

Exploring the causal association between mitochondrial dysfunction and idiopathic pulmonary fibrosis through two-sample Mendelian randomization

Keywords

idiopathic pulmonary fibrosis, mitochondrial dysfunction, causality, Mendelian randomization, transmembrane protein 70, sirtuin-5

Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a prevalent lung disease affecting mainly older adults, characterized by abnormal lung healing and an altered extracellular matrix. This study aims to explore the potential causal association between mitochondrial dysfunction and idiopathic pulmonary fibrosis.

Material and methods

This two-sample Mendelian randomization study analyzed GWAS data on mitochondrial dysfunction and IPF. The primary analysis employed the inverse variance weighted method, confirmed by the weighted median, weighted mode, and MR-Egger regression methods. Heterogeneity and pleiotropy were assessed using Cochran's Q-test and MR-Egger, with robustness evaluated through leave-one-out analysis.

Results

The genetic predictions indicated a potential inverse causal association of Transmembrane protein 70 with IPF in the IVW (OR = 0.83, 95% CI: 0.70-0.99, P = 0.03), without evidence of heterogeneity, horizontal pleiotropy, or outliers. The MR-PRESSO analysis showed one outlier for NAD-dependent protein deacetylase sirtuin-5 and one outlier for Serine-tRNA ligase. After removing the outliers, NAD-dependent protein deacetylase sirtuin-5 showed a suggestive positive association with IPF (OR = 1.25, 95% CI: 1.09-1.43, P = 0.007), without evidence of heterogeneity, horizontal pleiotropy, or outliers.

Conclusions

This MR analysis provides genetic evidence for potential causal associations of Transmembrane protein 70 and NAD-dependent protein deacetylase sirtuin-5 with IPF. These proteins may represent therapeutic targets and enhance understanding of mitochondrial dysfunction in IPF. Further validation is needed before clinical application.

Exploring the causal association between mitochondrial dysfunction and idiopathic pulmonary fibrosis through two-sample Mendelian randomization

Running title: MR: mitochondrial dysfunction and IPF

Ming Yu^{1*}, Linlin Ye²

¹ Affiliated Hospital of Liaoning University of Traditional Chinese Medicine GCP center, LiaoNing province, Shenyang City 110032, China

² Shenyang City Sujiatun District Health Bureau, LiaoNing province Shenyang City Medical general management department staff, Shenyang City 110032, China

***Corresponding Author:**

Ming Yu

E-mail: haroldmy@126.com

Tel: +86-18102459696

ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a prevalent lung disease affecting mainly older adults, characterized by abnormal lung healing and an altered extracellular matrix. This study aims to explore the potential causal association between mitochondrial dysfunction and idiopathic pulmonary fibrosis.

Material and methods: This two-sample Mendelian randomization study analyzed GWAS data on mitochondrial dysfunction and IPF. The primary analysis employed the inverse variance weighted method, confirmed by the weighted median, weighted mode, and MR-Egger regression methods. Heterogeneity and pleiotropy were assessed using Cochran's Q-test and MR-Egger, with robustness evaluated through leave-one-out analysis.

Results: The genetic predictions indicated a potential inverse causal association of Transmembrane protein 70 with IPF in the IVW (OR = 0.83, 95% CI: 0.70-0.99, P = 0.03), without evidence of heterogeneity, horizontal pleiotropy, or outliers. The MR-PRESSO analysis showed one outlier for NAD-dependent protein deacetylase sirtuin-5 and one outlier for Serine-tRNA ligase. After removing the outliers, NAD-dependent protein deacetylase sirtuin-5 showed a suggestive positive association with IPF (OR = 1.25, 95% CI: 1.09-1.43, P = 0.007), without evidence of heterogeneity, horizontal pleiotropy, or outliers.

Conclusions: This MR analysis provides genetic evidence for potential causal associations of Transmembrane protein 70 and NAD-dependent protein deacetylase sirtuin-5 with IPF. These proteins may represent therapeutic targets and enhance understanding of mitochondrial dysfunction in IPF. Further validation is needed before clinical application.

Keywords: causality; idiopathic pulmonary fibrosis; Mendelian randomization; mitochondrial dysfunction; transmembrane protein 70; sirtuin-5.

Introduction

Idiopathic pulmonary fibrosis (IPF) results from an abnormal wound-healing process in the lung, resulting in the deposition of an altered extracellular matrix and the disruption of the alveolar architecture (1-3). IPF mainly affects adults aged 55-75 years and is more common in men than in women (1, 4). The estimated incidence of IPF is 3-9 per 100,000 person-years worldwide (1), and the prevalence is about 14-42.7 per 100,000 individuals (5, 6). The risk factors for IPF include cigarette smoking, genetic variants, exposure to metal and wood dust, gastroesophageal reflux, and certain viruses (1, 2, 7). Current management includes smoking cessation, pulmonary rehabilitation, and long-term oxygen therapy. Antifibrotic drugs such as pirfenidone and nintedanib may slow lung function decline, whereas corticosteroids, vasodilators, and interferon-based regimens are largely ineffective (2, 7). Nevertheless, despite best management, the median survival after diagnosis is about 3 years, and patients with acute exacerbations have $\geq 60\%$ in-hospital mortality (2, 4). Due to its idiopathic nature, the etiology and pathogenesis remain poorly understood. Therefore, there is a need for a better understanding of IPF to improve its management.

Mitochondria play a central role in eukaryotic cells by generating ATP through oxidative phosphorylation, but they are also involved in fatty acid synthesis, calcium homeostasis, cell proliferation, and apoptosis(8-11)(12, 13). Dysfunctional mitochondria are involved in aging and several diseases (14, 15): cardiovascular diseases (16), diabetes (17), metabolic syndrome (18), autoimmune diseases (19), degenerative neurological and muscular diseases (20), psychiatric disorders (21), gastrointestinal diseases (22), fatiguing illnesses (23), and chronic infections (24). Growing evidence shows that mitochondrial dysfunction is involved

in IPF (25, 26) and fibrotic diseases in general (27, 28). Mechanistically, impaired electron transport reduces energy production while elevating ROS generation, driving oxidative stress—a hallmark of IPF. In addition, mitochondrial dysfunction alters cellular metabolism, promotes senescence, apoptosis, and stem cell exhaustion, and is linked to genomic instability, defective proteostasis, impaired autophagy, and telomere attrition (25, 26, 29-31). Research is focused on identifying potential therapeutic targets that could improve mitochondrial function and reduce oxidative stress in IPF. Strategies aimed at modulating pro-fibrotic pathways, such as TGF- β signaling, could also be beneficial. Promoting autophagy to remove dysfunctional mitochondria could be a potential therapeutic approach (8, 32, 33).

The recent decades have seen the completion of many genome-wide association studies (GWASs) that provided data for millions of genetic variations and their association with phenotypes, including diseases (34, 35). Mendelian randomization (MR) relies on the common genetic variations for different environmental exposures and enables the exploration of possible causal associations between exposures and diseases (36-38). Two-sample MR uses the associations between single-nucleotide polymorphism (SNPs) and exposure and between SNPs and outcomes from different GWASs to combine them into an estimation of the causal associations. Recent MR-based studies have successfully applied this approach to explore causal links between various exposures, such as environmental factors or organ function, and the risk of chronic diseases (39, 40). These examples highlight the robustness and versatility of the MR framework, providing a strong methodological precedent for its application in investigating the role of mitochondrial dysfunction in IPF.

The available data about the association between mitochondrial dysfunction and IPF mainly come from epidemiological studies that can suffer from confounding and reverse causation.

Under key assumptions, MR reduces the reverse causation and confounding that impede or mislead the interpretation of results from epidemiological studies (41). Although there is evidence for causality between mitochondrial dysfunction and fibrotic diseases, including IPF (26, 42), the involvement of specific mitochondrial proteins remains to be examined. Determining causality between specific mitochondrial proteins could hint toward the mechanisms involved and potential therapeutic targets.

Hence, this study used the MR methodology to examine the causal association between mitochondrial dysfunction and IPF. The results could help improve our understanding of IPF pathogenesis.

Material and methods

Study design

This study used publicly available data from GWASs to investigate the causal association between mitochondrial dysfunction and IPF (Figure 1). Since the data were from studies that already adhered to the Declaration of Helsinki, no additional ethical approval was necessary.

This study assumed that the SNPs used as instrumental variables (IVs) for the exposure are associated with mitochondrial dysfunction, that there are no common causes to the SNPs and the outcome (IPF), and that there are no independent pathways between the SNPs and IPF other than through mitochondrial dysfunction (41).

Data sources

The GWAS data for the outcome (IPF) was from FinnGen, which is a large project in genomics and personalized medicine that collected and analyzed the genetic and health outcomes of 500,000 biobank donors in Finland. The IPF dataset

(<https://risteys.finregistry.fi/endpoints/IPF>) was used in the present study. It contains 2189 patients with IPF and 407,609 controls.

The GWAS for mitochondrial 2,4-dienoyl-CoA reductase 1 is from a published study (43) and includes 1296 individuals and 18,162,745 SNPs. The other mitochondrial protein data are from 3301 individuals of European origin (10,534,735 SNPs) (44) (<https://gwas.mrcieu.ac.uk/>), including 2,4-Dienoyl-CoA Reductase, Diablo homolog, Persulfide dioxygenase ETHE1, Ribosome-recycling factor, Serine-tRNA ligase, Mitochondrial import inner membrane translocase subunit, NADH dehydrogenase (ubiquinone) 1 beta subcomplex subunit 8, NADH dehydrogenase (ubiquinone) iron-sulfur protein 4, NAD-dependent protein deacylase sirtuin-5, NADH dehydrogenase (ubiquinone) flavoprotein 2, and Transmembrane protein 70. GWAS information for all outcomes and exposures is shown in Supplementary Table S1.

Instrument variable selection

The IVs included in this study had to meet the following criteria. First, the SNPs significantly associated with mitochondrial proteins in the entire genome were screened out based on $P < 5 \times 10^{-8}$. However, because of the limited sample size of the available GWASs, very few SNPs reached this stringent threshold for some exposures. Therefore, in line with common practice in MR studies, we relaxed the threshold to $P < 5 \times 10^{-6}$ or $P < 5 \times 10^{-5}$ to ensure adequate instrument numbers while maintaining analytical power. To minimize potential weak instrument bias, the strength of each SNP was evaluated, and only those with F-statistics > 10 were retained (45). Second, the SNPs with a minimum minor allele frequency (MAF) of > 0.01 were removed (46). Finally, linkage disequilibrium (LD) among SNPs was removed based on $R^2 < 0.001$ and a window size of 10,000 kb (47). If a SNP identified for exposure was not

found in the outcome data, then proxy SNPs were identified based on higher LD ($R^2=0.8$) (48). The strength of the IVs was evaluated using the F-value for each SNP to assess the potential weak instrument bias using the formula $F=R^2 \times (N-2)/(1-R^2)$, where R^2 represents the proportion of exposure variance explained by the SNP in the IV. F- statistics >10 indicated sufficient instrument strength and reduced the likelihood of weak instrument bias.

Mendelian randomization analysis

The primary analysis used in MR studies is the inverse variance weighted (IVW) method (49). In MR, the IVW method is a popular approach for estimating causal effects, where genetic variants are used as IVs to infer causality between an exposure and an outcome, even in the presence of unmeasured confounders (50). If the IVW analysis reveals a significant causal association ($P < 0.05$), then the strength of the association can be tested using the MR-Egger (51), weighted median (52), and weighted mode (53) methods. Those methods are used to support the robustness of the IVW results because their use without the IVW method could lead to bias and unsteady results (50). The MR analysis was performed using the “TwoSampleMR” package in R 4.3.0 (The R Project for Statistical Computing, www.r-project.org). The results were presented as odds ratios (ORs) and 95% confidence intervals (CIs)

Sensitivity analysis

Heterogeneity can bias the observed causal associations between exposure and outcomes. Heterogeneity among IVs was detected using Cochran’s Q test; P-values >0.05 indicated low heterogeneity (54). In addition, according to the third MR assumption, MR analyses are only valid in the absence of horizontal pleiotropy, which was detected using the MR-Egger regression method to explore horizontal pleiotropy based on an intercept term approaching 0

or $P > 0.05$ (54). Outliers can also bias causal associations and be detected using the MR-PRESSO method based on $P < 0.05$ (54, 55). The outliers were removed, and the ORs were recalculated to correct for horizontal pleiotropy. Finally, a leave-one-out analysis was used to assess the robustness and consistency of the results (56).

Results

Instrumental variable selection

This study screened out 143 IVs related to mitochondrial function. The mean F-value was 36.21 (range, 20.89-1787.59). The IVs, F-values, and non-matching SNPs and their proxies are summarized in Table 1. All F-values were >10 , indicating the absence of weak instrumental bias (Supplementary Table S2).

Mendelian randomization analysis results

The genetic predictions indicated that there were no statistically significant associations between mitochondrial proteins and IPF, except for a possible inverse causal association of genetically predicted transmembrane protein 70 with genetically predicted IPF in the IVW (OR=0.83, 95%CI: 0.70-0.99, $P = 0.03$) (Table 2 and Figure 2). The other factors showed no genetically predicted causal associations with IPF (Table 2 and Figures S1-10). Furthermore, the MR-PRESSO analysis showed one outlier for NAD-dependent protein deacetylase sirtuin-5 (rs10733789) and one outlier for Serine-tRNA ligase (rs1294404). After removing the outlier, NAD-dependent protein deacetylase sirtuin-5 showed a positive causal association with IPF (OR = 1.25, 95% CI: 1.09-1.43, $P = 0.007$) (Table 4). Conversely, the exclusion did not alter the outcomes for Serine-tRNA ligase (Table 4), maintaining the initial observations.

Sensitivity analyses

Sensitivity analyses attest to the robustness of the findings. While Cochrane's Q-test revealed significant heterogeneity for 2,4-Dienoyl-CoA Reductase ($P=0.028$), Serine-tRNA ligase ($P=0.008$), NAD-dependent protein deacetylase sirtuin-5 ($P=0.033$), and Diablo homolog ($P=0.043$) (Table 3), but IVW is a random-effect statistical method that can tolerate some degree of heterogeneity (57). The MR-Egger regression results suggested no evidence of horizontal pleiotropy (all $P > 0.05$) (Table 3). The leave-one-out analyses revealed that no SNPs drove the results (Figure 2 and Figures S1-10). These collective findings underscore the resilience of the conclusions to sensitivity analyses and support the validity of our causal inference.

Discussion

This two-sample MR study explored the potential causal association between mitochondrial dysfunction and IPF. The results suggest that genetically predicted Transmembrane protein 70 may have a protective association with IPF. NAD-dependent protein deacetylase sirtuin-5 might also be associated, but the association was observed after removing one outlier, and the result should be taken cautiously. The other mitochondrial proteins were not associated with IPF, and more in-depth research is necessary.

Transmembrane protein 70 is a mitochondrial membrane protein that possibly plays a role in the biogenesis of mitochondrial ATP synthase (58, 59). Indeed, mutations in the *TMEM70* gene are associated with neonatal mitochondrial encephalocardiomyopathy due to ATP synthase deficiency (60, 61). A study showed that knocking down *TMEM70* did not affect p16 and p21 (two markers of cellular senescence) in human bronchial epithelial cells (62). A deficiency in Transmembrane protein 70 has been reported to be associated with pulmonary hypertension in newborns (63). For now, no other evidence is available to link

Transmembrane protein 70 with IPF, and additional research is necessary. Nevertheless, mitochondrial dysfunction is involved in IPF, and the aging lung is characterized by decreased mitochondrial respiration, mitophagy, and mitochondrial biogenesis (25). Since IPF is observed in adults aged 55-75 years (1, 4), the mitochondrial pathogenesis of IPF is highly likely. As Transmembrane protein 70 participates in forming ATP synthase (58, 59), lower Transmembrane protein 70 could contribute to decreased mitochondrial respiration and mitochondrial biogenesis. Nevertheless, whether a lower formation of ATP synthase, decreased mitochondrial respiration, and impaired mitochondrial biogenesis, all due to a lower Transmembrane protein 70 expression, participate in IPF remains uncertain and requires confirmation.

Another mitochondrial protein, NAD-dependent protein deacetylase sirtuin-5, may also be involved in IPF pathogenesis, although the association was only observed after removing one outlier, and thus should be regarded as hypothesis-generating. NAD-dependent protein deacetylase sirtuin-5 has been implicated in various diseases, including cancer, neurodegenerative disorders, and potentially IPF (31, 64). Nevertheless, sirtuins, including NAD-dependent protein deacetylase sirtuin-5, are involved in lung fibrosis (65) and pulmonary cell senescence (31, 66), underscoring their relevance in the context of IPF and warranting further rigorous examination. NAD-dependent protein deacetylase sirtuin-5 is a member of the sirtuin family, primarily expressed in the mitochondrial matrix, and is crucial for maintaining mitochondrial function and cellular homeostasis (64, 67). NAD-dependent protein deacetylase sirtuin-5 regulates proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle, fatty acid oxidation, the electron transport chain, ketone body formation, nitrogenous waste management, and ROS detoxification (64, 68). Some studies suggest that NAD-dependent

protein deacylase sirtuin-5 deficiency or dysfunction may contribute to the development of IPF (31, 69). Specifically, NAD-dependent protein deacylase sirtuin-5-mediated desuccinylation may prevent mitochondrial dysfunction in alveolar epithelial cells, a key event in IPF (69).

The lack of associations for most other mitochondrial proteins in this study requires careful interpretation. First, some proteins may truly have no causal role in IPF. Second, statistical power might be insufficient to detect weak effects given the limited sample size of current GWASs. Third, tissue specificity could play a role, as the pQTL data used for mitochondrial proteins were derived mainly from blood, which may not reflect protein regulation in lung tissue. Fourth, mitochondrial pathways are highly interconnected, and the effects of individual proteins may be compensated by others, obscuring their independent associations. From a clinical perspective, these findings highlight TMEM70 and SIRT5 as potential therapeutic targets, as both proteins are involved in mitochondrial function and cellular metabolism. Specifically, TMEM70 plays an essential role in ATP synthase biogenesis, and its deficiency has been linked to mitochondrial diseases such as ATP synthase deficiency (60). SIRT5, by regulating diverse metabolic and cellular processes, has also emerged as a potential therapeutic target in fibrotic diseases including IPF (64, 68, 70, 71). The present results therefore not only deepen our understanding of the contribution of mitochondrial dysfunction to IPF pathogenesis, but also suggest that, after further validation, genetic variants in these proteins may eventually contribute to risk stratification in susceptible populations. Nevertheless, the current evidence remains limited, and more studies are needed before these proteins can be translated into clinical management.

The main strength of MR studies is the use of large-scale GWAS data from thousands of individuals and millions of SNPs. On the other hand, the study also had limitations. First, the GWAS data were derived exclusively from individuals of European ancestry, which may limit the generalizability of our findings to other populations with different genetic backgrounds and environmental exposures. Future studies including more diverse populations are needed to validate these associations. Second, there may be sample overlap between the exposure and outcome GWAS datasets, which could potentially introduce bias. Although the exact degree of overlap could not be determined, we sought to mitigate this risk. Sample overlap does not invalidate the MR estimates, but it can amplify the bias from weak instruments (72). Therefore, by ensuring that all our instruments had an F-statistic greater than 10, we minimized the potential for weak instrument bias and, consequently, reduced the impact of any potential sample overlap. Finally, several SNPs could be selected as IVs, affecting the causal associations.

Conclusions

The MR analysis results suggest a potential protective association of genetically predicted Transmembrane protein 70 with IPF and a possible positive association of SIRT5, although the latter finding requires cautious interpretation. These proteins may represent potential therapeutic targets that improve understanding of mitochondrial dysfunction in IPF, but the current evidence is preliminary. Further biological and clinical validation is required before these findings can be translated into clinical practice. The other mitochondrial proteins were not associated with IPF, and more in-depth research is necessary.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Acknowledgments

None.

Authors contributions

Ming Yu and Linlin Ye carried out the studies, participated in collecting data, and drafted the manuscript. Ming Yu and Linlin Ye performed the statistical analysis and participated in its design. Ming Yu and Linlin Ye participated in the acquisition, analysis, or interpretation of data and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors report there are no competing interests to declare.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

REFERENCES

1. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. *N Engl J Med* 2018;379:797-798.
2. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. *Am J Respir Crit Care Med* 2011;183:788-824.
3. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. *Lancet* 2017;389:1941-1952.
4. King TE, Jr., Pardo A, Selman M. Idiopathic pulmonary fibrosis. *Lancet* 2011;378:1949-1961.
5. Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2006;174:810-816.
6. Lee HE, Myong JP, Kim HR, Rhee CK, Yoon HK, Koo JW. Incidence and prevalence of idiopathic interstitial pneumonia and idiopathic pulmonary fibrosis in Korea. *Int J Tuberc Lung Dis* 2016;20:978-984.
7. Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. *Am J Respir Crit Care Med* 2018;198:e44-e68.
8. Zong Y, Li H, Liao P, et al. Mitochondrial dysfunction: mechanisms and advances in therapy. *Signal Transduction and Targeted Therapy* 2024;9:124.
9. Javadov S, Kozlov AV, Camara AKS. Mitochondria in Health and Diseases. *Cells* 2020;9.
10. Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. *Front Physiol* 2023;14:1114231.

11. Rossmann MP, Dubois SM, Agarwal S, Zon LI. Mitochondrial function in development and disease. *Dis Model Mech* 2021;14.
12. Osellame LD, Blacker TS, Duchen MR. Cellular and molecular mechanisms of mitochondrial function. *Best Pract Res Clin Endocrinol Metab* 2012;26:711-723.
13. Friedman JR, Nunnari J. Mitochondrial form and function. *Nature* 2014;505:335-343.
14. Nicolson GL. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements. *Integr Med (Encinitas)* 2014;13:35-43.
15. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA. Mitochondrial and metabolic dysfunction in ageing and age-related diseases. *Nat Rev Endocrinol* 2022;18:243-258.
16. Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. *Front Cell Dev Biol* 2022;10:841523.
17. Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. *Redox Biol* 2017;11:637-645.
18. Prasun P. Mitochondrial dysfunction in metabolic syndrome. *Biochim Biophys Acta Mol Basis Dis* 2020;1866:165838.
19. Staal J, Blanco LP, Perl A. Editorial: Mitochondrial dysfunction in inflammation and autoimmunity. *Front Immunol* 2023;14:1304315.
20. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. *Neural Regen Res* 2013;8:2003-2014.
21. Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. *Schizophrenia Research* 2024;273:62-77.

22. Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. *Nat Rev Gastroenterol Hepatol* 2024;21:537-555.
23. Holden S, Maksoud R, Eaton-Fitch N, Cabanas H, Staines D, Marshall-Gradisnik S. A systematic review of mitochondrial abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome/systemic exertion intolerance disease. *Journal of Translational Medicine* 2020;18:290.
24. Maurice NM, Sadikot RT. Mitochondrial Dysfunction in Bacterial Infections. *Pathogens* 2023;12.
25. Cala-Garcia JD, Medina-Rincon GJ, Sierra-Salas PA, Rojano J, Romero F. The Role of Mitochondrial Dysfunction in Idiopathic Pulmonary Fibrosis: New Perspectives for a Challenging Disease. *Biology (Basel)* 2023;12.
26. Rangarajan S, Bernard K, Thannickal VJ. Mitochondrial Dysfunction in Pulmonary Fibrosis. *Ann Am Thorac Soc* 2017;14:S383-S388.
27. Li X, Zhang W, Cao Q, et al. Mitochondrial dysfunction in fibrotic diseases. *Cell Death Discov* 2020;6:80.
28. Bueno M, Calyeca J, Rojas M, Mora AL. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. *Redox Biol* 2020;33:101509.
29. Zank DC, Bueno M, Mora AL, Rojas M. Idiopathic Pulmonary Fibrosis: Aging, Mitochondrial Dysfunction, and Cellular Bioenergetics. *Front Med (Lausanne)* 2018;5:10.
30. Larson-Casey JL, He C, Carter AB. Mitochondrial quality control in pulmonary fibrosis. *Redox Biology* 2020;33:101426.
31. Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. *J Clin Invest* 2017;127:405-414.

32. Frantz MC, Wipf P. Mitochondria as a target in treatment. *Environ Mol Mutagen* 2010;51:462-475.
33. Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. *Journal of Translational Medicine* 2024;22:941.
34. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. *Am J Hum Genet* 2017;101:5-22.
35. Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives. *Nat Rev Cancer* 2017;17:692-704.
36. Smith GD, Ebrahim S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? *Int J Epidemiol* 2003;32:1-22.
37. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. *Hum Mol Genet* 2014;23:R89-98.
38. Sekula P, Del Greco MF, Pattaro C, Kottgen A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. *J Am Soc Nephrol* 2016;27:3253-3265.
39. Jiang R, Qu Q, Wang Z, Luo F, Mou S. Association between air pollution and bone mineral density: a Mendelian randomization study. *Arch Med Sci* 2024;20:1334-1338.
40. Shen J, Wang Y, Zhou S, et al. Lung function and nonalcoholic fatty liver disease: a Mendelian randomization study. *Arch Med Sci* 2025;21:197-205.
41. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. *Am J Clin Nutr* 2016;103:965-978.

42. Li X, Lin Q, Guan B, et al. Multi-Omics Analysis Links Mitochondrial-Related Genes to Idiopathic Pulmonary Fibrosis and In Vivo Transcriptome Validation. *Translational Research* 2025;278:10-21.

43. Gilly A, Park YC, Png G, et al. Whole-genome sequencing analysis of the cardiometabolic proteome. *Nat Commun* 2020;11:6336.

44. Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. *Nature* 2018;558:73-79.

45. Li Y, Guo J, Cao Z, Wu J. Causal Association Between Inflammatory Bowel Disease and Psoriasis: A Two-Sample Bidirectional Mendelian Randomization Study. *Front Immunol* 2022;13:916645.

46. Charon C, Allodji R, Meyer V, Deleuze JF. Impact of pre- and post-variant filtration strategies on imputation. *Sci Rep* 2021;11:6214.

47. Raghavan NS, Vardarajan B, Mayeux R. Genomic variation in educational attainment modifies Alzheimer disease risk. *Neurol Genet* 2019;5:e310.

48. Timmers P, Tijs ES, Sakaue S, et al. Mendelian randomization of genetically independent aging phenotypes identifies LPA and VCAM1 as biological targets for human aging. *Nat Aging* 2022;2:19-30.

49. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. *Genet Epidemiol* 2013;37:658-665.

50. Mounier N, Kutalik Z. Bias correction for inverse variance weighting Mendelian randomization. *Genet Epidemiol* 2023;47:314-331.

51. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *Int J Epidemiol* 2015;44:512-525.
52. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. *Genet Epidemiol* 2016;40:304-314.
53. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. *Int J Epidemiol* 2017;46:1985-1998.
54. Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. *Stat Med* 2017;36:1783-1802.
55. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat Genet* 2018;50:693-698.
56. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity Analyses for Robust Causal Inference from Mendelian Randomization Analyses with Multiple Genetic Variants. *Epidemiology* 2017;28:30-42.
57. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. *Int J Epidemiol* 2019;48:728-742.
58. Carroll J, He J, Ding S, Fearnley IM, Walker JE. TMEM70 and TMEM242 help to assemble the rotor ring of human ATP synthase and interact with assembly factors for complex I. *Proc Natl Acad Sci U S A* 2021;118.

59. Bahri H, Buratto J, Rojo M, et al. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting *in situ* assembly of mammalian ATP synthase proton channel. *Biochim Biophys Acta Mol Cell Res* 2021;1868:118942.

60. Braczynski AK, Vlaho S, Muller K, et al. ATP synthase deficiency due to TMEM70 mutation leads to ultrastructural mitochondrial degeneration and is amenable to treatment. *Biomed Res Int* 2015;2015:462592.

61. Magner M, Dvorakova V, Tesarova M, et al. TMEM70 deficiency: long-term outcome of 48 patients. *J Inherit Metab Dis* 2015;38:417-426.

62. Kadota T, Yoshioka Y, Fujita Y, et al. Extracellular Vesicles from Fibroblasts Induce Epithelial-Cell Senescence in Pulmonary Fibrosis. *Am J Respir Cell Mol Biol* 2020;63:623-636.

63. Catteruccia M, Verrigni D, Martinelli D, et al. Persistent pulmonary arterial hypertension in the newborn (PPHN): a frequent manifestation of TMEM70 defective patients. *Mol Genet Metab* 2014;111:353-359.

64. Fabbrizi E, Fiorentino F, Carafa V, Altucci L, Mai A, Rotili D. Emerging Roles of SIRT5 in Metabolism, Cancer, and SARS-CoV-2 Infection. *Cells* 2023;12.

65. Mazumder S, Barman M, Bandyopadhyay U, Bindu S. Sirtuins as endogenous regulators of lung fibrosis: A current perspective. *Life Sci* 2020;258:118201.

66. D'Agnano V, Mariniello DF, Pagliaro R, et al. Sirtuins and Cellular Senescence in Patients with Idiopathic Pulmonary Fibrosis and Systemic Autoimmune Disorders. *Drugs* 2024.

67. Mao J, Wang D, Wang D, et al. SIRT5-related desuccinylation modification of AIFM1 protects against compression-induced intervertebral disc degeneration by regulating mitochondrial homeostasis. *Experimental & Molecular Medicine* 2023;55:253-268.

68. Kumar S, Lombard DB. Functions of the sirtuin deacetylase SIRT5 in normal physiology and pathobiology. *Crit Rev Biochem Mol Biol* 2018;53:311-334.

69. Hou W, Zhao Y, Li F, et al. SIRT5-mediated desuccinylation prevents mitochondrial dysfunction in Alveolar epithelial cells senescence and Pulmonary fibrosis2024.

70. Chang X, Zhang T, Wang J, et al. SIRT5-Related Desuccinylation Modification Contributes to Quercetin-Induced Protection against Heart Failure and High-Glucose-Prompted Cardiomyocytes Injured through Regulation of Mitochondrial Quality Surveillance. *Oxid Med Cell Longev* 2021;2021:5876841.

71. Chiba T, Peasley KD, Cargill KR, et al. Sirtuin 5 Regulates Proximal Tubule Fatty Acid Oxidation to Protect against AKI. *J Am Soc Nephrol* 2019;30:2384-2398.

72. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. *Am J Epidemiol* 2013;178:1177-1184.

Figure legends

Figure 1. Schematic representation of the Mendelian randomization study assumptions.

Figure 2. Mendelian randomization analysis of the possible causal association between transmembrane protein 70 and idiopathic pulmonary fibrosis: scatter plot (top left), forest plot (top right), funnel plot (bottom left), and leave-one-out forest plot (bottom right).

Table 1. Selection of the IVs

Mitochondrial proteins	Selection threshold	IVs, n	Mean F	F range	Non-matching SNPs and proxy
2,4-Dienoyl-CoA Reductase	$P < 5 \times 10^{-6}$	10	23.09	21.53-27.18	rs1284877 -> rs1284878 ($R^2=0.0171$)
Ribosome-recycling factor	$P < 5 \times 10^{-5}$	15	23.25	21.05-30.06	rs552107732, no proxy rs9674789 -> rs12936590 ($R^2=0.0067$)
NADH dehydrogenase (ubiquinone)	$P < 5 \times 10^{-5}$	13	22.43	21.04-24.98	rs58906847, no proxy
1 beta subcomplex subunit 8					
NADH dehydrogenase (ubiquinone)	$P < 5 \times 10^{-6}$	19	115.00	20.89-1787.59	rs143366101, no proxy
iron-sulfur protein 4					rs115713928 -> rs72834339 ($R^2=0.0066$) rs34140990 -> rs7128448 ($R^2=0.0068$)
NADH dehydrogenase (ubiquinone)	$P < 5 \times 10^{-5}$	7	23.05	21.24-28.89	-
flavoprotein 2					
Serine-tRNA ligase	$P < 5 \times 10^{-6}$	11	23.03	21.03-26.26	rs12292833, no proxy rs850388 -> rs917177 ($R^2=0.0065$)

NAD-dependent protein deacylase	$P < 5 \times 10^{-6}$	16	25.97	20.93-60.55	rs545964696, no proxy
sirtuin-5					rs983355 -> rs1480318 ($R^2=0.0064$)
					rs8139620 was eliminated later
Transmembrane protein 70	$P < 5 \times 10^{-6}$	10	22.51	20.84-25.32	rs569797207, no proxy
					rs4310923, no proxy
Diablo homolog	$P < 5 \times 10^{-6}$	18	23.81	21.01-43.04	rs111261668 -> rs62015875 ($R^2=0.0069$)
					rs1718860 -> rs7685467 ($R^2=0.0129$)
Mitochondrial import inner membrane translocase subunit	$P < 5 \times 10^{-5}$	11	22.82	21.15-30.68	-
Persulfide dioxygenase ETHE1	$P < 5 \times 10^{-6}$	14	26.74	21.00-51.10	rs8055509 -> rs13337159 ($R^2=0.0066$)

IV: instrumental variable; SNP: single-nucleotide polymorphism.

Table 2. The association between genetically predicted mitochondrial function and the risk of idiopathic pulmonary fibrosis

Exposures	Outcome	Methods	SNPs, n	P	OR (95% CI)
2,4-Dienoyl-CoA Reductase	IPF	IVW	9	0.65	1.02 (0.92-1.14)
2,4-Dienoyl-CoA Reductase		MR Egger	9	0.54	0.95 (0.81-1.11)
2,4-Dienoyl-CoA Reductase		Weighted median	9	0.87	0.99 (0.90-1.09)
2,4-Dienoyl-CoA Reductase		Weighted mode	9	0.82	0.99 (0.89-1.10)
Ribosome-recycling factor		IVW	12	0.59	0.96 (0.83-1.11)
Ribosome-recycling factor		MR Egger	12	0.52	0.91 (0.67-1.21)
Ribosome-recycling factor		Weighted median	12	0.53	0.94 (0.77-1.14)
Ribosome-recycling factor		Weighted mode	12	0.59	0.94 (0.76-1.17)
NADH dehydrogenase (ubiquinone) 1 beta		IVW	12	0.96	1.00 (0.85-1.18)
subcomplex subunit 8					
NADH dehydrogenase (ubiquinone) 1 beta		MR Egger	12	0.87	0.97 (0.64-1.45)
subcomplex subunit 8					
NADH dehydrogenase (ubiquinone) 1 beta		Weighted median	12	0.64	0.95 (0.78-1.16)

subcomplex subunit 8							
NADH dehydrogenase (ubiquinone) 1 beta		Weighted mode	12	0.68	0.92 (0.64-1.33)		
subcomplex subunit 8							
NADH dehydrogenase (ubiquinone) iron-sulfur	IVW		18	0.32	0.97 (0.91-1.03)		
protein 4							
NADH dehydrogenase (ubiquinone) iron-sulfur	MR Egger		18	0.33	0.96 (0.88-1.04)		
protein 4							
NADH dehydrogenase (ubiquinone) iron-sulfur	Weighted median		18	0.46	0.98 (0.91-1.04)		
protein 4							
NADH dehydrogenase (ubiquinone) iron-sulfur	Weighted mode		18	0.50	0.98 (0.91-1.05)		
protein 4							
NADH dehydrogenase (ubiquinone) flavoprotein 2	IVW		6	0.49	1.07 (0.89-1.28)		
NADH dehydrogenase (ubiquinone) flavoprotein 2	MR Egger		6	0.79	0.95 (0.66-1.36)		
NADH dehydrogenase (ubiquinone) flavoprotein 2	Weighted median		6	0.88	1.02 (0.8-1.29)		
NADH dehydrogenase (ubiquinone) flavoprotein 2	Weighted mode		6	0.98	1.00 (0.75-1.34)		

Serine-tRNA ligase	IVW	11	0.88	1.02 (0.80-1.31)
Serine-tRNA ligase	MR Egger	11	0.93	0.96 (0.39-2.37)
Serine-tRNA ligase	Weighted median	11	0.75	0.96 (0.76-1.21)
Serine-tRNA ligase	Weighted mode	11	0.67	0.94 (0.70-1.25)
NAD-dependent protein deacetylase sirtuin-5	IVW	14	0.13	1.15 (0.96-1.39)
NAD-dependent protein deacetylase sirtuin-5	MR Egger	14	0.49	0.73 (0.31-1.73)
NAD-dependent protein deacetylase sirtuin-5	Weighted median	14	0.06	1.22 (0.99-1.50)
NAD-dependent protein deacetylase sirtuin-5	Weighted mode	14	0.08	1.5 (0.99-2.27)
Transmembrane protein 70	IVW	9	0.03	0.83 (0.70-0.99)
Transmembrane protein 70	MR Egger	9	0.11	0.65 (0.41-1.04)
Transmembrane protein 70	Weighted median	9	0.14	0.84 (0.66-1.06)
Transmembrane protein 70	Weighted mode	9	0.60	0.91 (0.66-1.26)
Diablo homolog	IVW	18	0.79	1.02 (0.88-1.19)
Diablo homolog	MR Egger	18	0.62	1.12 (0.72-1.74)
Diablo homolog	Weighted median	18	0.16	1.13 (0.95-1.33)

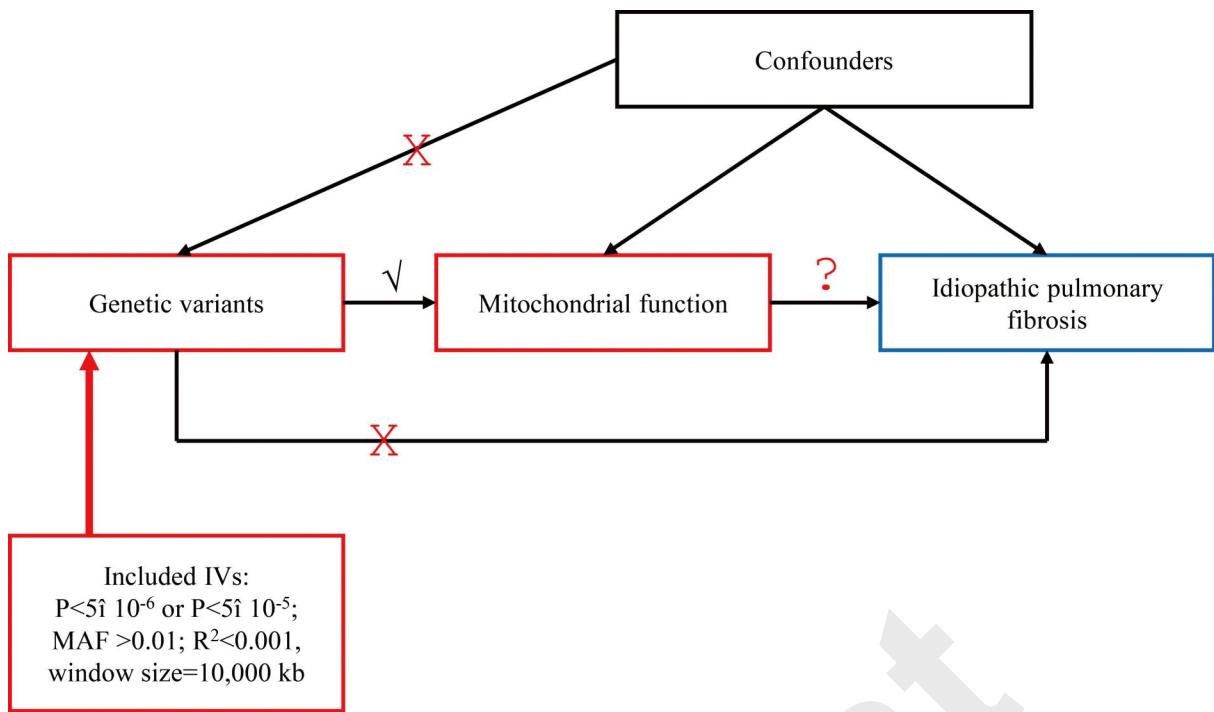
Diablo homolog	Weighted mode	18	0.19	1.18 (0.93-1.51)
Mitochondrial import inner membrane translocase subunit	IVW	8	0.89	1.01 (0.83-1.23)
Mitochondrial import inner membrane translocase subunit	MR Egger	8	0.82	1.08 (0.58-2.01)
Mitochondrial import inner membrane translocase subunit	Weighted median	8	0.59	1.07 (0.84-1.35)
Mitochondrial import inner membrane translocase subunit	Weighted mode	8	0.61	1.08 (0.81-1.45)
Persulfide dioxygenase ETHE1	IVW	14	0.55	1.05 (0.90-1.21)
Persulfide dioxygenase ETHE1	MR Egger	14	0.40	0.84 (0.56-1.25)
Persulfide dioxygenase ETHE1	Weighted median	14	0.27	1.12 (0.92-1.35)
Persulfide dioxygenase ETHE1	Weighted mode	14	0.34	1.16 (0.87-1.56)

IVW: inverse variance weighted; OR: odds ratio; CI: confidence interval; IPF: idiopathic pulmonary fibrosis.

Table 3. Heterogeneity and pleiotropy testing of the instrumental variables for the exposures and IPF as the outcome

Exposures	Heterogeneity		Pleiotropy	
	Q	P	Egger intercept	P
2,4-Dienoyl-CoA Reductase	17.23	0.028	77.00	0.250
Ribosome-recycling factor	8.35	0.682	0.01	0.656
NADH dehydrogenase (ubiquinone) 1	17.79	0.087	0.01	0.844
beta subcomplex subunit 8				
NADH dehydrogenase (ubiquinone)	7.89	0.969	0.01	0.674
iron-sulfur protein 4				
NADH dehydrogenase (ubiquinone)	4.62	0.464	0.03	0.510
flavoprotein 2				
Serine-tRNA ligase	23.88	0.008	0.01	0.890
NAD-dependent protein deacylase sirtuin-5	23.85	0.033	0.07	0.311
Transmembrane protein 70	6.28	0.616	0.04	0.310
Diablo homolog	28.14	0.043	-0.02	0.661

Mitochondrial import inner membrane translocase subunit	5.20	0.636	-0.01	0.845
Persulfide dioxygenase ETHE1	17.01	0.199	0.04	0.261



Preprint

Table 4. MR-PRESSO results

Outcome	Exposure	Raw		Outlier corrected		Global P	Number of outliers	Distortion P
		OR (CI%)	P	OR (CI%)	P			
Idiopathic pulmonary fibrosis	2,4-Dienoyl-CoA mitochondrial levels	Reductase, 1.02 (0.92- 1.14)	0.665 /	/	/	/	/	/
	Diablo homolog, mitochondrial	1.02 (0.88- 1.19)	0.790 /	/	/	/	/	/
	Mitochondrial import inner membrane translocase subunit	1.01 (0.86- 1.2)	0.881 /	/	/	/	/	/
	NAD-dependent protein deacylase sirtuin-5, mitochondrial	1.16 (0.97- 1.37)	0.120 1.25 (1.09- 1.43)	0.007	0.031	1		0.424
	NADH dehydrogenase (ubiquinone) 1 beta subcomplex	1 (0.85- 1.18)	0.964 /	/	/	/		/
	NADH dehydrogenase	1.11 (0.93- 1.276)	0.276 /	/	/	/		/

(ubiquinone)	flavoprotein	2,	1.32)								
mitochondrial											
NADH	dehydrogenase	0.97	(0.93-	0.165	/		/	/	/		/
(ubiquinone) iron-sulfur protein 4,	1.01)										
mitochondrial											
Persulfide dioxygenase	ETHE1,	1.05	(0.9-	0.561	/		/	/	/		/
mitochondrial		1.21)									
Ribosome-recycling	factor,	0.96	(0.85-	0.550	/		/	/	/		/
mitochondrial		1.09)									
Serine-tRNA ligase, mitochondrial		1.02	(0.8-	0.878	0.96	(0.76-	0.563	0.006	1 (rs1294404)	0.281	
		1.31)			1.16)						
Transmembrane	protein	70,	0.83	(0.71-	0.044	/		/	/		/
mitochondrial		0.97)									

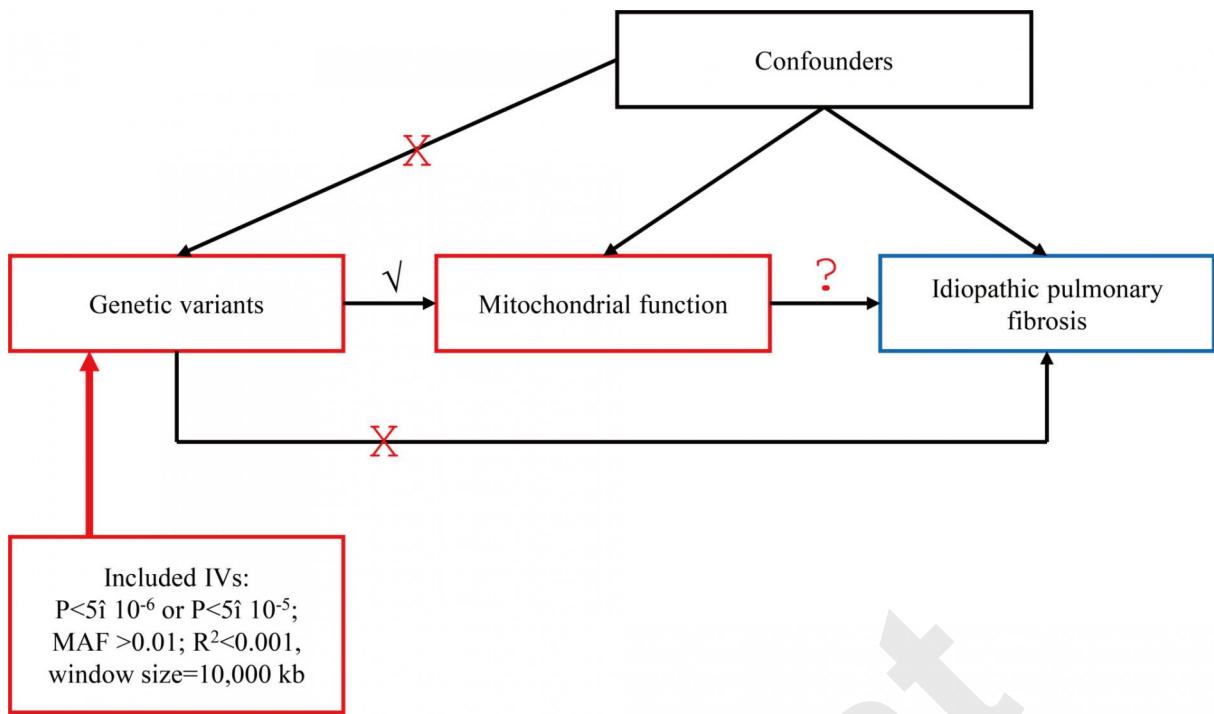


Figure 1. Schematic representation of the Mendelian randomization study assumptions.

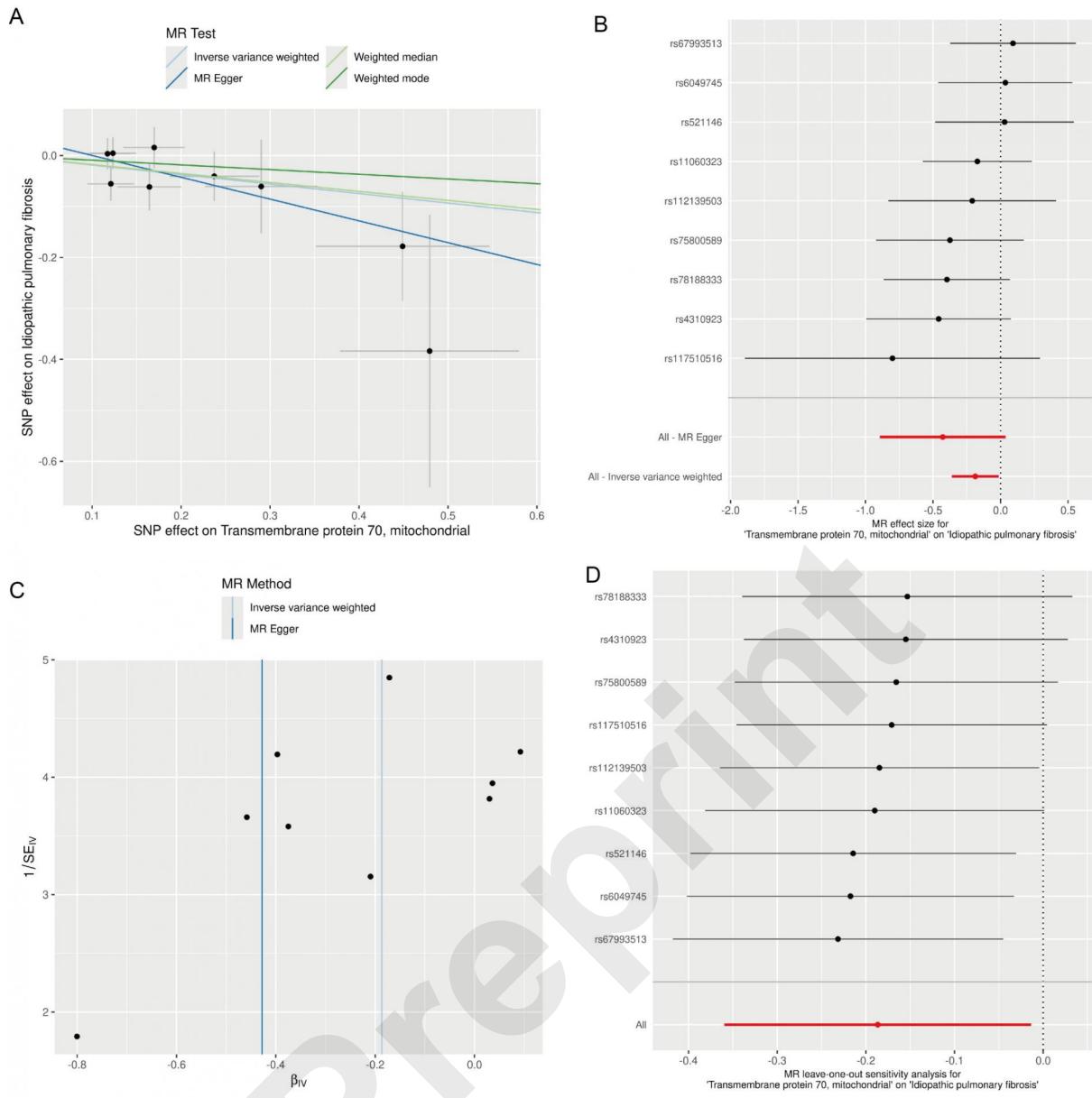


Figure 2. Mendelian randomization analysis of the possible causal association between transmembrane protein 70 and idiopathic pulmonary fibrosis: scatter plot (top left), forest plot (top right), funnel plot (bottom left), and leave-one-out forest plot (bottom right).