
Research paper

Metabolic profiles of IgA nephropathy, membranous
nephropathy, and diabetic nephropathy

 Keywords
IgA nephropathy, diabetic nephropathy, metabolomics, membranous nephropathy, bioinformatics

 Abstract
Introduction
Immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and diabetic nephropathy
(DN) are prominent contributors to chronic kidney disease burden. Our main objective was to
contribute to understanding of metabolic profiles of these three major types of nephropathies and
identify potential metabolic biomarkers.

Material and methods
Kidney samples of 20 sex- and age-matched patients with biopsy-proven IgAN, MN, DN, and controls
without any kidney diseases were included. Ultra high performance liquid chromatography-mass
spectrometry analysis was conducted. t-test was used to calculate statistical significance of the
identified metabolites. Metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and
Genomes (KEGG). Specificity, sensitivity and area under the curve (AUC) were calculated to evaluate
the predictive performance of metabolites.

Results
Among 557 identified differential metabolites, only 118 were found in all three comparison groups.
Differential metabolites of IgAN vs controls were significantly enriched in arachidonic acid metabolism,
starch and sucrose metabolism, ferroptosis, and other pathways. In the DN group, metabolites were
mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. MN-
enriched pathways included steroid hormone biosynthesis, neuroactive ligand-receptor interaction,
and bile secretion. In the positive mode, cumulative AUC values for comparison pairs IgAN vs
controls, MN vs controls, and DN vs controls were 0.965, 0.972, and 0.573, respectively, whereas in
the negative mode the AUC values of all three pairs were slightly above 0.65.

Conclusions
IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of IgAN
and MN exhibited great predictive performance.Prep
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Abstract: Background and Objectives: Immunoglobulin A nephropathy (IgAN), membranous nephropathy (MN), and 2 

diabetic nephropathy (DN) are prominent contributors to chronic kidney disease burden. Our main objective was to 3 

contribute to understanding of metabolic profiles of these three major types of nephropathies and identify potential 4 

metabolic biomarkers. Materials and Methods: Kidney samples of 20 sex- and age-matched patients with biopsy-proven 5 

IgAN, MN, DN, and controls without any kidney diseases were included. Ultra high performance liquid chromatog- 6 

raphy-mass spectrometry analysis was conducted. t-test was used to calculate statistical significance of the identified 7 

metabolites. Metabolic pathways were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Spec- 8 

ificity, sensitivity and area under the curve (AUC) were calculated to evaluate the predictive performance of metabolites. 9 

Results: Among 557 identified differential metabolites, only 118 were found in all three comparison groups. Differential 10 

metabolites of IgAN vs controls were significantly enriched in arachidonic acid metabolism, starch and sucrose metab- 11 

olism, ferroptosis, and other pathways. In the DN group, metabolites were mainly enriched in phenylalanine, tyrosine 12 

and tryptophan biosynthesis, histidine metabolism, etc. MN-enriched pathways included steroid hormone biosynthesis, 13 

neuroactive ligand-receptor interaction, and bile secretion. In the positive mode, cumulative AUC values for comparison 14 

pairs IgAN vs controls, MN vs controls, and DN vs controls were 0.965, 0.972, and 0.573, respectively, whereas in the 15 

negative mode the AUC values of all three pairs were slightly above 0.65. Conclusion: IgAN, MN and DN have similar 16 

but distinct metabolic profiles. Only positive node metabolites of IgAN and MN exhibited great predictive performance. 17 
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1. Introduction 20 

Chronic kidney diseases (CKDs) include various conditions characterized by progressive loss of renal function, 21 

leading to significant morbidity and mortality worldwide [1,2]. Among these, immunoglobulin A nephropathy (IgAN), 22 

membranous nephropathy (MN), and diabetic nephropathy (DN) are prominent contributors to CKD burden, each with 23 

distinct etiologies and pathological mechanisms [2]. IgAN is the most common type of primary glomerulonephritis 24 

globally, characterized by the deposition of IgA immune complexes in the glomerular mesangium [3]. MN, another 25 

leading cause of nephrotic syndrome in adults, is characterized by the immune-mediated thickening of the glomerular 26 

basement membrane [4]. DN, a complication of diabetes mellitus, represents the most common cause of end-stage renal 27 

disease worldwide, driven by metabolic and inflammatory pathways induced by chronic hyperglycemia [5]. 28 

Metabolomics, an omics approach focused on the systematic study of small molecule metabolites within biological 29 

systems, has become an extremely popular approach to study the pathophysiological processes of various disorders, 30 

including CKDs [6-8]. Liquid chromatography-mass spectrometry (LC-MS), a robust analytical technique, provides 31 

high-resolution detection and quantification of metabolites, thereby enabling comprehensive profiling of metabolic al- 32 

terations associated with disease states [9,10]. In this study, we employed LC-MS-based metabolomics to investigate 33 

and compare the metabolic profiles of kidney tissues from IgAN, MN, and DN patients with healthy controls. Our main 34 
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objective was to contribute to understanding of metabolic profiles of these three major types of nephropathies and iden- 35 

tify potential metabolic biomarkers for early diagnosis and prompt treatment. 36 

2. Materials and Methods 37 

2.1. Data Collection 38 

A prospective sex- and age-matched cohort study was performed at Shanxi Provincial Peoples’ Hospital from June 39 

2019 to June 2020. The goal was to include 20 patients with biopsy-proven IgAN (group A), MN (group B), DN (group 40 

C), and controls without any kidney diseases (group D). Exclusion criteria: age <18 years old, BMI <18 or >24 kg/m2, 41 

secondary nephropathy, autoimmune diseases, hepatitis, cirrhosis, malignancies, recent steroid or immunosuppression 42 

treatment within six months, or use of metabolic medications (e.g., statins, fibrates, ezetimibe, febuxostat, benzbromar- 43 

one, compound α-ketoacid tablets, fish oil) within seven days. The study was approved by the institutional ethics com- 44 

mittee and written informed consent was obtained from each patient. 45 

2.2. Metabolite Extraction 46 

First, 100 mg of tissue were grounded with liquid nitrogen. The resulting homogenate was then resuspended with 47 

a chilled solution of 80% methanol and 0.1% formic acid, followed by thorough vortexing. The samples were placed on 48 

ice for 5 minutes and centrifuged at 15,000 rpm and 4°C for 5 minutes. A portion of the supernatant was diluted with 49 

LC-MS grade water to achieve a final methanol concentration of 53%. These samples were transferred to a new Eppen- 50 

dorf tube and centrifuged again at 15,000 rpm and 4°C for 10 minutes. Finally, the supernatant was injected into the 51 

LC-MS system for analysis. 52 

For liquid samples, 100 µL of sample with 400 µL of chilled methanol were mixed and vortexed. For cell samples, 53 

mix with 80% chilled methanol (four times the sample volume), vortex well, and sonicate for 6 minutes. Repeat soni- 54 

cation, then proceed with the same steps as for tissue samples. 55 

2.3. Liquid Chromatography-Mass Spectrometry Analysis 56 

Ultra high performance LC-MS analysis was conducted using a Vanquish LC system (Thermo Fisher, Germany) 57 

connected to an Orbitrap Q Exactive™ HF-X mass spectrometer (Thermo Fisher, Germany) at Novogene Co., Ltd. 58 

(Beijing, China). Samples were injected into a Hypesil Gold column (100×2.1 mm, 1.9 µm) using a 17-minute linear 59 

gradient at 0.2 mL/min flow rate. For positive polarity mode, eluent A was 0.1% formic acid in water, and eluent B was 60 

methanol. For negative polarity mode, eluent A was 5 mM ammonium acetate at pH 9.0, and eluent B was methanol. 61 

The solvent gradient was programmed as follows: 2% B for 1.5 minutes, 2-100% B over 12.0 minutes, 100% B for 14.0 62 

minutes, 100-2% B for 14.1 minutes, and 2% B until 17 minutes. The mass spectrometer was operated in positive/neg- 63 

ative polarity mode with a spray voltage of 3.2 kV, capillary temperature of 320°C, sheath gas flow rate of 40 arb, and 64 

auxiliary gas flow rate of 10 arb. 65 

2.4. Data Processing and Metabolite Identification 66 
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The raw data files from the LC-MS were processed using Compound Discoverer 3.1 (CD3.1, Thermo Fisher) for 67 

peak alignment, peak picking, and quantification of each metabolite. Key parameters were set to a retention time toler- 68 

ance of 0.2 minutes, mass tolerance of 5 ppm, signal intensity tolerance of 30%, a signal-to-noise ratio of 3, and a 69 

minimum intensity of 100,000. Peak intensities were normalized to the total spectral intensity. The normalized data was 70 

used to predict molecular formulas based on additive ions, molecular ion peaks, and fragment ions. Peaks were matched 71 

against mzCloud, mzVault, and MassList databases to obtain accurate qualitative and relative quantitative results. Sta- 72 

tistical analyses were conducted using R Python and CentOS. The metabolites with coefficient of variance (CV) >30% 73 

in the quality control (QC) samples were removed. 74 

2.5. Data Analysis 75 

Metabolites were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG), Human Metabolome 76 

Database (HMDB), and LIPID Maps databases. Principal components analysis (PCA) and partial least squares discri- 77 

minant analysis (PLS-DA) were performed using metaX. Univariate analysis (t-test) was used to calculate statistical 78 

significance. Metabolites with VIP > 1, P-value < 0.05, and fold change (FC) ≥ 1.2 or ≤ 0.833 were considered differ- 79 

ential metabolites. Data for clustering heat maps were normalized using z-scores of differential metabolites' intensity 80 

areas and plotted with the Pheatmap package in R. Correlations between differential metabolites were analyzed using 81 

the cor() function in R with the Pearson method, and significance was calculated with cor.mtest(). Metabolic pathways 82 

were analyzed using KEGG (hypergeometric test, adjusted by Benjamini and Hochberg method), and pathway enrich- 83 

ment was considered significant with a ratio of x/n > y/N and P-value < 0.05. Specificity and sensitivity were calculated, 84 

receiver operating characteristic (ROC) curve was plotted and area under the curve (AUC) were calculated to assess the 85 

predictive performance of metabolites. 86 

3. Results 87 

3.1. Quality Control 88 

Pearson correlation revealed a high correlation among QC samples (Supplementary Figure 1A, D). The peaks 89 

extracted from all the experimental and QC samples were subjected to PCA analysis after univariate scaling. As shown 90 

in the PCA plot, closely clustered QC samples indicate good stability of the whole method and high data quality. Except 91 

for QC samples in the positive mode, samples in every group were mixed with each other (Supplementary Figure 1B, 92 

C, E, F). 93 

3.2. Screening of Differential Metabolites 94 

A total of 795 and 457 metabolites were identified in the positive and negative modes, respectively. In both posi- 95 

tive and negative modes, the first two principal components capture a significant proportion of the variance in the data 96 

(23.28% - 28.32% for PC1 and 6.78% - 12.88% for PC2). However, all groups are mixed, indicating that the variance 97 

captured by the principal components does not significantly differentiate the groups (Figure 1). In contrast, PLS-DA 98 

revealed significant separation between each nephropathy group and control group (A vs D, B vs D, and C vs D) in both 99 

modes (Figure 2A-C, G-I). This is because PLS-DA uses group information to maximize the variance between groups, 100 
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leading to better discrimination. Moreover, the corresponding permutation test plots support the statistical significance 101 

of the PLS-DA model (Figure 2D-F, J-L). Importantly, the model is not overfitted, as evidenced by the following indi- 102 

cators: the R2 value is larger than the Q2 value, and the intercept of the Q2 regression line with the Y-axis is less than 103 

0. 104 

According to KEGG enrichment analysis, metabolites were mainly enriched in amino acid and lipid metabolism 105 

and involved in the digestive system (Figure 3A, B). HMDB revealed that most of the metabolites were lipids and lipid- 106 

like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzoids (Figure 3C, D). LIPID 107 

MAPS annotation showed that metabolites were linked with steroids, isoprenoids, flavonoids, fatty acids and conjugates, 108 

etc. (Figure 3E, F). 109 

Table 1 shows the number of differential metabolites after application of cutoff values (VIP > 1, FC > 1.2 and FC 110 

< 0.833, P-value < 0.05) for each comparison pair. Volcano plots are illustrated in Figure 4. A total of 341 and 216 111 

significantly differential metabolites were identified in the positive and negative modes, respectively, among which 71 112 

and 47 metabolites were present in all three comparison groups (Supplementary Table 1 and Supplementary Table 2). 113 

Hierarchical clustering analysis was performed for all the differential metabolites among four groups and within each 114 

comparison pair (Supplementary Figure 2). 115 

3.3. Correlation and Enrichment Analyses 116 

Correlation analysis of metabolites was conducted to understand the relationships between individual metabolites 117 

within the dataset. Pearson correlation coefficients were calculated for all pairwise comparisons of metabolites, and the 118 

results are illustrated in Figure 5. In the positive mode, most of the metabolites were highly positively correlated with 119 

each other except for 4-Phenyl-3-buten-2-one, (12Z)-9,10,11-trihydroxyoctadec-12-enoic acid, and PC (18:2/20:5) in 120 

the IgAN vs controls comparison pair. In the negative node, many metabolite pairs exhibited mild-to-moderate correla- 121 

tion. KEGG pathway enrichment analysis was used to identify the main biological functions of metabolites. Metabolites 122 

were found to be enriched in various pathways (Supplementary Table 3). Based on the KEGG enrichment results, bubble 123 

charts were plotted (Figure 6). 124 

3.4. Predictive Modelling 125 

Logistic regression was performed to evaluate the predictive performance of differential metabolites (Figure 7). 126 

In the positive mode, cumulative AUC values for comparison pairs IgAN vs controls and MN vs controls were 0.965 127 

and 0.972, respectively. Thus, AUC values for the first two pairs indicate excellent discriminatory ability as shown by 128 

strong performance in distinguishing between IgAN or MN and controls. In contrast, the AUC value for DN was 0.573, 129 

occasionally falling below the random classifier curve. In the negative mode, the AUC values of the three comparison 130 

pairs were generally lower compared to the positive mode and were slightly above 0.65. 131 

4. Discussion 132 

Understanding the metabolic profiles of IgAN, MN, and DN is crucial for advancing diagnostic precision, treat- 133 

ment effectiveness, and accurate prognosis in the field of nephrology. Detailed metabolic profiling facilitates accurate 134 

disease differentiation and identification of specific biomarkers, which may aid in the development of new early and 135 
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precise diagnostic strategies [11]. Insights into the underlying pathophysiological mechanisms derived from these pro- 136 

files can guide the development of targeted and personalized therapies, as well as monitor treatment responses. Further- 137 

more, metabolic markers offer prognostic value by predicting disease progression and stratifying patient risk, which is 138 

essential for effective management [12,13]. Researching metabolic pathways is important for advancing our understand- 139 

ing of nephropathies by revealing unique and shared pathways across different nephropathies, ultimately contributing 140 

to improved patient outcomes and scientific advancements [14]. 141 

Our study shows that there are distinct differences in metabolic profiles of IgAN, MN, and DN compared to 142 

healthy controls. Among 557 identified differential metabolites, only 118 (21.2%) were found in all three comparison 143 

groups. Differential metabolites of IgAN were significantly enriched in arachidonic acid metabolism, starch and sucrose 144 

metabolism, ferroptosis, and other pathways. Arachidonic acid metabolism plays a crucial role in kidney disorders and 145 

is associated with glomerular and interstitial inflammation [15]. Altered expression of metabolites responsible for ara- 146 

chidonic acid metabolism in IgAN was recently reported [16]. Interestingly, certain pathways, such as starch and sucrose 147 

metabolism, were mostly reported in studies investigating metabolic profiles of diabetes [17,18]. However, in our case, 148 

starch and sucrose metabolism was impaired in the IgAN group rather than the DN group. In the DN group, differential 149 

metabolites were mainly enriched in phenylalanine, tyrosine and tryptophan biosynthesis, histidine metabolism, etc. 150 

Phenylalanine, tyrosine and tryptophan as well as histidine play important roles in glucose transport and metabolism. A 151 

recent study reported that higher expression levels of tyrosine but not phenylalanine or tryptophan were associated with 152 

an increased risk of DN in the Chinese population [19]. However, large cohort studies are needed to validate differences 153 

in expression levels of these aromatic amino acids between DN patients and healthy controls as several studies obtained 154 

opposite results [20,21]. Finally, MN-enriched pathways included steroid hormone biosynthesis, neuroactive ligand- 155 

receptor interaction, and bile secretion, which is consistent with several reports on metabolic profiles of IgAN and DN 156 

in animal and human models [22-25]. Specifically, altered bile secretion was discovered in rats with IgAN and DN mice 157 

with DN [22,23]. Many kidney diseases are marked by changes in bile acid levels in the plasma, kidney, and urine. 158 

Increased levels of bile acids are associated with oxidative damage of renal tubular cell membranes, which results in 159 

poor glomerular filtration rates and renal function [26].  160 

The predictive modeling of differential metabolites using logistic regression has demonstrated varying levels of 161 

discriminatory ability across different nephropathy types when compared to controls. Our study analyzed the perfor- 162 

mance in both positive and negative ion modes, yielding various results for IgAN, MN, and DN. In the positive mode, 163 

the cumulative AUC values for IgAN vs controls and MN vs controls were 0.965 and 0.972, respectively. The strong 164 

performance characterized by near-perfect AUC values with high sensitivity and specificity in these comparison pairs 165 

highlights the potential of these metabolites as reliable biomarkers for IgAN and MN. In contrast, the AUC value for 166 

DN vs controls was 0.573, which is significantly lower and close to the performance of a random classifier (AUC = 167 

0.5). This suggests that the metabolites identified in the positive mode are less effective in distinguishing DN from 168 

controls. The lower discriminatory ability may be due to the heterogeneous nature of DN or the overlapping metabolic 169 

features between DN and controls. Further investigation is needed to identify more specific biomarkers or to refine the 170 

metabolic profiling techniques for better differentiation of DN. The AUC values obtained in the negative ion mode were 171 

generally lower compared to the positive mode, with values slightly above 0.65 for all comparisons. Although these 172 
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values indicate a moderate level of discriminatory power, they are not as high as those observed in the positive mode. 173 

The lower performance in the negative mode is likely attributed to differences between the modes, affecting the identi- 174 

fication and quantification of metabolites [27,28]. All studies that analyzed differences in metabolic profiles of IgAN, 175 

MN, or DN that we were able to find calculated predictive performance of one metabolite rather than reported AUC of 176 

the combined model, and we are thus unable to compare the results.   177 

Our study has several limitations that warrant consideration. First, the small, single-center cohort (n=20 per group) 178 

and strict exclusion criteria may limit statistical power and applicability of our results to broader populations. Thus, 179 

Future multicenter studies with larger, demographically diverse cohorts are necessary to validate findings and build 180 

robust, generalizable biomarker panels. Second, as this is a cross-sectional analysis, we could not assess temporal sta- 181 

bility or causality of identified biomarkers. Prospective longitudinal metabolomics studies are critical to understand 182 

biomarker kinetics, evaluate prognostic potential, and assess how metabolomic signatures evolve with therapeutic in- 183 

terventions.Third, the suboptimal performance of logistic regression models in positive mode, especially for DN, could 184 

be a result of incomplete metabolite coverage and sensitivity of the LC-MS system. Future studies should employ dual- 185 

mode ionization, untargeted and targeted LC-MS/MS, and integrative platforms (e.g., NMR + MS) to enhance metabo- 186 

lome coverage and improve detection sensitivity across nephropathy types. Fourth, our study did not account for poten- 187 

tial confounders, such as unrecorded comorbidities and genetic background. These confounders can influence metabolic 188 

profiles and may differ between nephropathy subtypes. Metabolomic analyses should be integrated with comprehensive 189 

clinical metadata, including genetic, pharmacological, and lifestyle information. Statistical techniques such as multivar- 190 

iable regression, mixed-effects modeling, and propensity score matching can further help mitigate confounding effects. 191 

Future studies can use multi-omic integration (e.g., transcriptomics, proteomics) and tissue specific pathway analysis 192 

(e.g., using Reactome or kidney-specific metabolic atlases) to improve biological interpretability and enhance mecha- 193 

nistic understanding.In conclusion, the excellent performance of the predictive models in the positive mode for IgAN 194 

and MN underscores the potential clinical application of the metabolic biomarkers for early diagnosis and monitoring. 195 

However, the suboptimal performance for DN, particularly in the positive mode, clearly shows the need for further 196 

research to improve the metabolic profiling and identification of specific biomarkers for DN. Future studies should focus 197 

on optimizing the metabolomic analysis protocols, potentially integrating both ionization modes, to enhance the overall 198 

predictive accuracy. Moreover, expanding the sample size and including a broader range of metabolites could improve 199 

the accuracy and generalizability of the predictive models.  200 

5. Conclusions 201 

In conclusion, IgAN, MN and DN have similar but distinct metabolic profiles. Only positive node metabolites of 202 

IgAN and MN exhibited great predictive performance.  203 

Supplementary Materials: The following supporting information can be downloaded at: https://ze- 204 

nodo.org/doi/10.5281/zenodo.13224489 Supplementary Figure 1 Quality control analysis (A) Pearson correlation be- 205 

tween quality control samples (positive mode) (B) principal component (PC) plot of five groups (positive mode, 2 206 

dimensions) (C) PC plot of five groups (positive mode, 3 dimensions) (D) Pearson correlation between QC samples 207 

(negative mode) (E) PC plot of five groups (negative mode, 2 dimensions) (F) PC plot of five groups (negative mode, 3 208 
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dimensions). Supplementary Figure 2 Heatmaps of differential metabolites (A) IgA nephropathy (IgAN) vs controls 209 

pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy 210 

(DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative 211 

mode) (F) DN vs controls pair (negative mode). Supplementary table 1 List of differential metabolites in three com- 212 

parison pairs (positive mode). Supplementary table 2 List of differential metabolites in three comparison pairs (nega- 213 

tive mode). Supplementary table 3 KEGG enrichment pathways. 214 

Author Contributions: Conceptualization, Y.A.S., L.G., R.L., methodology, Y.A.S., L.G., R.L.; software, Y.A.S., ..; 215 

validation, Y.A.S., X.F.; formal analysis, Y.A.S.; investigation, Y.A.S., L.G.; resources, R.L.; data curation, R.L.; writ- 216 

ing—original draft preparation, Y.A.S.; writing—review and editing, Y.A.S.; visualization, Y.A.S.; supervision, R.L.; 217 

project administration, R.L.,; funding acquisition, R.L. All authors have read and agreed to the published version of the 218 

manuscript. 219 

Funding: This work was supported by the Key Laboratory Project of Shanxi Province, grant number 201805D111020, 220 

and the Key Laboratory Construction Plan Project of Shanxi Provincial Health Commission, grant number 2020SYS01. 221 

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki and 222 

approved by the Ethics Committee of Shanxi Provincial People's Hospital, Shanxi Medical University. 223 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. 224 

Data Availability Statement: All data not available within the manuscript or supplementary material can be obtained 225 

from the corresponding author upon reasonable request.  226 

Acknowledgments: None. 227 

Conflicts of Interest: The authors declare no conflicts of interest. 228 

References 229 

1. Vahedian-Azimi A, Beni FH, Fras Z, et al. Effects of statins on the incidence and outcomes of acute kidney injury 230 

in critically ill patients: a systematic review and meta-analysis. Arch Med Sci 2023;19(4):952-64. 231 

2. Katsiki N, Kolovou G, Melidonis A, Banach M. The Cardiac-Kidney-Liver (CKL) syndrome: the "real entity" of 232 

type 2 diabetes mellitus. Arch Med Sci 2024;20(1):207-15. 233 

3. Guo X, Tie X, Zhang Y, et al. Management and Clinical Outcomes of Membranous Nephropathy, IgA Nephrop- 234 

athy, and Minimal Change Disease Two Years Post-Kidney Biopsy. Kidney Blood Press Res 2024;49(1):345-54. 235 

4. Stamellou E, Seikrit C, Tang SCW, et al. IgA nephropathy. Nat Rev Dis Primers 2023;9(1):67. 236 

5. Nieto-Gañán I, Iturrieta-Zuazo I, Rita C, Carrasco-Sayalero Á. Revisiting immunological and clinical aspects of 237 

membranous nephropathy. Clin Immunol 2022;237:108976. 238 

6. Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage 239 

renal disease in individuals with and without diabetes: a meta-analysis. Lancet 2012;380(9854):1662-73. 240 

7. Furlani IL, da Cruz Nunes E, Canuto GAB, Macedo AN, Oliveira RV. Liquid Chromatography-Mass Spectrom- 241 

etry for Clinical Metabolomics: An Overview. Adv Exp Med Biol 2021;1336:179-213. 242 

Prep
rin

t



 

 

8. Pereira PR, Carrageta DF, Oliveira PF, Rodrigues A, Alves MG, Monteiro MP. Metabolomics as a tool for the 243 

early diagnosis and prognosis of diabetic kidney disease. Med Res Rev 2022;42(4):1518-44. 244 

9. Wang H, Ainiwaer A, Song Y, et al. Perturbed gut microbiome and fecal and serum metabolomes are associated 245 

with chronic kidney disease severity. Microbiome 2023;11(1):3. 246 

10. Harvey FC, Collao V, Bhattacharya SK. High-Resolution Liquid Chromatography-Mass Spectrometry for Lip- 247 

idomics. Methods Mol Biol 2023;2625:57-63. 248 

11. González-Domínguez Á, Armeni M, Savolainen O, Lechuga-Sancho AM, Landberg R, González-Domínguez R. 249 

Untargeted Metabolomics Based on Liquid Chromatography-Mass Spectrometry for the Analysis of Plasma and Eryth- 250 

rocyte Samples in Childhood Obesity. Methods Mol Biol 2023;2571:115-22. 251 

12. Saucedo AL, Perales-Quintana MM, Paniagua-Vega D, Sanchez-Martinez C, Cordero-Perez P, Minsky NW. 252 

Chronic Kidney Disease and the Search for New Biomarkers for Early Diagnosis. Curr Med Chem 2018;25(31):3719- 253 

47. 254 

13. Li H, Li D, Ledru N, et al. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional 255 

human kidney anatomy. Cell Metab 2024;36(5):1105-25.e10. 256 

14. Lecamwasam A, Mansell T, Ekinci EI, Saffery R, Dwyer KM. Blood Plasma Metabolites in Diabetes-Associated 257 

Chronic Kidney Disease: A Focus on Lipid Profiles and Cardiovascular Risk. Front Nutr 2022;9:821209. 258 

15. Fromentin S, Forslund SK, Chechi K, et al. Microbiome and metabolome features of the cardiometabolic disease 259 

spectrum. Nat Med 2022;28(2):303-14. 260 

16. Uwaezuoke SN, Muoneke UV, Mbanefo NR. The Supportive Treatment of IgA Nephropathy and Idiopathic Ne- 261 

phrotic Syndrome: How Useful are Omega-3 Polyunsaturated Fatty Acids? Int J Nephrol Renovasc Dis 2020;13:27-35. 262 

17. Wu H, Tang D, Yun M, et al. Metabolic Dysfunctions of Intestinal Fatty Acids and Tryptophan Reveal Immuno- 263 

Inflammatory Response Activation in IgA Nephropathy. Front Med (Lausanne) 2022;9:811526. 264 

18. Cui C, Wang C, Han S, Yu D, Zhu L, Jiang P. Impact of a long-term high-fructose diet on systemic metabolic 265 

profiles of mice. FASEB Bioadv 2022;4(8):560-72. 266 

19. Wang X, He Q, Chen Q, et al. Network pharmacology combined with metabolomics to study the mechanism of 267 

Shenyan Kangfu Tablets in the treatment of diabetic nephropathy. J Ethnopharmacol 2021;270:113817. 268 

20. Zhang S, Li X, Luo H, Fang ZZ, Ai H. Role of aromatic amino acids in pathogeneses of diabetic nephropathy in 269 

Chinese patients with type 2 diabetes. J Diabetes Complications 2020;34(10):107667. 270 

21. Luo HH, Li J, Feng XF, et al. Plasma phenylalanine and tyrosine and their interactions with diabetic nephropathy 271 

for risk of diabetic retinopathy in type 2 diabetes. BMJ Open Diabetes Res Care 2020;8(1). 272 

22. Liu Y, Chen X, Liu Y, et al. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. 273 

Chem Biol Interact 2019;314:108815. 274 

23. Zhao J, He K, Du H, et al. Bioinformatics prediction and experimental verification of key biomarkers for diabetic 275 

kidney disease based on transcriptome sequencing in mice. PeerJ 2022;10:e13932. 276 

24. Li J, Cao Y, Lu R, et al. Integrated Fecal Microbiome and Serum Metabolomics Analysis Reveals Abnormal 277 

Changes in Rats with Immunoglobulin A Nephropathy and the Intervention Effect of Zhen Wu Tang. Front Pharmacol 278 

2020;11:606689. 279 

Prep
rin

t



 

 

25. Xue R, Wang Y, Geng L, et al. Comprehensive analysis of the gene expression profile of the male and female 280 

BTBR mice with diabetic nephropathy. Int J Biol Macromol 2024;257(Pt 2):128720. 281 

26. Ren H, Lv W, Shang Z, et al. Identifying functional subtypes of IgA nephropathy based on three machine learning 282 

algorithms and WGCNA. BMC Med Genomics 2024;17(1):61. 283 

27. Yang J, Pontoglio M, Terzi F. Bile acids and Farnesoid X Receptor in renal pathophysiology. Nephron 2024. 284 

28. Niessen WM. Fragmentation of toxicologically relevant drugs in positive-ion liquid chromatography-tandem mass 285 

spectrometry. Mass Spectrom Rev 2011;30(4):626-63. 286 

29. Niessen WM. Fragmentation of toxicologically relevant drugs in negative-ion liquid chromatography-tandem 287 

mass spectrometry. Mass Spectrom Rev 2012;31(6):626-65. 288 

30. Ye M, Tang D, Li W, et al. Serum metabolomics analysis reveals metabolite profile and key biomarkers of idio- 289 

pathic membranous nephropathy. PeerJ 2023;11:e15167. 290 

31. Dong L, Tan J, Zhong Z, Tang Y, Qin W. Altered serum metabolic profile in patients with IgA nephropathy. Clin 291 

Chim Acta 2023;549:117561. 292 

32. Lin HT, Cheng ML, Lo CJ, Lin G, Liu FC. Metabolomic Signature of Diabetic Kidney Disease in Cerebrospinal 293 

Fluid and Plasma of Patients with Type 2 Diabetes Using Liquid Chromatography-Mass Spectrometry. Diagnostics 294 

(Basel) 2022;12(11). 295 

33. Liu S, Gui Y, Wang MS, et al. Serum integrative omics reveals the landscape of human diabetic kidney disease. 296 

Mol Metab 2021;54:101367. 297 

 298 

Tables 299 

Table 1 Number of differential metabolites 300 

Ioniza-

tion 

mode 

Compari-

son pair 

Total number of identified me-

tabolites 

Significantly upregu-

lated 

Significantly downregu-

lated 

Posi-

tive 

IgAN vs N 795 45 140 

MN vs N 795 28 151 

DN vs N 795 80 135 

Nega-

tive 

IgAN vs N 457 37 69 

MN vs N 457 53 67 

DN vs N 457 80 55 

IgAN - IgA nephropathy, MN – membranous nephropathy, DN – diabetic nephropathy, N – controls. 301 
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 303 

Figure legends 304 

Figure 1 Principal component analysis (PCA) plots (A) IgA nephropathy (IgAN) vs controls pair (positive mode, 2 305 

dimensions) (B) membranous nephropathy (MN) vs controls pair (positive mode, 2 dimensions) (C) diabetic 306 

nephropathy (DN) vs controls pair (positive mode, 2 dimensions) (D) IgAN vs controls pair (positive mode, 3 307 

dimensions) (E)  MN vs controls pair (positive mode, 3 dimensions) (F) DN vs controls pair (positive mode, 3 308 

dimensions) (G) IgAN vs controls pair (negative mode, 2 dimensions) (H)  MN vs controls pair (negative mode, 2 309 

dimensions) (I) DN vs controls pair (negative mode, 2 dimensions) (J) IgAN vs controls pair (negative mode, 3 310 

dimensions) (K)  MN vs controls pair (negative mode, 3 dimensions) (L) DN vs controls pair (negative mode, 3 311 

dimensions). 312 

Figure 2 Partial least squares discriminant analysis (A) principal component (PC) plot, IgA nephropathy (IgAN) vs 313 

controls pair (positive mode) (B) PC plot, membranous nephropathy (MN) vs controls pair (positive mode) (C) PC plot, 314 

diabetic nephropathy (DN) vs controls pair (positive mode) (D) Permutation test (PT) plot,  IgAN vs controls pair 315 

(positive mode) (E)  PT plot, MN vs controls pair (positive mode) (F) PT plot, DN vs controls pair (positive mode) (G) 316 

PC plot, IgAN vs controls pair (negative mode) (H) PC plot, MN vs controls pair (negative mode) (I) PC plot, DN vs 317 

controls pair (negative mode) (J) PT plot, IgAN vs controls pair (negative mode) (K)  PT plot, MN vs controls pair 318 

(negative mode) (L) PT plot, DN vs controls pair (negative mode). 319 

Figure 3 Metabolite annotation (A) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation (positive 320 

mode) (B) Human Metabolome Database (HMDB) annotation (positive mode) (C) LIPID Maps annotation (positive 321 

mode) (D) KEGG pathway annotation (negative mode) (E) HMDB annotation (negative mode) (F) LIPID Maps anno- 322 

tation (negative mode) 323 

Figure 4 Volcano plots of metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) membranous 324 

nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (positive mode) (D) 325 

IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair (negative mode)  326 

Figure 5 Correlation between differential metabolites (A) IgA nephropathy (IgAN) vs controls pair (positive mode) (B) 327 

membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephropathy (DN) vs controls pair (posi- 328 

tive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative mode) (F) DN vs controls pair 329 

(negative mode)  330 
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Figure 6 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis (A) IgA nephropathy (IgAN) vs 331 

controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephrop- 332 

athy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative 333 

mode) (F) DN vs controls pair (negative mode)  334 

Figure 7 Receiver operating characteristic (ROC) curve of differential metabolites (A) IgA nephropathy (IgAN) vs 335 

controls pair (positive mode) (B) membranous nephropathy (MN) vs controls pair (positive mode) (C) diabetic nephrop- 336 

athy (DN) vs controls pair (positive mode) (D) IgAN vs controls pair (negative mode) (E) MN vs controls pair (negative 337 

mode) (F) DN vs controls pair (negative mode) 338 
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