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Abstract

Introduction

Idiopathic pulmonary fibrosis (IPF) is a prevalent lung disease affecting mainly older adults,
characterized by abnormal lung healing and an altered extracellular matrix. This study aims to explore
the potential causal association between mitochondrial dysfunction and idiopathic pulmonary fibrosis.

Material and methods

This two-sample Mendelian randomization study analyzed GWAS data on mitochondrial dysfunction
and IPF. The primary analysis employed the inverse variance weighted method, confirmed by the
weighted median, weighted mode, and MR-Egger regression methods. Heterogeneity and pleiotropy
were assessed using Cochran’s Q-test and MR-Egger, with robustness evaluated through leave-one-
out analysis.

Results

The genetic predictions indicated a potential inverse causal association of Transmembrane protein 70
with IPF in the IVW (OR = 0.83, 95% CI: 0.70-0.99, P = 0.03), without evidence of heterogeneity,
horizontal pleiotropy, or outliers. The MR-PRESSO analysis showed one outlier for NAD-dependent
protein deacylase sirtuin-5 and one outlier for Serine-tRNA ligase. After removing the outliers, NAD-
dependent protein deacylase sirtuin-5 showed a suggestive positive association with IPF (OR = 1.25,
95% CI: 1.09-1.43, P = 0.007), without evidence of heterogeneity, horizontal pleiotropy, or outliers.

Conclusions

This MR analysis provides genetic evidence for potential causal associations of Transmembrane
protein 70 and NAD-dependent protein deacylase sirtuin-5 with IPF. These proteins may represent
therapeutic targets and enhance understanding of mitochondrial dysfunction in IPF. Further validation
is needed before clinical application.
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ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a prevalent lung disease affecting
mainly older adults, characterized by abnormal lung healing and an altered extracellular
matrix. This study aims to explore the potential causal association between mitochondrial
dysfunction and idiopathic pulmonary fibrosis.

Material and methods: This two-sample Mendelian randomization study analyzed GWAS
data on mitochondrial dysfunction and IPF. The primary analysis employed the inverse
variance weighted method, confirmed by the weighted median, weighted mode, and MR-
Egger regression methods. Heterogeneity and pleiotropy were assessed using Cochran’s Q-
test and MR-Egger, with robustness evaluated through leave-one-out analysis.

Results: The genetic predictions indicated a potential inverse causal association of
Transmembrane protein 70 with IPF in the IVW (OR = 0.83, 95% CI: 0.70-0.99, P = 0.03),
without evidence of heterogeneity, horizontal pleiotropy, or outliers. The MR-PRESSO
analysis showed one outlier for NAD-dependent protein deacylase sirtuin-5 and one outlier
for Serine-tRNA ligase. After removing the outliers, NAD-dependent protein deacylase
sirtuin-5 showed a suggestive positive association with IPF (OR = 1.25, 95% CI: 1.09-1.43,
P =0.007), without evidence of heterogeneity, horizontal pleiotropy, or outliers.
Conclusions: This MR analysis provides genetic evidence for potential causal associations
of Transmembrane protein 70 and NAD-dependent protein deacylase sirtuin-5 with IPF.
These proteins may represent therapeutic targets and enhance understanding of mitochondrial
dysfunction in IPF. Further validation is needed before clinical application.
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Introduction

Idiopathic pulmonary fibrosis (IPF) results from an abnormal wound-healing process in the
lung, resulting in the deposition of an altered extracellular matrix and the disruption of the
alveolar architecture (1-3). IPF mainly affects adults aged 55-75 years and is more common
in men than in women (1, 4). The estimated incidence of IPF is 3-9 per 100,000 person-years
worldwide (1), and the prevalence is about 14-42.7 per 100,000 individuals (5, 6). The risk
factors for IPF include cigarette smoking, genetic variants, exposure to metal and wood dust,
gastroesophageal reflux, and certain viruses (1, 2, 7). Current management includes smoking
cessation, pulmonary rehabilitation, and long-term oxygen therapy. Antifibrotic drugs such
as pirfenidone and nintedanib may slow lung function decline, whereas corticosteroids,
vasodilators, and interferon-based regimens are largely ineffective (2, 7). Nevertheless,
despite best management, the median survival after diagnosis is about 3 years, and patients
with acute exacerbations have >60% in-hospital mortality (2, 4). Due to its idiopathic nature,
the etiology and pathogenesis remain poorly understood. Therefore, there is a need for a
better understanding of IPF to improve its management.

Mitochondria play a central role in eukaryotic cells by generating ATP through oxidative
phosphorylation, but they are also involved in fatty acid synthesis, calcium homeostasis, cell
proliferation, and apoptosis(8-11)(12, 13). Dysfunctional mitochondria are involved in aging
and several diseases (14, 15): cardiovascular diseases (16), diabetes (17), metabolic
syndrome (18), autoimmune diseases (19), degenerative neurological and muscular diseases
(20), psychiatric disorders (21), gastrointestinal diseases (22), fatiguing illnesses (23), and

chronic infections (24). Growing evidence shows that mitochondrial dysfunction is involved



in IPF (25, 26) and fibrotic diseases in general (27, 28). Mechanistically, impaired electron
transport reduces energy production while elevating ROS generation, driving oxidative
stress—a hallmark of IPF. In addition, mitochondrial dysfunction alters cellular metabolism,
promotes senescence, apoptosis, and stem cell exhaustion, and is linked to genomic instability,
defective proteostasis, impaired autophagy, and telomere attrition (25, 26, 29-31). Research
is focused on identifying potential therapeutic targets that could improve mitochondrial
function and reduce oxidative stress in IPF. Strategies aimed at modulating pro-fibrotic
pathways, such as TGF-f signaling, could also be beneficial. Promoting autophagy to remove
dysfunctional mitochondria could be a potential therapeutic approach (8, 32, 33).

The recent decades have seen the completion of many genome-wide association studies
(GWASSs) that provided data for millions of genetic variations and their association with
phenotypes, including diseases (34, 35). Mendelian randomization (MR) relies on the
common genetic variations for different environmental exposures and enables the exploration
of possible causal associations between exposures and diseases (36-38). Two-sample MR
uses the associations between single-nucleotide polymorphism (SNPs) and exposure and
between SNPs and outcomes from different GWASs to combine them into an estimation of
the causal associations. Recent MR-based studies have successfully applied this approach to
explore causal links between various exposures, such as environmental factors or organ
function, and the risk of chronic diseases (39, 40). These examples highlight the robustness
and versatility of the MR framework, providing a strong methodological precedent for its
application in investigating the role of mitochondrial dysfunction in IPF.

The available data about the association between mitochondrial dysfunction and IPF mainly

come from epidemiological studies that can suffer from confounding and reverse causation.



Under key assumptions, MR reduces the reverse causation and confounding that impede or
mislead the interpretation of results from epidemiological studies (41). Although there is
evidence for causality between mitochondrial dysfunction and fibrotic diseases, including
IPF (26, 42), the involvement of specific mitochondrial proteins remains to be examined.
Determining causality between specific mitochondrial proteins could hint toward the
mechanisms involved and potential therapeutic targets.

Hence, this study used the MR methodology to examine the causal association between
mitochondrial dysfunction and IPF. The results could help improve our understanding of IPF

pathogenesis.

Material and methods

Study design

This study used publicly available data from GWASs to investigate the causal association
between mitochondrial dysfunction and IPF (Figure 1). Since the data were from studies that
already adhered to the Declaration of Helsinki, no additional ethical approval was necessary.
This study assumed that the SNPs used as instrumental variables (IVs) for the exposure are
associated with mitochondrial dysfunction, that there are no common causes to the SNPs and
the outcome (IPF), and that there are no independent pathways between the SNPs and IPF
other than through mitochondrial dysfunction (41).

Data sources

The GWAS data for the outcome (IPF) was from FinnGen, which is a large project in
genomics and personalized medicine that collected and analyzed the genetic and health

outcomes of 500,000 biobank donors in Finland. The IPF  dataset



(https://risteys.finregistry.fi/endpoints/IPF) was used in the present study. It contains 2189

patients with IPF and 407,609 controls.

The GWAS for mitochondrial 2,4-dienoyl-CoA reductase 1 is from a published study (43)
and includes 1296 individuals and 18,162,745 SNPs. The other mitochondrial protein data
are from 3301 individuals of European origin (10,534,735 SNPs) (44)

(https://gwas.mrcieu.ac.uk/), including 2,4-Dienoyl-CoA Reductase, Diablo homolog,

Persulfide dioxygenase ETHEI1, Ribosome-recycling factor, Serine-tRNA ligase,
Mitochondrial import inner membrane translocase subunit, NADH dehydrogenase
(ubiquinone) 1 beta subcomplex subunit 8, NADH dehydrogenase (ubiquinone) iron-sulfur
protein 4, NAD-dependent protein deacylase sirtuin-5, NADH dehydrogenase (ubiquinone)
flavoprotein 2, and Transmembrane protein 70. GWAS information for all outcomes and
exposures is shown in Supplementary Table S1.

Instrument variable selection

The IVs included in this study had to meet the following criteria. First, the SNPs significantly
associated with mitochondrial proteins in the entire genome were screened out based on P <
5x10°%. However, because of the limited sample size of the available GWASs, very few SNPs
reached this stringent threshold for some exposures. Therefore, in line with common practice
in MR studies, we relaxed the threshold to P < 5x107¢ or P < 5x107° to ensure adequate
instrument numbers while maintaining analytical power. To minimize potential weak
instrument bias, the strength of each SNP was evaluated, and only those with F-statistics >10
were retained(45). Second, the SNPs with a minimum minor allele frequency (MAF) of >0.01
were removed (46). Finally, linkage disequilibrium (LD) among SNPs was removed based

on R?<0.001 and a window size of 10,000 kb (47). If a SNP identified for exposure was not



found in the outcome data, then proxy SNPs were identified based on higher LD (R?=0.8)
(48). The strength of the IVs was evaluated using the F-value for each SNP to assess the
potential weak instrument bias using the formula F=R?x(N-2)/(1-R?), where R? represents
the proportion of exposure variance explained by the SNP in the I'V. F- statistics >10 indicated
sufficient instrument strength and reduced the likelihood of weak instrument bias.
Mendelian randomization analysis

The primary analysis used in MR studies is the inverse variance weighted (IVW) method
(49). In MR, the IVW method is a popular approach for estimating causal effects, where
genetic variants are used as I'Vs to infer causality between an exposure and an outcome, even
in the presence of unmeasured confounders (50). If the IVW analysis reveals a significant
causal association (P < 0.05), then the strength of the association can be tested using the MR-
Egger (51), weighted median (52), and weighted mode (53) methods. Those methods are
used to support the robustness of the IVW results because their use without the IVW method
could lead to bias and unsteady results (50). The MR analysis was performed using the
“TwoSampleMR” package in R 4.3.0 (The R Project for Statistical Computing, www.r-
project.org). The results were presented as odds ratios (ORs) and 95% confidence intervals
(Cls)

Sensitivity analysis

Heterogeneity can bias the observed causal associations between exposure and outcomes.
Heterogeneity among IVs was detected using Cochran’s Q test; P-values >0.05 indicated low
heterogeneity (54). In addition, according to the third MR assumption, MR analyses are only
valid in the absence of horizontal pleiotropy, which was detected using the MR-Egger

regression method to explore horizontal pleiotropy based on an intercept term approaching 0



or P> 0.05 (54). Outliers can also bias causal associations and be detected using the MR-
PRESSO method based on P < 0.05 (54, 55). The outliers were removed, and the ORs were
recalculated to correct for horizontal pleiotropy. Finally, a leave-one-out analysis was used

to assess the robustness and consistency of the results (56).

Results

Instrumental variable selection

This study screened out 143 IVs related to mitochondrial function. The mean F-value was
36.21 (range, 20.89-1787.59). The IVs, F-values, and non-matching SNPs and their proxies
are summarized in Table 1. All F-values were >10, indicating the absence of weak
instrumental bias (Supplementary Table S2).

Mendelian randomization analysis results

The genetic predictions indicated that there were no statistically significant associations
between mitochondrial proteins and IPF, except for a possible inverse causal association of
genetically predicted transmembrane protein 70 with genetically predicted IPF in the IVW
(OR=0.83, 95%CI: 0.70-0.99, P = 0.03) (Table 2 and Figure 2). The other factors showed no
genetically predicted causal associations with IPF (Table 2 and Figures S1-10). Furthermore,
the MR-PRESSO analysis showed one outlier for NAD-dependent protein deacylase sirtuin-
5 (rs10733789) and one outlier for Serine-tRNA ligase (rs1294404). After removing the
outlier, NAD-dependent protein deacylase sirtuin-5 showed a positive causal association with
IPF (OR = 1.25,95% CI: 1.09-1.43, P =0.007) (Table 4). Conversely, the exclusion did not
alter the outcomes for Serine-tRNA ligase (Table 4), maintaining the initial observations.

Sensitivity analyses



Sensitivity analyses attest to the robustness of the findings. While Cochrane’s Q-test revealed
significant heterogeneity for 2,4-Dienoyl-CoA Reductase (P=0.028), Serine-tRNA ligase (P
=0.008), NAD-dependent protein deacylase sirtuin-5 (P=0.033), and Diablo homolog (P =
0.043) (Table 3), but IVW is a random-effect statistical method that can tolerate some degree
of heterogeneity (57). The MR-Egger regression results suggested no evidence of horizontal
pleiotropy (all P > 0.05) (Table 3). The leave-one-out analyses revealed that no SNPs drove
the results (Figure 2 and Figures S1-10). These collective findings underscore the resilience

of the conclusions to sensitivity analyses and support the validity of our causal inference.

Discussion

This two-sample MR study explored the potential causal association between mitochondrial
dysfunction and IPF. The results suggest that genetically predicted Transmembrane protein
70 may have a protective association with IPF. NAD-dependent protein deacylase sirtuin-5
might also be associated, but the association was observed after removing one outlier, and
the result should be taken cautiously. The other mitochondrial proteins were not associated
with IPF, and more in-depth research is necessary.

Transmembrane protein 70 is a mitochondrial membrane protein that possibly plays a role in
the biogenesis of mitochondrial ATP synthase (58, 59). Indeed, mutations in the TMEM?70
gene are associated with neonatal mitochondrial encephalocardiomyopathy due to ATP
synthase deficiency (60, 61). A study showed that knocking down TMEM?70 did not affect
pl6 and p21 (two markers of cellular senescence) in human bronchial epithelial cells (62). A
deficiency in Transmembrane protein 70 has been reported to be associated with pulmonary

hypertension in newborns (63). For now, no other evidence is available to link



Transmembrane protein 70 with IPF, and additional research is necessary. Nevertheless,
mitochondrial dysfunction is involved in IPF, and the aging lung is characterized by
decreased mitochondrial respiration, mitophagy, and mitochondrial biogenesis (25). Since
IPF is observed in adults aged 55-75 years (1, 4), the mitochondrial pathogenesis of IPF is
highly likely. As Transmembrane protein 70 participates in forming ATP synthase (58, 59),
lower Transmembrane protein 70 could contribute to decreased mitochondrial respiration and
mitochondrial biogenesis. Nevertheless, whether a lower formation of ATP synthase,
decreased mitochondrial respiration, and impaired mitochondrial biogenesis, all due to a
lower Transmembrane protein 70 expression, participate in IPF remains uncertain and
requires confirmation.

Another mitochondrial protein, NAD-dependent protein deacylase sirtuin-5, may also be
involved in IPF pathogenesis, although the association was only observed after removing one
outlier, and thus should be regarded as hypothesis-generating. NAD-dependent protein
deacylase sirtuin-5 has been implicated in various diseases, including cancer,
neurodegenerative disorders, and potentially IPF (31, 64). Nevertheless, sirtuins, including
NAD-dependent protein deacylase sirtuin-5, are involved in lung fibrosis (65) and pulmonary
cell senescence (31, 66), underscoring their relevance in the context of IPF and warranting
further rigorous examination. NAD-dependent protein deacylase sirtuin-5 is a member of the
sirtuin family, primarily expressed in the mitochondrial matrix, and is crucial for maintaining
mitochondrial function and cellular homeostasis (64, 67). NAD-dependent protein deacylase
sirtuin-5 regulates proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle, fatty
acid oxidation, the electron transport chain, ketone body formation, nitrogenous waste

management, and ROS detoxification (64, 68). Some studies suggest that NAD-dependent



protein deacylase sirtuin-5 deficiency or dysfunction may contribute to the development of
IPF (31, 69). Specificallyy, NAD-dependent protein deacylase sirtuin-5-mediated
desuccinylation may prevent mitochondrial dysfunction in alveolar epithelial cells, a key
event in IPF (69).

The lack of associations for most other mitochondrial proteins in this study requires careful
interpretation. First, some proteins may truly have no causal role in IPF. Second, statistical
power might be insufficient to detect weak effects given the limited sample size of current
GWAS:s. Third, tissue specificity could play a role, as the pQTL data used for mitochondrial
proteins were derived mainly from blood, which may not reflect protein regulation in lung
tissue. Fourth, mitochondrial pathways are highly interconnected, and the effects of
individual proteins may be compensated by others, obscuring their independent associations.
From a clinical perspective, these findings highlight TMEM70 and SIRTS as potential
therapeutic targets, as both proteins are involved in mitochondrial function and cellular
metabolism. Specifically, TMEM70 plays an essential role in ATP synthase biogenesis, and
its deficiency has been linked to mitochondrial diseases such as ATP synthase deficiency (60).
SIRTS, by regulating diverse metabolic and cellular processes, has also emerged as a
potential therapeutic target in fibrotic diseases including IPF (64, 68, 70, 71). The present
results therefore not only deepen our understanding of the contribution of mitochondrial
dysfunction to IPF pathogenesis, but also suggest that, after further validation, genetic
variants in these proteins may eventually contribute to risk stratification in susceptible
populations. Nevertheless, the current evidence remains limited, and more studies are needed

before these proteins can be translated into clinical management.



The main strength of MR studies is the use of large-scale GWAS data from thousands of
individuals and millions of SNPs. On the other hand, the study also had limitations. First, the
GWAS data were derived exclusively from individuals of European ancestry, which may
limit the generalizability of our findings to other populations with different genetic
backgrounds and environmental exposures. Future studies including more diverse
populations are needed to validate these associations. Second, there may be sample overlap
between the exposure and outcome GWAS datasets, which could potentially introduce bias.
Although the exact degree of overlap could not be determined, we sought to mitigate this risk.
Sample overlap does not invalidate the MR estimates, but it can amplify the bias from weak
instruments (72). Therefore, by ensuring that all our instruments had an F-statistic greater
than 10, we minimized the potential for weak instrument bias and, consequently, reduced the
impact of any potential sample overlap. Finally, several SNPs could be selected as Vs,

affecting the causal associations.

Conclusions

The MR analysis results suggest a potential protective association of genetically predicted
Transmembrane protein 70 with IPF and a possible positive association of SIRTS, although
the latter finding requires cautious interpretation. These proteins may represent potential
therapeutic targets that improve understanding of mitochondrial dysfunction in IPF, but the
current evidence is preliminary. Further biological and clinical validation is required before
these findings can be translated into clinical practice. The other mitochondrial proteins were

not associated with IPF, and more in-depth research is necessary.
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Figure legends

Figure 1. Schematic representation of the Mendelian randomization study assumptions.
Figure 2. Mendelian randomization analysis of the possible causal association between
transmembrane protein 70 and idiopathic pulmonary fibrosis: scatter plot (top left), forest

plot (top right), funnel plot (bottom left), and leave-one-out forest plot (bottom right).



Table 1. Selection of the IVs

Mitochontrial proteins Selection IVs,n MeanF F range Non-matching SNPs and proxy
threshold
2,4-Dienoyl-CoA Reductase P<5x10° 10 23.09 21.53-27.18 1s1284877 -> rs1284878 (R?=0.0171)
Ribosome-recycling factor P<5x10° 15 23.25 21.05-30.06 rs552107732, no proxy
159674789 -> 1512936590 (R*=0.0067)
NADH dehydrogenase (ubiquinone) P <5x10° 13 22.43 21.04-24.98 rs58906847, no proxy
1 beta subcomplex subunit 8
NADH dehydrogenase (ubiquinone) P <5x10° 19 115.00 20.89-1787.59 rs143366101, no proxy
iron-sulfur protein 4 rs115713928 > rs72834339 (R?=0.0066)
1s34140990 -> rs7128448 (R*=0.0068)
NADH dehydrogenase (ubiquinone) P <5x10° 7 23.05 21.24-28.89 -
flavoprotein 2
Serine-tRNA ligase P<5x10% 11 23.03 21.03-26.26 rs12292833, no proxy

23

1s850388 -> 15917177 (R*=0.0065)



NAD-dependent protein deacylase P <5x10°
sirtuin-5

Transmembrane protein 70 P<5x10°
Diablo homolog P<5x10°
Mitochondrial import inner P <5x107

membrane translocase subunit

Persulfide dioxygenase ETHE1 P<5x10°

16

10

18

11

14

25.97

22.51

23.81

22.82

26.74

20.93-60.55

20.84-25.32

21.01-43.04

21.15-30.68

21.00-51.10

1s545964696, no proxy

15983355 > rs1480318 (R?=0.0064)
rs8139620 was eliminated later
1s569797207, no proxy

rs4310923, no proxy

rs111261668 -> rs62015875 (R*=0.0069)

rs1718860 -> rs7685467 (R*=0.0129)

1$8055509 -> rs13337159 (R*=0.0066)

IV: instrumental variable; SNP: single-nucleotide polymorphism.



Table 2. The association between genetically predicted mitochondrial function and the risk of idiopathic pulmonary fibrosis

Exposures Outcome  Methods SNPs,n P OR (95% CI)
2,4-Dienoyl-CoA Reductase IPF IVW 9 0.65 1.02 (0.92-1.14)
2,4-Dienoyl-CoA Reductase MR Egger 9 0.54 0.95 (0.81-1.11)
2,4-Dienoyl-CoA Reductase Weighted median 9 0.87 0.99 (0.90-1.09)
2,4-Dienoyl-CoA Reductase Weighted mode 9 0.82 0.99 (0.89-1.10)
Ribosome-recycling factor IVW 12 0.59 0.96 (0.83-1.11)
Ribosome-recycling factor MR Egger 12 0.52 0.91 (0.67-1.21)
Ribosome-recycling factor Weighted median 12 0.53 0.94 (0.77-1.14)
Ribosome-recycling factor Weighted mode 12 0.59 0.94 (0.76-1.17)
NADH dehydrogenase (ubiquinone) 1 beta IVW 12 0.96 1.00 (0.85-1.18)
subcomplex subunit 8

NADH dehydrogenase (ubiquinone) 1 beta MR Egger 12 0.87 0.97 (0.64-1.45)
subcomplex subunit 8

NADH dehydrogenase (ubiquinone) 1 beta Weighted median 12 0.64 0.95 (0.78-1.16)




subcomplex subunit 8

NADH dehydrogenase

subcomplex subunit 8
NADH dehydrogenase
protein 4

NADH dehydrogenase
protein 4

NADH dehydrogenase
protein 4

NADH dehydrogenase

protein 4

(ubiquinone)

(ubiquinone)

(ubiquinone)

(ubiquinone)

(ubiquinone)

1 Dbeta

iron-sulfur

iron-sulfur

iron-sulfur

iron-sulfur

NADH dehydrogenase (ubiquinone) flavoprotein 2

NADH dehydrogenase (ubiquinone) flavoprotein 2

NADH dehydrogenase (ubiquinone) flavoprotein 2

NADH dehydrogenase (ubiquinone) flavoprotein 2

Weighted mode

IVW

MR Egger

Weighted median

Weighted mode

IVW

MR Egger

Weighted median

Weighted mode

12

18

18

18

18

0.68

0.32

0.33

0.46

0.50

0.49

0.79

0.88

0.98

0.92 (0.64-1.33)

0.97 (0.91-1.03)

0.96 (0.88-1.04)

0.98 (0.91-1.04)

0.98 (0.91-1.05)

1.07 (0.89-1.28)

0.95 (0.66-1.36)

1.02 (0.8-1.29)

1.00 (0.75-1.34)




Serine-tRNA ligase

Serine-tRNA ligase

Serine-tRNA ligase

Serine-tRNA ligase

NAD-dependent protein deacylase sirtuin-5
NAD-dependent protein deacylase sirtuin-5
NAD-dependent protein deacylase sirtuin-5
NAD-dependent protein deacylase sirtuin-5
Transmembrane protein 70
Transmembrane protein 70
Transmembrane protein 70
Transmembrane protein 70

Diablo homolog

Diablo homolog

Diablo homolog

IVvw

MR Egger
Weighted median
Weighted mode
IVvw

MR Egger
Weighted median
Weighted mode
Ivw

MR Egger
Weighted median
Weighted mode
IVvw

MR Egger

Weighted median

11

11

11

14

14

14

14

18

18

18

0.88

0.93

0.75

0.67

0.13

0.49

0.06

0.08

0.03

0.11

0.14

0.60

0.79

0.62

0.16

1.02 (0.80-1.31)
0.96 (0.39-2.37)
0.96 (0.76-1.21)
0.94 (0.70-1.25)
1.15 (0.96-1.39)
0.73 (0.31-1.73)
1.22 (0.99-1.50)
1.5 (0.99-2.27)

0.83 (0.70-0.99)
0.65 (0.41-1.04)
0.84 (0.66-1.06)
0.91 (0.66-1.26)
1.02 (0.88-1.19)
1.12 (0.72-1.74)

1.13 (0.95-1.33)




Diablo homolog

Mitochondrial import inner membrane translocase
subunit

Mitochondrial import inner membrane translocase
subunit

Mitochondrial import inner membrane translocase
subunit

Mitochondrial import inner membrane translocase
subunit

Persulfide dioxygenase ETHE1

Persulfide dioxygenase ETHE1

Persulfide dioxygenase ETHE1

Persulfide dioxygenase ETHE1

Weighted mode

IVW

MR Egger

Weighted median

Weighted mode

IVW

MR Egger

Weighted median

Weighted mode

18

14

14

14

14

0.19

0.89

0.82

0.59

0.61

0.55

0.40

0.27

0.34

1.18 (0.93-1.51)

1.01 (0.83-1.23)

1.08 (0.58-2.01)

1.07 (0.84-1.35)

1.08 (0.81-1.45)

1.05 (0.90-1.21)

0.84 (0.56-1.25)

1.12 (0.92-1.35)

1.16 (0.87-1.56)

IVW: inverse variance weighted; OR: odds ratio; CI: confidence interval; IPF: idiopathic pulmonary fibrosis.



Table 3. Heterogeneity and pleiotropy testing of the instrumental variables for the exposures and IPF as the outcome

Exposures Heterogeneity Pleiotropy

Q P Egger intercept P
2,4-Dienoyl-CoA Reductase 17.23 0.028 77.00 0.250
Ribosome-recycling factor 8.35 0.682 0.01 0.656
NADH dehydrogenase (ubiquinone) 1 17.79 0.087 0.01 0.844

beta subcomplex subunit 8

NADH dehydrogenase (ubiquinone) 7.89 0.969 0.01 0.674
iron-sulfur protein 4

NADH dehydrogenase (ubiquinone) 4.62 0.464 0.03 0.510

flavoprotein 2

Serine-tRNA ligase 23.88 0.008 0.01 0.890
NAD-dependent protein deacylase sirtuin-5 23.85 0.033 0.07 0.311
Transmembrane protein 70 6.28 0.616 0.04 0.310
Diablo homolog 28.14 0.043 -0.02 0.661
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Mitochondrial import inner membrane translocase subunit 5.20 0.636 -0.01 0.845

Persulfide dioxygenase ETHE1 17.01 0.199 0.04 0.261




Table 4. MR-PRESSO results

Outcome Exposure Raw Outlier corrected Global Number of Distortion
OR(CI%) P OR(CI%) P P outliers P
Idiopathic 2,4-Dienoyl-CoA Reductase, 1.02 (0.92- 0.665 / / / / /
pulmonary  mitochondrial levels 1.14)
fibrosis Diablo homolog, mitochondrial 1.02 (0.88- 0.790 / / / / /
1.19)
Mitochondrial ~ import  inner 1.01 (0.86- 0.881 / / / / /
membrane translocase subunit 1.2)
NAD-dependent protein deacylase 1.16 (0.97- 0.120 1.25 (1.09- 0.007 0.031 1 0.424
sirtuin-5, mitochondrial 1.37) 1.43) (rs10733789)
NADH dehydrogenase 1 (0.85- 0.964 / / / / /

(ubiquinone) 1 beta subcomplex 1.18)
subunit 8, mitochondrial

NADH dehydrogenase 1.11 (0.93- 0.276 / / / / /
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(ubiquinone)
mitochondrial

NADH

flavoprotein

2,

dehydrogenase

(ubiquinone) iron-sulfur protein 4,

mitochondrial

Persulfide dioxygenase ETHEI,

mitochondrial

Ribosome-recycling

mitochondrial

factor,

Serine-tRNA ligase, mitochondrial

Transmembrane

mitochondrial

protein

70,

1.32)

0.97 (0.93-
1.01)
1.05  (0.9-
1.21)

0.96 (0.85-
1.09)
1.02  (0.8-
1.31)

0.83 (0.71-

0.97)

0.165

0.561

0.550

0.878

0.044

/ /
/ /
/ /

0.96 (0.76- 0.563
1.16)

/ /

0.006

/ /
/ /
/ /

1 (rs1294404) 0.281
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Genetic variants

Confounders

A\ 4

Mitochondrial function

Idiopathic pulmonary
fibrosis

A

Included IVs:
P<51 106 or P<51 105
MAF >0.01; R2<0.001,
window size=10,000 kb




Genetic variants

Confounders

Mitochondrial function

Idiopathic pulmonary
fibrosis

N

Included IVs:
P<51 10 or P<51 10°5;
MAF >0.01; R2<0.001,
window size=10,000 kb

Figure 1. Schematic representation of the Mendelian randomization study assumptions.
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Figure 2. Mendelian randomization analysis of the possible causal association between
transmembrane protein 70 and idiopathic pulmonary fibrosis: scatter plot (top left), forest plot
(top right), funnel plot (bottom left), and leave-one-out forest plot (bottom right).
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