2% B until 17 minutes. The mass spectrometer was operated in positive/neg-
ative polarity mode with a spray voltage of 3.2 kV, capillary temperature of 320°C, sheath gas flow rate of 40 arb, and

auxiliary gas flow rate of 10 arb.

2.4. Data Processing and Metabolite Identification
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The raw data files from the LC-MS were processed using Compound Discoverer 3.1 (CD3.1, Thermo Fisher) for
peak alignment, peak picking, and quantification of each metabolite. Key parameters were set to a retention time toler-
ance of 0.2 minutes, mass tolerance of 5 ppm, signal intensity tolerance of 30%, a signal-to-noise ratio of 3, and a
minimum intensity of 100,000. Peak intensities were normalized to the total spectral intensity. The normalized data was
used to predict molecular formulas based on additive ions, molecular ion peaks, and fragment ions. Peaks were matched
against mzCloud, mzVault, and MassL.ist databases to obtain accurate qualitative and relative quantitative results. Sta-
tistical analyses were conducted using R Python and CentOS. The metabolites with coefficient of variance (CV) >30%

in the quality control (QC) samples were removed.

2.5. Data Analysis

Metabolites were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolome
Database (HMDB), and LIPID Maps databases. Principal components analysis (PCA) and partial least squares discri-
minant analysis (PLS-DA) were performed using metaX. Univariate analysis (t-test) was used to calculate statistical
significance. Metabolites with VIP > 1, P-value < 0.05, and fold change (FC) > 1.2 or < 0.833 were considered differ-
ential metabolites. Data for clustering heat maps were normalized using z-scores of differential metabolites' intensity
areas and plotted with the Pheatmap package in R. Correlations between differential metabolites were analyzed using
the cor() function in R with the Pearson method, and significance was calculated with cor.mtest(). Metabolic pathways
were analyzed using KEGG (hypergeometric test, adjusted by Benjamini and Hochberg method), and pathway enrich-
ment was considered significant with a ratio of x/n > y/N and P-value < 0.05. Specificity and sensitivity were calculated,
receiver operating characteristic (ROC) curve was plotted and area under the curve (AUC) were calculated to assess the

predictive performance of metabolites.
3. Results

3.1. Quality Control

Pearson correlation revealed a high correlation among QC samples (Supplementary Figure 1A, D). The peaks
extracted from all the experimental and QC samples were subjected to PCA analysis after univariate scaling. As shown
in the PCA plot, closely clustered QC samples indicate good stability of the whole method and high data quality. Except
for QC samples in the positive mode, samples in every group were mixed with each other (Supplementary Figure 1B,
C EF).

3.2. Screening of Differential Metabolites

A total of 795 and 457 metabolites were identified in the positive and negative modes, respectively. In both posi-
tive and negative modes, the first two principal components capture a significant proportion of the variance in the data
(23.28% - 28.32% for PC1 and 6.78% - 12.88% for PC2). However, all groups are mixed, indicating that the variance
captured by the principal components does not significantly differentiate the groups (Figure 1). In contrast, PLS-DA
revealed significant separation between each nephropathy group and control group (A vs D, B vs D, and C vs D) in both

modes (Figure 2A-C, G-I). This is because PLS-DA uses group information to maximize the variance between groups,
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leading to better discrimination. Moreover, the corresponding permutation test plots support the statistical significance
of the PLS-DA model (Figure 2D-F, J-L). Importantly, the model is not overfitted, as evidenced by the following indi-
cators: the R2 value is larger than the Q2 value, and the intercept of the Q2 regression line with the Y-axis is less than
0.

According to KEGG enrichment analysis, metabolites were mainly enriched in amino acid and lipid metabolism
and involved in the digestive system (Figure 3A, B). HMDB revealed that most of the metabolites were lipids and lipid-
like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzoids (Figure 3C, D). LIPID
MAPS annotation showed that metabolites were linked with steroids, isoprenoids, flavonoids, fatty acids and conjugates,
etc. (Figure 3E, F).

Table 1 shows the number of differential metabolites after application of cutoff values (VIP > 1, FC > 1.2 and FC
< 0.833, P-value < 0.05) for each comparison pair. Volcano plots are illustrated in Figure 4. A total of 341 and 216
significantly differential metabolites were identified in the positive and negative modes, respectively, among which 71
and 47 metabolites were present in all three comparison groups (Supplementary Table 1 and Supplementary Table 2).
Hierarchical clustering analysis was performed for all the differential metabolites among four groups and within each
comparison pair (Supplementary Figure 2).

3.3. Correlation and Enrichment Analyses

Correlation analysis of metabolites was conducted to understand the relationships between individual metabolites
within the dataset. Pearson correlation coefficients were calculated for all pairwise comparisons of metabolites, and the
results are illustrated in Figure 5. In the positive mode, most of the metabolites were highly positively correlated with
each other except for 4-Phenyl-3-buten-2-one, (122)-9,10,11-trihydroxyoctadec-12-enoic acid, and PC (18:2/20:5) in
the IgAN vs controls comparison pair. In the negative node, many metabolite pairs exhibited mild-to-moderate correla-
tion. KEGG pathway enrichment analysis was used to identify the main biological functions of metabolites. Metabolites
were found to be enriched in various pathways (Supplementary Table 3). Based on the KEGG enrichment results, bubble
charts were plotted (Figure 6).

3.4. Predictive Modelling

Logistic regression was performed to evaluate the predictive performance of differential metabolites (Figure 7).
In the positive mode, cumulative AUC values for comparison pairs IgAN vs controls and MN vs controls were 0.965
and 0.972, respectively. Thus, AUC values for the first two pairs indicate excellent discriminatory ability as shown by
strong performance in distinguishing between IgAN or MN and controls. In contrast, the AUC value for DN was 0.573,
occasionally falling below the random classifier curve. In the negative mode, the AUC values of the three comparison

pairs were generally lower compared to the positive mode and were slightly above 0.65.

4. Discussion

Understanding the metabolic profiles of IgAN, MN, and DN is crucial for advancing diagnostic precision, treat-
ment effectiveness, and accurate prognosis in the field of nephrology. Detailed metabolic profiling facilitates accurate

disease differentiation and identification of specific biomarkers, which may aid in the development of new early and
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precise diagnostic strategies [11]. Insights into the underlying pathophysiological mechanisms derived from these pro-
files can guide the development of targeted and personalized therapies, as well as monitor treatment responses. Further-
more, metabolic markers offer prognostic value by predicting disease progression and stratifying patient risk, which is
essential for effective management [12,13]. Researching metabolic pathways is important for advancing our understand-
ing of nephropathies by revealing unique and shared pathways across different nephropathies, ultimately contributing
to improved patient outcomes and scientific advancements [14].

Our study shows that there are distinct differences in metabolic profiles of IgAN, MN, and DN compared to
healthy controls. Among 557 identified differential metabolites, only 118 (21.2%) were found in all three comparison
groups. Differential metabolites of IgAN were significantly enriched in arachidonic acid metabolism, starch and sucrose
metabolism, ferroptosis, and other pathways. Arachidonic acid metabolism plays a crucial role in kidney disorders and
is associated with glomerular and interstitial inflammation [15]. Altered expression of metabolites responsible for ara-
chidonic acid metabolism in IgAN was recently reported [16]. Interestingly, certain pathways, such as starch and sucrose
metabolism, were mostly reported in studies investigating metabolic profiles of diabetes [17,18]. However, in our case,
starch and sucrose metabolism was impaired in the IgAN group rather than the DN group. In the DN group, differential
metabolites were mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc.
Phenylalanine, tyrosine and tryptophan as well as histidine play important roles in glucose transport and metabolism. A
recent study reported that higher expression levels of tyrosine but not phenylalanine or tryptophan were associated with
an increased risk of DN in the Chinese population [19]. However, large cohort studies are needed to validate differences
in expression levels of these aromatic amino acids between DN patients and healthy controls as several studies obtained
opposite results [20,21]. Finally, MN-enriched pathways included steroid hormone biosynthesis, neuroactive ligand-
receptor interaction, and bile secretion, which is consistent with several reports on metabolic profiles of IgAN and DN
in animal and human models [22-25]. Specifically, altered bile secretion was discovered in rats with IJAN and DN mice
with DN [22,23]. Many kidney diseases are marked by changes in bile acid levels in the plasma, kidney, and urine.
Increased levels of bile acids are associated with oxidative damage of renal tubular cell membranes, which results in
poor glomerular filtration rates and renal function [26].

The predictive modeling of differential metabolites using logistic regression has demonstrated varying levels of
discriminatory ability across different nephropathy types when compared to controls. Our study analyzed the perfor-
mance in both positive and negative ion modes, yielding various results for IJAN, MN, and DN. In the positive mode,
the cumulative AUC values for IgAN vs controls and MN vs controls were 0.965 and 0.972, respectively. The strong
performance characterized by near-perfect AUC values with high sensitivity and specificity in these comparison pairs
highlights the potential of these metabolites as reliable biomarkers for IJAN and MN. In contrast, the AUC value for
DN vs controls was 0.573, which is significantly lower and close to the performance of a random classifier (AUC =
0.5). This suggests that the metabolites identified in the positive mode are less effective in distinguishing DN from
controls. The lower discriminatory ability may be due to the heterogeneous nature of DN or the overlapping metabolic
features between DN and controls. Further investigation is needed to identify more specific biomarkers or to refine the
metabolic profiling techniques for better differentiation of DN. The AUC values obtained in the negative ion mode were

generally lower compared to the positive mode, with values slightly above 0.65 for all comparisons. Although these
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values indicate a moderate level of discriminatory power, they are not as high as those observed in the positive mode.
The lower performance in the negative mode is likely attributed to differences between the modes, affecting the identi-
fication and quantification of metabolites [27,28]. All studies that analyzed differences in metabolic profiles of IgAN,
MN, or DN that we were able to find calculated predictive performance of one metabolite rather than reported AUC of
the combined model, and we are thus unable to compare the results.

Our study has several limitations that warrant consideration. First, the small, single-center cohort (n=20 per group)
and strict exclusion criteria may limit statistical power and applicability of our results to broader populations. Thus,
Future multicenter studies with larger, demographically diverse cohorts are necessary to validate findings and build
robust, generalizable biomarker panels. Second, as this is a cross-sectional analysis, we could not assess temporal sta-
bility or causality of identified biomarkers. Prospective longitudinal metabolomics studies are critical to understand
biomarker kinetics, evaluate prognostic potential, and assess how metabolomic signatures evolve with therapeutic in-
terventions.Third, the suboptimal performance of logistic regression models in positive mode, especially for DN, could
be a result of incomplete metabolite coverage and sensitivity of the LC-MS system. Future studies should employ dual-
mode ionization, untargeted and targeted LC-MS/MS, and integrative platforms (e.g., NMR + MS) to enhance metabo-
lome coverage and improve detection sensitivity across nephropathy types. Fourth, our study did not account for poten-
tial confounders, such as unrecorded comorbidities and genetic background. These confounders can influence metabolic
profiles and may differ between nephropathy subtypes. Metabolomic analyses should be integrated with comprehensive
clinical metadata, including genetic, pharmacological, and lifestyle information. Statistical techniques such as multivar-
iable regression, mixed-effects modeling, and propensity score matching can further help mitigate confounding effects.
Future studies can use multi-omic integration (e.g., transcriptomics, proteomics) and tissue specific pathway analysis
(e.g., using Reactome or kidney-specific metabolic atlases) to improve biological interpretability and enhance mecha-
nistic understanding.In conclusion, the excellent performance of the predictive models in the positive mode for IgAN
and MN underscores the potential clinical application of the metabolic biomarkers for early diagnosis and monitoring.
However, the suboptimal performance for DN, particularly in the positive mode, clearly shows the need for further
research to improve the metabolic profiling and identification of specific biomarkers for DN. Future studies should focus
on optimizing the metabolomic analysis protocols, potentially integrating both ionization modes, to enhance the overall
predictive accuracy. Moreover, expanding the sample size and including a broader range of metabolites could improve

the accuracy and generalizability of the predictive models.

5. Conclusions

In conclusion, IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of

IgAN and MN exhibited great predictive performance.

Supplementary Materials: The following supporting information can be downloaded at: https://ze-
nodo.org/doi/10.5281/zen0do.13224489 Supplementary Figure 1 Quality control analysis (A) Pearson correlation be-

tween quality control samples (positive mode) (B) principal component (PC) plot of five groups (positive mode, 2
dimensions) (C) PC plot of five groups (positive mode, 3 dimensions) (D) Pearson correlation between QC samples

(negative mode) (E) PC plot of five groups (negative mode, 2 dimensions) (F) PC plot of five groups (negative mode, 3
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dimensions). Supplementary Figure 2 Heatmaps of differential metabolites (A) IgA nephropathy (IgAN) vs controls
pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy
(DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative
mode) (F) DN vs controls pair (negative mode). Supplementary table 1 List of differential metabolites in three com-
parison pairs (positive mode). Supplementary table 2 List of differential metabolites in three comparison pairs (nega-

tive mode). Supplementary table 3 KEGG enrichment pathways.
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Tables

Table 1 Number of differential metabolites

loniza- Compari- Total number of identified me- Significantly upregu- = Significantly downregu-
tion son pair tabolites lated lated
mode
Posi- IgAN vs N 795 45 140
tive MN vs N 795 28 151
DN vs N 795 80 135
Nega- | IgANvs N 457 37 69
tive MN vs N 457 53 67
DN vs N 457 80 55

IgAN - IgA nephropathy, MN — membranous nephropathy, DN — diabetic nephropathy, N — controls.
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Figure legends

Figure 1 Principal component analysis (PCA) plots (A) IgA nephropathy (IgAN) vs controls pair (positive mode, 2
dimensions) (B) membranous nephropathy (MN) vs controls pair (positive mode, 2 dimensions) (C) diabetic
nephropathy (DN) vs controls pair (positive mode, 2 dimensions) (D) IgAN vs controls pair (positive mode, 3
dimensions) (E) MN vs controls pair (positive mode, 3 dimensions) (F) DN vs controls pair (positive mode, 3
dimensions) (G) IgAN vs controls pair (negative mode, 2 dimensions) (H) MN vs controls pair (negative mode, 2
dimensions) (I) DN vs controls pair (negative mode, 2 dimensions) (J) IgAN vs controls pair (negative mode, 3
dimensions) (K) MN vs controls pair (negative mode, 3 dimensions) (L) DN vs controls pair (negative mode, 3
dimensions).

Figure 2 Partial least squares discriminant analysis (A) principal component (PC) plot, IgA nephropathy (IgAN) vs
controls pair (positive mode) (B) PC plot, membranous nephropathy (MN) vs controls pair (positive mode) (C) PC plot,
diabetic nephropathy (DN) vs controls pair (positive mode) (D) Permutation test (PT) plot, IgAN vs controls pair
(positive mode) (E) PT plot, MN vs controls pair (positive mode) (F) PT plot, DN vs controls pair (positive mode) (G)
PC plot, IgAN vs controls pair (negative mode) (H) PC plot, MN vs controls pair (negative mode) (I) PC plot, DN vs
controls pair (negative mode) (J) PT plot, IgAN vs controls pair (negative mode) (K) PT plot, MN vs controls pair
(negative mode) (L) PT plot, DN vs controls pair (negative mode).

Figure 3 Metabolite annotation (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation (positive
mode) (B) Human Metabolome Database (HMDB) annotation (positive mode) (C) LIPID Maps annotation (positive
mode) (D) KEGG pathway annotation (negative mode) (E) HMDB annotation (negative mode) (F) LIPID Maps anno-
tation (negative mode)

Figure 4 Volcano plots of metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous
nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D)
IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)
Figure 5 Correlation between differential metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B)
membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (posi-
tive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair

(negative mode)
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Figure 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (A) IgA nephropathy (IgAN) vs
controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephrop-
athy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative
mode) (F) DN vs controls pair (negative mode)

Figure 7 Receiver operating characteristic (ROC) curve of differential metabolites (A) IgA nephropathy (IgAN) vs
controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephrop-
athy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative

mode) (F) DN vs controls pair (negative mode)
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Metabolic Profiling of IgA Nephropathy, Membranous Nephropathy, and
m Diabetic Nephropathy
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Conclusion: The identified metabolites yielded a high predictive performance for IgA and Memranous
nephropathy, underscoring their potential clinical application in early diagnosis and monitoring .
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