

# Immune Cells, Serum Metabolites, and Ovarian Cancer: A Mediation Mendelian Randomization Study

## Keywords

Ovarian cancer, Mendelian randomization, Serum metabolites, Mediation analysis, Immune cells phenotype

---

## Abstract

### Introduction

Recent studies have highlighted the potential functions of immune cells and serum metabolites in the progression of ovarian cancer (OC). Therefore, this study executed Mendelian randomization (MR) methodology to seek out causal links among serum metabolites, immune cells, and OC.

### Material and methods

This study wielded data from multiple sources to obtain genetic data related to immune cell phenotypes, serum metabolites, and OC. The causal effects were estimated using the inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to assess potential causal effects. Finally, mediation analysis was conducted to ascertain the potential mediating functions of immune cell phenotypes and serum metabolites in OC.

### Results

36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4 regulatory T cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while "IgD- CD38dim B cell %B cell" (OR = 1.027, p = 0.021) was risk factor. Additionally, 89 causal relationships were identified between serum metabolites and OC. "Gluconate levels" (OR = 0.925, p = 0.047) was protective, while "fructose levels" (OR = 1.097, p = 0.019) was risk factor for OC. Mediation analysis identified 3 serum metabolites that mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity analysis validated the robustness of these findings.

### Conclusions

This work supplies novel insights into the causal connections among immune cells, serum metabolites, and OC.

1    **Immune Cells, Serum Metabolites, and Ovarian Cancer: A Mediation Mendelian**  
2    **Randomization Study**

3

4    Running head: Causal relationships in ovarian cancer

Preprint

5      **Abstract**

6      **Introduction**

7      Recent studies have highlighted the potential functions of immune cells and serum  
8      metabolites in the progression of ovarian cancer (OC). Therefore, this study executed  
9      Mendelian randomization (MR) methodology to seek out causal links among serum  
10     metabolites, immune cells, and OC.

11     **Material and methods**

12     This study wielded data from multiple sources to obtain genetic data related to immune  
13     cell phenotypes, serum metabolites, and OC. The causal effects were estimated using the  
14     inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted  
15     mode to assess potential causal effects. Finally, mediation analysis was conducted to  
16     ascertain the potential mediating functions of immune cell phenotypes and serum  
17     metabolites in OC.

18     **Results**

19     36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4  
20     regulatory T cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while  
21     "IgD- CD38dim B cell %B cell" (OR = 1.027, p = 0.021) was risk factor. Additionally,  
22     89 causal relationships were identified between serum metabolites and OC. "Gluconate  
23     levels" (OR = 0.925, p = 0.047) was protective, while "fructose levels" (OR = 1.097, p =  
24     0.019) was risk factor for OC. Mediation analysis identified 3 serum metabolites that  
25     mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell

26 phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity  
27 analysis validated the robustness of these findings.

28 **Conclusions**

29 This work supplies novel insights into the causal connections among immune cells, serum  
30 metabolites, and OC.

31

32 **Keywords:** Ovarian cancer, Immune cells phenotype, Serum metabolites, Mendelian  
33 randomization, Mediation analysis

34

35 **1. Introduction**

36 Ovarian cancer (OC) remains a lethal gynecological malignancy with a 5-year survival  
37 rate of approximately 47%. This is mostly due to the absence of early symptoms, resulting  
38 in the majority of patients being detected at an advanced stage[1]. Moreover, the etiology  
39 of OC remains unclear, further complicating early diagnosis[2]. While current therapies  
40 partially control progression, high recurrence rates persist, highlighting an urgent need  
41 for improved early diagnostic biomarkers and therapeutic targets[3].

42 Recent studies have linked the immune system to OC progression: macrophage  
43 homeostasis dysregulation drives tumor microenvironment immunosuppression[4,5];  
44 and altered lymphocyte subsets (e.g., T/B cells) correlate with prognosis[6]. In particular,  
45 regulatory T cells (Tregs) and regulatory B cells (Bregs) inhibit the proliferation of other  
46 immune cells by expressing different immune checkpoint molecules and secreting

47 immunosuppressive substances, thereby promoting tumor growth and progression[7–10].  
48 In parallel, the rapid advancement of metabolomics has offered a new lens to clarify OC  
49 pathogenesis while being widely utilized in OC studies over recent years[11,12]. Serum  
50 metabolites, as direct reflections of biochemical activities in the body, are considerable  
51 for risk assessment and prognosis prediction of female cancers[13]. Fatty acids (such as  
52 C16 and C22), amino acids, and various chemical substances have been recognized as  
53 possible serum indicators for OC[14,15]. These findings underscore the critical role of  
54 serum metabolites in OC, but their causal relationship with OC—and whether they  
55 mediate the crosstalk between immune cells and OC pathogenesis—has not been  
56 validated. Traditional observational studies, limited by confounding factors and reverse  
57 causality, cannot resolve these uncertainties.  
58 Based on this, the present study aims to systematically evaluate the causal relationship  
59 between immune cells and serum metabolites with OC through Mendelian randomization  
60 (MR) analysis, which leverages genetic variants as instrumental variables (IVs) to infer  
61 causal relationships while minimizing bias[16,17]. We further integrated mediation  
62 analysis to dissect the potential pathways: specifically, whether serum metabolites  
63 mediate the effect of immune cells on OC, or vice versa. This approach aims to clarify  
64 the immunometabolic network in OC, providing a theoretical basis for developing novel  
65 diagnostic strategies and therapeutic interventions.  
66 **2. Materials and methods**  
67 **2.1 Data collection**

68 This study incorporated 731 immune phenotypes, all retrieved from the GWAS catalog  
69 (<https://www.ebi.ac.uk/gwas/>) (GCST90001391 to GCST90002121) and encompassing  
70 3,757 individuals of European ancestry with no cohort overlap[18]. Additionally, 1,400  
71 serum metabolites (GCST90199621 to GCST90201020) were retrieved from the GWAS  
72 catalog, originating from the Canadian Longitudinal Study on Aging (CLSA) cohort. This  
73 cohorts contained 8,299 randomly selected European-descent individuals with no blood  
74 relations[19]. Meanwhile, the GWAS data for OC (ieu-a-1120) were obtained from the  
75 IEU OpenGWAS project (<https://gwas.mrcieu.ac.uk/>), comprising 40,941 controls and  
76 25,509 case samples of European origin, totaling 470,825 single nucleotide  
77 polymorphisms (SNPs).

78 **2.3 Acquisition of IVs**

79 MR analysis was conducted based on the following three fundamental assumptions: (1)  
80 IVs must demonstrate a consistent correlation with the exposure factors being examined;  
81 (2) IVs must be unaffected by any identifiable or unidentifiable confounding variables;  
82 (3) IVs must affect the outcome only via the exposure factor, rather than through  
83 alternative direct causal mechanisms. Based on these assumptions, we followed the initial  
84 step of selecting IVs by setting the SNP selection threshold at  $p < 1 \times 10^{-5}$  when regarding  
85 immune cells and serum metabolites as exposure factors[20,21]. Second, the ieugwasr  
86 package (v 1.0.0) [22] was used to eliminate SNPs with linkage disequilibrium,  
87 (parameters:  $r^2 = 0.001$ , kb = 10000). Subsequently, we calculated the F-statistic for each  
88 genetic variant and retained only those with an F-statistic  $> 10$ . Based on GWAS catalog,

89 SNPs potentially associated with outcome GWAS traits were excluded at a threshold of  $p$   
90  $< 1*10^{-5}$  to satisfy the independence assumption. Additionally, the Steiger method was  
91 employed for directionality testing to ensure the unidirectionality of causal relationships.  
92 To ensure that the effects of SNPs on exposure and outcome corresponded with those of  
93 the identical allele, palindromic SNPs were omitted.

94 **2.4 MR analysis**

95 This study followed the Mendelian reporting specifications for randomised studies  
96 (STROBE-MR)[23]. This study employed multiple MR analysis methods to assess causal  
97 relationships. The inverse variance weighted (IVW) [24] method, which typically has the  
98 highest statistical power[24,25], was chosen as the primary method, supplemented by  
99 other approaches including MR-Egger[26], weighted median[27], simple mode[28], and  
100 weighted mode[28]. Moreover, the mediating roles of immune cells and serum  
101 metabolites in OC was explored. First, the overall effect of the main exposure on OC was  
102 assessed (a), reflecting the combined direct and indirect effects of the exposure on OC  
103 without considering mediating variables. Subsequently, the effects of exposure on the  
104 mediator (c) and the mediator on the outcome (b) were analyzed. In quantifying mediating  
105 effects,  $c*b$  was used to represent the mediating effect. Additionally, the direct effect was  
106 computed using the formula  $a-c*b$ , while the proportion of mediation was quantified as  
107  $c*b/a$ .

108 **2.5 Statistical analysis**

109 Sensitivity analyses were conducted to assess the robustness of causal inferences.

110 Heterogeneity was evaluated using the `mr_heterogeneity` function and pleiotropy was  
111 assessed through MR-Egger regression and MR-PRESSO methods-outliers with  $p < 0.05$   
112 were excluded. Additionally, leave-one-out analysis was conducted to test the reliance of  
113 results on individual SNPs: one SNP was removed sequentially to check if any single SNP  
114 influenced the causal estimates. All analyses were completed using the `TwoSampleMR`  
115 (v 0.6.0)[29] and `MRPRESSO` packages (v 1.0)[30], and the Delta method was utilized  
116 to compute standard errors for mediating effects, direct effects, and proportions  
117 mediated[31].

118 **3. Result**

119 **3.1 Selection of IVs**

120 SNPs were screened to meet the necessary assumptions for MR analysis. In the analysis  
121 of immune cells phenotype and OC, a total of 17,757 SNPs were included for further  
122 study, with F-statistics fluctuating from 19.537 to 3159.289 (Table S1). For the analysis  
123 of serum metabolites and OC, 34,513 SNPs were used, with F-statistics spanning from  
124 19.503 to 2297.785 (Table S2). In the analysis from immune cells phenotype to serum  
125 metabolites, 17,836 SNPs were included, with F-statistics varying from 19.537 to  
126 3159.289 (Table S3). Finally, in the analysis from serum metabolites to immune cells  
127 phenotype, 34,856 SNPs were included, with F-statistics fluctuating from 19.503 to  
128 2297.785 (Table S4). All selected SNPs had F-statistics exceeding 10, thereby affirming  
129 their reliability.

130 **3.2 Investigating the mediating role of serum metabolites in immune cells and OC**

131 Given that immune cells are essential for ovarian development, pathogenic processes, and  
132 functional maintenance[32], we probed into the causal links between immune cells and  
133 OC. Among the 731 immune cells phenotype and OC were analyzed, 36 significant causal  
134 relationships were identified, with 15 being protective factors and 21 being risk factors.  
135 Specifically, "resting CD4 regulatory T cell %CD4 regulatory T cell" [odds ratio (OR) =  
136 0.977, 95% confidence interval (CI) = 0.958-0.996, p = 0.018) and "CD25 on CD39<sup>+</sup>  
137 resting CD4 regulatory T cell" (OR = 0.946, 95% CI = 0.899-0.995, p = 0.032) were  
138 protective against OC. Conversely, "CD19 on IgD<sup>+</sup> CD38<sup>-</sup> unswitched memory B cell"  
139 (OR = 1.037, 95% CI = 1.014-1.060, p = 0.002) and "IgD<sup>-</sup> CD38<sup>dim</sup> B cell %B cell" (OR  
140 = 1.027, 95% CI = 1.004-1.050, p = 0.021) were risk factors for OC (Figure 1).  
141 Subsequently, reverse MR analysis was performed to exclude potential bidirectional  
142 effects, with no significant associations found, confirming the validity of the causal links  
143 identified in the forward MR analysis.

144 Considering the substantial effect of immune cells, we further explored their influence on  
145 OC through serum metabolites. This involved analyzing the causal links between 1,400  
146 serum metabolites and OC, leading to the identification of 89 significant associations  
147 (Figure 2). On this basis, we checked into the causal relationships between immune cells  
148 phenotype and serum metabolites, finding 156 associations between 36 immune cells  
149 phenotype and 80 serum metabolites, including 78 protective and 78 risk factors (Table  
150 S5). In the mediation analysis, 4 significant associations were identified:  
151 "2R,3R-dihydroxybutyrate levels" increased the risk effect of "CD11c<sup>+</sup> CD62L<sup>-</sup>

152 "monocyte Absolute Count" on OC (11.300%). "N-lactoyl phenylalanine (Lac-Phe)  
153 levels" attenuated the risk effect of "CD27 on IgD<sup>-</sup> CD38<sup>+</sup> B cell" on OC (21.230%), and  
154 "X-12221 levels" attenuated the risk effect of "CD19 on IgD<sup>+</sup> CD38<sup>-</sup> unswitched  
155 memory B cell" on OC (12.342%). "Pseudouridine levels" attenuated the protective effect  
156 of "CD4+CD8+ T cell Absolute Count" on OC (14.010%) (Figure 3). Due to the unclear  
157 levels of X-12221, 3 mediating associations were finally validated, uncovering the  
158 interactions between metabolites and immune cell phenotypes as well as their influence  
159 on OC risk.

### 160 **3.3 Exploring the influence of serum metabolites on OC via immune cells phenotype**

161 Metabolomics, an emerging branch of systems biology, has made significant progress in  
162 cancer research in recent years, substantially enhancing the understanding, diagnosis, and  
163 treatment of diverse cancers, including OC[33]. Metabolomics can provide detailed  
164 information on metabolic changes during disease onset and progression, offering new  
165 perspectives for early diagnosis. Therefore, MR analysis was conducted on 1,400 serum  
166 metabolites and OC. In this process, 89 significant associations were identified, including  
167 49 protective factors and 40 risk factors for OC (Figure 2). "Mannose to mannitol to  
168 sorbitol ratio" (OR = 1.104, 95% CI = 1.008-1.208, p = 0.033) and  
169 "Oleoyl-linoleoyl-glycerol (18:1 to 18:2) to linoleoyl-arachidonoyl-glycerol (18:2 to  
170 20:4) ratio" (OR = 1.058, 95% CI = 1.012-1.106, p = 0.013) exhibited risk effects on OC.  
171 Conversely, "Adenosine 5'-monophosphate (AMP) to acetoacetate ratio" (OR = 0.929,  
172 95% CI = 0.866-0.997, p = 0.041) and "sulfate of piperine metabolite C18H21NO3 (1)

173 levels" (OR = 0.925, 95% CI = 0.860-0.996, p = 0.039) were protective factors. Similarly,  
174 to exclude the possibility of bidirectional effects, the causal impact of OC on these serum  
175 metabolites was assessed, with no significant reverse associations found.  
176 Subsequently, the role of serum metabolites in influencing OC through immune cells  
177 phenotype was explored. By calculating the causal relationships between 731 immune  
178 cells phenotype and OC, 36 significant associations were identified (Figure 1). Based on  
179 these significant results, the causal links between serum metabolites and immune cells  
180 phenotype were evaluated, identifying 143 significant associations between 69 serum  
181 metabolites and 34 immune cells phenotype, including 68 protective and 75 risk factors  
182 (Table S6). Subsequently, mediation analysis was conducted to explore whether these  
183 serum metabolites influenced OC through specific immune cells. The results identified  
184 two significant associations: "IgD<sup>-</sup> CD24<sup>-</sup> AC" attenuated the protective effect of  
185 "arachidonate (20:4n6) to paraxanthine ratio" on OC (19.450%), and "CD4 Treg %CD4"  
186 attenuated the risk effect of "Gamma-CEHC glucuronide levels" on OC (17.580%)  
187 (Figure 4). These findings suggested that certain metabolites might alter the immune  
188 microenvironment of OC by adjusting immune cell activity or function, which in turn  
189 affects OC's onset and progression.

190 **3.4 Sensitivity analysis**

191 To verify the accuracy of causal inferences in this study, comprehensive sensitivity  
192 analyses were performed. The causal results were consistent with the MR-PRESSO  
193 method, with no outliers detected. The MR-Egger test results showed p-values exceeding

194 0.05, indicating no pleiotropic bias (Table S7). Subsequently, when facing heterogeneity  
195 in MR analysis, a random-effects IVW was employed (Table S7), still yielding robust  
196 causal inference results. Furthermore, leave-one-out analysis revealed that the causal  
197 inference conclusions remained largely unaffected despite the removal of one SNP in each  
198 iteration. These findings ensured the reliability of the analysis results.

199 **4. Discussion**

200 Given the unclear interrelationships among immune cells, serum metabolites, and OC,  
201 this study utilized MR analysis to systematically probe into the causal links between  
202 immune cells/serum metabolites and OC, further investigating the mediating roles of  
203 these factors in OC development. We ultimately identified 3 significant pairs of  
204 relationships mediated by serum metabolites and 2 associations mediated by immune  
205 cells. These findings not only established a novel theoretical framework for  
206 comprehending the etiology of OC but also presented new avenues for its early  
207 identification and therapy.

208 Through MR analysis, we identified "HLA DR<sup>++</sup> monocyte %monocyte" as a protective  
209 factor for OC. Monocytes' HLA-DR surface expression denotes their activation state[34],  
210 which aids in determining their immunological status[35]. Some studies indicate that a  
211 certain monocyte subpopulation may possess immunosuppressive properties by  
212 suppressing T cell proliferation and differentiation, facilitating the development of  
213 regulatory T cells, and secreting anti-inflammatory mediators. This immune regulatory  
214 mechanism can safeguard the ovaries from autoimmune injury, therefore diminishing the

215 chance of premature ovarian failure (POF) [36], which seemed to be consistent with our  
216 findings. Besides, our research revealed that "CD28<sup>-</sup> CD25<sup>++</sup> CD8<sup>+</sup> T cell Absolute  
217 Count" is a risk factor for OC, corroborated by existing research results. Studies have  
218 shown that an increased relative count of CD28<sup>-</sup> CD25CD8 T cells correlates with an  
219 elevated risk of infertility in women[37]. Another MR analysis revealed that the greatest  
220 risk factor for infertility is CD28<sup>-</sup>CD25<sup>++</sup> CD8<sup>+</sup> %T cells[38]. The results indicated that  
221 the onset and advancement of OC were intricately affected by the immune system.  
222 Metabolites, as products and substrates of cellular metabolic processes, which was tightly  
223 tied to cancer[39]. Therefore, we marched investigation into the link between serum  
224 metabolites and OC and ultimately identified 89 associations with causal relationships.  
225 Among these associations, "palmitoylcarnitine levels" were considered a protective factor  
226 for OC. The primary job of palmitoylcarnitine is to ferry long-chain fatty acids into the  
227 mitochondria for  $\beta$ -oxidation, thereby providing cell energy[40]. Consequently, focusing  
228 on palmitoylcarnitine and leveraging its capacity to provoke oxidative stress in cancer  
229 cells may offer a possible supplementary approach for the treatment of OC[41,42]. In  
230 contrast, "Trimethylamine N-oxide (TMAO) levels" were recognized as a risk factor for  
231 OC. Studies have shown that TMAO can upregulate macrophage scavenger receptors,  
232 promotes cholesterol accumulation and foam cell formation, activates MAPK and nuclear  
233 factor- $\kappa$ B pathways, thereby promoting plaque formation and inflammatory  
234 responses[43]. Moreover, heightened plasma levels of TMAO may correlate with the  
235 pathophysiology of polycystic ovarian syndrome (PCOS) absent hyperandrogenism (HA)

236 and are significantly linked to augmented systemic inflammation[44]. This discovery  
237 indicates that TMAO may facilitate the onset and progression of OC via many pathways,  
238 which aligned with our results. In summary, the intricate connection between OC and  
239 serum metabolites has been made clear by this investigation.

240 To explore immune cells' mediating role in the serum metabolites-OC relationship,  
241 mediation analysis revealed that "CD4 Treg %CD4" attenuated OC risk associated with  
242 "Gamma-CEHC glucuronide levels"- a vitamin E metabolite and OC risk factor.

243 Research has proven that the anticancer efficacy of tumor-infiltrating cytotoxic CD8+ T  
244 cells in OC seems to be impacted by the presence of CD4 Tregs[45], suggesting that CD4  
245 Tregs may promote the progression of OC. However, studies have certified that depleting  
246 Tregs during OC can boost immunity and perhaps have therapeutic benefits[46,47].

247 Additionally, studies have maintained that an elevated number of CD4+ T cells is  
248 positively connected with the clinical features and tumor size of OC[48,49]. This  
249 suggested that modulating the ratio of CD4 Tregs to CD4+ T cells might provide a  
250 potential target for developing novel immunomodulatory therapeutic strategies.

251 Additionally, we also addressed the mediating function of serum metabolites in the  
252 interaction between immune cells and OC. Mediation analysis showed that "Lac-Phe  
253 levels" attenuated the risk of OC associated with "CD27 on IgD- CD38+ B cell"- a  
254 confirmed risk factor for OC. Higher IgD- CD38+ B cells link to stronger  
255 inflammation[50], which may promote OC via tumor microenvironment formation. In  
256 both mice and humans, plasma Lac-Phe concentrations rise in response to stimuli that

257 enhance circulating lactate or phenylalanine levels or increase glycolytic flux[51].  
258 Research indicates that elevated levels of Lac-Phe serve as a significant protective factor  
259 against OC[52]. These findings suggest Lac-Phe's mediated protective effect may stem  
260 from its role in modulating immune cell function and suppressing inflammation, offering  
261 a fresh perspective on OC's underlying immunometabolic mechanisms.  
262 We have broken through the traditional single-variable research model in terms of  
263 perspective and are the first to use mediating MR to systematically evaluate the causal  
264 relationship among immune cell phenotypes, serum metabolites and OC. Specific targets  
265 such as "CD4 Treg %CD4" and "Lac-Phe levels" have been proposed and hold promise  
266 for advancing targeted regulatory therapies. For instance, strategies involving the  
267 selective depletion of CD4 Treg cells or the development of Lac-Phe or its analogs as  
268 metabolic intervention agents warrant further investigation and validation. Despite  
269 making significant progress in elucidating the immunometabolic mechanisms of OC, our  
270 research has encountered tons limitations. The principal constraint is the substantial  
271 dependence on data from European populations, potentially introducing specific biases.  
272 Furthermore, the outcomes of our mediation study have not been corroborated by further  
273 experimental trials, necessitating further research to validate these causal links. The  
274 stratification of the research subjects is not clear and only some immune cells and serum  
275 metabolites are focused on, which may limit the universality of the conclusion and miss  
276 key mediator pathways.

277 **5. Conclusion**

278 In summary, our MR study thoroughly investigated the causative connections among  
279 immune cell phenotypes, serum metabolites, and OC. The research discovered 36 notable  
280 causal relationships between immune cell phenotypes and OC, along with 89 connections  
281 between serum metabolites and OC. Furthermore, by mediation analysis, we clarified  
282 the mediating role of serum metabolites and immune cells in OC. These findings elucidate  
283 the significant functions of immune cells and serum metabolites in OC and offer new  
284 perspectives for its early identification..

285

### 286 **Acknowledgements**

287 We would like to sincerely thank the authors for their scientific contribution.

288

### 289 **Funding**

290 This research was funded by the Intra-Institutional Rising Star Discipline Program (grant  
291 number: XKXX202215) .

292

### 293 **Conflict of interest statement**

294 The authors declare no conflicts of interest.

295

### 296 **Ethics declarations**

297 Not applicable.

298

299 **Author contributions**

300 **Guansheng Chen:** Writing – original draft, Software, Project administration,

301 Methodology, Investigation, Data curation, Conceptualization.

302 **Yongjun Wang:** Validation, Software, Formal analysis.

303 **Lingyu Liu:** Validation, Software, Formal analysis.

304 **Wenjing Li:** Writing – review & editing, Supervision, Resources, Project administration,

305 Funding acquisition, Data curation, Conceptualization.

306

307 **Data Sharing Statement**

308 The genome-wide association study (GWAS) dataset for OC was obtained from the IEU

309 OpenGWAS project (<https://gwas.mrcieu.ac.uk/>). Immune phenotypes were obtained

310 from the GWAS catalog (<https://www.ebi.ac.uk/gwas/>).

311

312 **Figure legends**

313 Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype

314 on ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single

315 nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio\_P,

316 pleiotropy pvalue.

317 Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse

318 variance weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or,

319 odds ratio; CI, confidence interval; pleio\_P, pleiotropy pvalue.

320 Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites.  
321 nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,  
322 confidence interval; pleio\_P, pleiotropy pvalue; a, the total effect of immune cells  
323 phenotype on OC; b, the effect of serum metabolites on OC; c, the effect of immune cells  
324 phenotype on serum metabolites.

325 Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype  
326 for OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,  
327 confidence interval; pleio\_P, pleiotropy pvalue; a, the total effect of serum metabolites on  
328 OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on  
329 immune cells phenotype.

330

331 **Supplementary information**

332 Table S1. Screening results of single nucleotide polymorphisms (SNPs) with immune  
333 cells phenotype on ovarian cancer (OC).

334 Table S2. Screening results of SNPs with serum metabolites on OC.

335 Table S3. Screening results of SNPs with immune cells phenotype on serum metabolites.

336 Table S4. Screening results of SNPs with serum metabolites on immune cells phenotype.

337 Table S5. Mendelian randomization (MR) analysis between immune cells phenotype and  
338 serum metabolites.

339 Table S6. MR analysis between serum metabolites and immune cells phenotype.

340 Table S7. Heterogeneity and horizontal pleiotropy tests for MR analysis.

341

342 **References**

343 1. Siminiak, N.; Czepczyński, R.; Zaborowski, M.P.; Iżycki, D. Immunotherapy in  
344 Ovarian Cancer. *Arch. Immunol. Ther. Exp.* **2022**, *70*, 19, doi:10.1007/s00005-022-  
345 00655-8.

346 2. Auersperg, N. The Origin of Ovarian Cancers--Hypotheses and Controversies. *Front.*  
347 *Biosci.* **2013**, *S5*, 709–719, doi:10.2741/s401.

348 3. Chen, J.; Yang, L.; Ma, Y.; Zhang, Y. Recent Advances in Understanding the  
349 Immune Microenvironment in Ovarian Cancer. *Front. Immunol.* **2024**, *15*, 1412328,  
350 doi:10.3389/fimmu.2024.1412328.

351 4. Brown, M.B.; Von Chamier, M.; Allam, A.B.; Reyes, L. M1/M2 Macrophage  
352 Polarity in Normal and Complicated Pregnancy. *Front. Immunol.* **2014**, *5*, 606,  
353 doi:10.3389/fimmu.2014.00606.

354 5. Zhang, M.; He, Y.; Sun, X.; Li, Q.; Wang, W.; Zhao, A.; Di, W. A High M1/M2 Ratio  
355 of Tumor-Associated Macrophages Is Associated with Extended Survival in Ovarian  
356 Cancer Patients. *J. Ovarian Res.* **2014**, *7*, 19, doi:10.1186/1757-2215-7-19.

357 6. Gasparri, M.L.; Attar, R.; Palaia, I.; Perniola, G.; Marchetti, C.; Donato, V.D.;  
358 Farooqi, A.A.; Papadia, A.; Panici, P.B. Tumor Infiltrating Lymphocytes in Ovarian  
359 Cancer. *Asian Pac. J. Cancer Prev.* **2015**, *16*, 3635–3638,  
360 doi:10.7314/apjcp.2015.16.9.3635.

361 7. Toker, A.; Nguyen, L.T.; Stone, S.C.; Yang, S.Y.C.; Katz, S.R.; Shaw, P.A.; Clarke,

362 B.A.; Ghazarian, D.; Al-Habib, A.; Easson, A.; et al. Regulatory T Cells in Ovarian  
363 Cancer Are Characterized by a Highly Activated Phenotype Distinct from That in  
364 Melanoma. *Clin. Cancer Res.* **2018**, *24*, 5685–5696, doi:10.1158/1078-0432.Ccr-  
365 18-0554.

366 8. Cao, X.; Cai, S.F.; Fehniger, T.A.; Song, J.; Collins, L.I.; Piwnica-Worms, D.R.; Ley,  
367 T.J. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated  
368 Suppression of Tumor Clearance. *Immunity* **2007**, *27*, 635–646,  
369 doi:10.1016/j.jimmuni.2007.08.014.

370 9. Fillatreau, S.; Sweenie, C.H.; McGeachy, M.J.; Gray, D.; Anderton, S.M. B Cells  
371 Regulate Autoimmunity by Provision of IL-10. *Nat. Immunol.* **2002**, *3*, 944–950,  
372 doi:10.1038/ni833.

373 10. Zhang, Y.; Morgan, R.; Podack, E.R.; Rosenblatt, J. B Cell Regulation of Anti-  
374 Tumor Immune Response. *Immunol. Res.* **2013**, *57*, 115–124, doi:10.1007/s12026-  
375 013-8472-1.

376 11. Ha, J.H.; Jayaraman, M.; Nadhan, R.; Kashyap, S.; Mukherjee, P.; Isidoro, C.; Song,  
377 Y.S.; Dhanasekaran, D.N. Unraveling Autocrine Signaling Pathways through  
378 Metabolic Fingerprinting in Serous Ovarian Cancer Cells. *Biomedicines* **2021**, *9*,  
379 1927, doi:10.3390/biomedicines9121927.

380 12. Garg, G.; Yilmaz, A.; Kumar, P.; Turkoglu, O.; Mutch, D.G.; Powell, M.A.; Rosen,  
381 B.; Bahado-Singh, R.O.; Graham, S.F. Targeted Metabolomic Profiling of Low and  
382 High Grade Serous Epithelial Ovarian Cancer Tissues: A Pilot Study. *Metabolomics*

383                   **2018**, *14*, 154, doi:10.1007/s11306-018-1448-3.

384           13. Cao, Z.; Long, X.; Yuan, L. Associations between Serum Metabolites and Female  
385                   Cancers: A Bidirectional Two-Sample Mendelian Randomization Study. *J. Steroid  
386                   Biochem. Mol. Biol.* **2024**, *243*, 106584, doi:10.1016/j.jsbmb.2024.106584.

387           14. Ke, C.; Hou, Y.; Zhang, H.; Fan, L.; Ge, T.; Guo, B.; Zhang, F.; Yang, K.; Wang, J.;  
388                   Lou, G.; et al. Large-Scale Profiling of Metabolic Dysregulation in Ovarian Cancer.  
389                   *Int. J. Cancer* **2015**, *136*, 516–526, doi:10.1002/ijc.29010.

390           15. Ahn, H.S.; Yeom, J.; Yu, J.; Kwon, Y.I.; Kim, J.H.; Kim, K. Convergence of Plasma  
391                   Metabolomics and Proteomics Analysis to Discover Signatures of High-Grade  
392                   Serous Ovarian Cancer. *Cancers* **2020**, *12*, doi:10.3390/cancers12113447.

393           16. Liang, G.; Miao, D.; Du, C. Causal Associations between Blood Metabolites and  
394                   Breast Cancer. *Arch. Med. Sci.* **2024**, *21*, 206–214, doi:10.5114/aoms/188275.

395           17. Luo, M.; Li, M.; Zhou, M.; Wang, L.; Yang, X. Investigating Causal Relationships  
396                   between Coffee Consumption and Gynecological Diseases: A Mendelian  
397                   Randomization Study. *Arch. Med. Sci.* **2025**, doi:10.5114/aoms/200788.

398           18. Orrù, V.; Steri, M.; Sidore, C.; Marongiu, M.; Serra, V.; Olla, S.; Sole, G.; Lai, S.;  
399                   Dei, M.; Mulas, A.; et al. Complex Genetic Signatures in Immune Cells Underlie  
400                   Autoimmunity and Inform Therapy. *Nat Genet* **2020**, *52*, 1036–1045,  
401                   doi:10.1038/s41588-020-0684-4.

402           19. Zhao, G.; Cai, Y.; Wang, Y.; Fang, Y.; Wang, S.; Li, N. Genetically Predicted Blood  
403                   Metabolites Mediate the Association between Circulating Immune Cells and

404        Pancreatic Cancer: A Mendelian Randomization Study. *J. Gene Med.* **2024**, *26*,  
405        e3691, doi:10.1002/jgm.3691.

406        20. Liang, X.; Fan, Y. Bidirectional Two-Sample Mendelian Randomization Analysis  
407        Reveals a Causal Effect of Interleukin-18 Levels on Postherpetic Neuralgia Risk.  
408        *Front Immunol* **2023**, *14*, 1183378, doi:10.3389/fimmu.2023.1183378.

409        21. Wootton, R.E.; Lawn, R.B.; Millard, L.A.C.; Davies, N.M.; Taylor, A.E.; Munafò,  
410        M.R.; Timpson, N.J.; Davis, O.S.P.; Davey Smith, G.; Haworth, C.M.A. Evaluation  
411        of the Causal Effects between Subjective Wellbeing and Cardiometabolic Health:  
412        Mendelian Randomisation Study. *BMJ* **2018**, *362*, k3788, doi:10.1136/bmj.k3788.

413        22. Fan, J.-C.; Lu, Y.; Gan, J.-H.; Lu, H. Identification of Potential Novel Targets for  
414        Treating Inflammatory Bowel Disease Using Mendelian Randomization Analysis.  
415        *Int. J. Colorectal Dis.* **2024**, *39*, 165, doi:10.1007/s00384-024-04744-2.

416        23. Skrivanova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.;  
417        Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al.  
418        Strengthening the Reporting of Observational Studies in Epidemiology Using  
419        Mendelian Randomization: The STROBE-MR Statement. *JAMA* **2021**, *326*, 1614,  
420        doi:10.1001/jama.2021.18236.

421        24. Ding, M.; Zhang, Z.; Chen, Z.; Song, J.; Wang, B.; Jin, F. Association between  
422        Periodontitis and Breast Cancer: Two-Sample Mendelian Randomization Study.  
423        *Clin. Oral Investig.* **2023**, *27*, 2843–2849, doi:10.1007/s00784-023-04874-x.

424        25. Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian Randomization Analysis

425 with Multiple Genetic Variants Using Summarized Data. *Genet Epidemiol* **2013**, *37*,  
426 658–665, doi:10.1002/gepi.21758.

427 26. Burgess, S.; Thompson, S.G. Interpreting Findings from Mendelian Randomization  
428 Using the MR-Egger Method. *Eur J Epidemiol* **2017**, *32*, 377–389,  
429 doi:10.1007/s10654-017-0255-x.

430 27. Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in  
431 Mendelian Randomization with Some Invalid Instruments Using a Weighted  
432 Median Estimator. *Genet. Epidemiol.* **2016**, *40*, 304–314, doi:10.1002/gepi.21965.

433 28. Zeng, Y.; Cao, S.; Yang, H. Roles of Gut Microbiome in Epilepsy Risk: A Mendelian  
434 Randomization Study. *Frontiers in microbiology* **2023**, *14*, 1115014,  
435 doi:10.3389/fmicb.2023.1115014.

436 29. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin,  
437 C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base Platform Supports  
438 Systematic Causal Inference across the Human Phenome. *eLife* **2018**, *7*, e34408,  
439 doi:10.7554/eLife.34408.

440 30. Zhu, S.; Hu, X.; Fan, Y. Association of Triglyceride Levels and Prostate Cancer: A  
441 Mendelian Randomization Study. *BMC Urol.* **2022**, *22*, 167, doi:10.1186/s12894-  
442 022-01120-6.

443 31. Carter, A.R.; Gill, D.; Davies, N.M.; Taylor, A.E.; Tillmann, T.; Vaucher, J.; Wootton,  
444 R.E.; Munafò, M.R.; Hemani, G.; Malik, R.; et al. Understanding the Consequences  
445 of Education Inequality on Cardiovascular Disease: Mendelian Randomisation

446 Study. *BMJ* **2019**, *365*, l1855, doi:10.1136/bmj.l1855.

447 32. Gu, X.; Li, S.; DeFalco, T. Immune and Vascular Contributions to Organogenesis of  
448 the Testis and Ovary. *FEBS J.* **2022**, *289*, 2386–2408, doi:10.1111/febs.15848.

449 33. Turkoglu, O.; Zeb, A.; Graham, S.; Szyperski, T.; Szender, J.B.; Odunsi, K.; Bahado-  
450 Singh, R. Metabolomics of Biomarker Discovery in Ovarian Cancer: A Systematic  
451 Review of the Current Literature. *Metabolomics* **2016**, *12*, 60, doi:10.1007/s11306-  
452 016-0990-0.

453 34. Kim, O.Y.; Monsel, A.; Bertrand, M.; Coriat, P.; Cavaillon, J.M.; Adib-Conquy, M.  
454 Differential Down-Regulation of HLA-DR on Monocyte Subpopulations during  
455 Systemic Inflammation. *Critical care (London, England)* **2010**, *14*, R61,  
456 doi:10.1186/cc8959.

457 35. Asmussen, A.; Busch, H.-J.; Helbing, T.; Bemtgen, X.; Smolka, C.; Bode, C.; Fink,  
458 K.; Grundmann, S. Monocyte Subset Distribution and Surface Expression of HLA-  
459 DR and CD14 in Patients after Cardiopulmonary Resuscitation. *Sci. Rep.* **2021**, *11*,  
460 12403, doi:10.1038/s41598-021-91948-z.

461 36. Lu, Y.; Yao, Y.; Zhai, S.; Ni, F.; Wang, J.; Chen, F.; Zhang, Y.; Li, H.; Hu, H.; Zhang,  
462 H.; et al. The Role of Immune Cell Signatures in the Pathogenesis of Ovarian-  
463 Related Diseases: A Causal Inference Based on Mendelian Randomization. *Int. J.  
464 Surg.* **2024**, *110*, 6541–6550, doi:10.1097/jqs.0000000000001814.

465 37. Shen, H.-H.; Zhang, Y.-Y.; Wang, X.-Y.; Wang, C.-J.; Wang, Y.; Ye, J.-F.; Li, M.-Q.  
466 Potential Causal Association between Plasma Metabolites, Immunophenotypes, and

467        Female Reproductive Disorders: A Two-Sample Mendelian Randomization  
468        Analysis. *Biomolecules* **2024**, *14*, 116, doi:10.3390/biom14010116.

469        38. Peng, D.; Zhong, W.; Wang, Y.; Fu, Y.; Shang, W. The Causal Relationship Between  
470        Immune Cells and Infertility: A Mendelian Randomisation Study. *Am. J. Reprod.  
471        Immunol.* **2024**, *92*, e13932, doi:10.1111/aji.13932.

472        39. Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic Metabolomics:  
473        Major Impact on the Metabolome. *Annu. Rev. Pharmacol. Toxicol.* **2012**, *52*, 37–56,  
474        doi:10.1146/annurev-pharmtox-010611-134748.

475        40. Tarasenko, T.N.; Cusmano-Ozog, K.; McGuire, P.J. Tissue Acylcarnitine Status in a  
476        Mouse Model of Mitochondrial  $\beta$ -Oxidation Deficiency during Metabolic  
477        Decompensation Due to Influenza Virus Infection. *Mol. Genet. Metab.* **2018**, *125*,  
478        144–152, doi:10.1016/j.ymgme.2018.06.012.

479        41. Turnbull, P.C.; Hughes, M.C.; Perry, C.G.R. The Fatty Acid Derivative  
480        Palmitoylcarnitine Abrogates Colorectal Cancer Cell Survival by Depleting  
481        Glutathione. *Am. J. Physiol-cell. Ph.* **2019**, *317*, C1278–C1288,  
482        doi:10.1152/ajpcell.00319.2019.

483        42. Wenzel, U.; Nickel, A.; Daniel, H. Increased Carnitine-Dependent Fatty Acid  
484        Uptake into Mitochondria of Human Colon Cancer Cells Induces Apoptosis. *J. Nutr.*  
485        **2005**, *135*, 1510–1514, doi:10.1093/jn/135.6.1510.

486        43. Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein,  
487        A.E.; Britt, E.B.; Fu, X.; Chung, Y.-M.; et al. Gut Flora Metabolism of

488 Phosphatidylcholine Promotes Cardiovascular Disease. *Nature* **2011**, *472*, 57–63,  
489 doi:10.1038/nature09922.

490 44. Huang, J.; Liu, L.; Chen, C.; Gao, Y. PCOS without Hyperandrogenism Is  
491 Associated with Higher Plasma Trimethylamine N-Oxide Levels. *BMC Endocr.*  
492 *Disord.* **2020**, *20*, 3, doi:10.1186/s12902-019-0486-9.

493 45. Sato, E.; Olson, S.H.; Ahn, J.; Bundy, B.; Nishikawa, H.; Qian, F.; Jungbluth, A.A.;  
494 Frosina, D.; Gnjatic, S.; Ambrosone, C.; et al. Intraepithelial CD8+ Tumor-  
495 Infiltrating Lymphocytes and a High CD8+/Regulatory T Cell Ratio Are Associated  
496 with Favorable Prognosis in Ovarian Cancer. *Proc. Natl. Acad. Sci.* **2005**, *102*,  
497 18538–18543, doi:10.1073/pnas.0509182102.

498 46. Cannioto, R.A.; Sucheston-Campbell, L.E.; Hampras, S.; Goode, E.L.; Knutson, K.;  
499 Ness, R.; Modugno, F.; Wallace, P.K.; Szender, J.B.; Mayor, P.; et al. The  
500 Association of Peripheral Blood Regulatory T-Cell Concentrations With Epithelial  
501 Ovarian Cancer: A Brief Report. *Int. J. Gynecol. Cancer* **2017**, *27*, 11–16,  
502 doi:10.1097/IGC.0000000000000845.

503 47. Barnett, B.; Kryczek, I.; Cheng, P.; Zou, W.; Curiel, T.J. Regulatory T Cells in  
504 Ovarian Cancer: Biology and Therapeutic Potential. *Am. J. Reprod. Immunol.* **2005**,  
505 *54*, 369–377, doi:10.1111/j.1600-0897.2005.00330.x.

506 48. Wu, M.; Chen, X.; Lou, J.; Zhang, S.; Zhang, X.; Huang, L.; Sun, R.; Huang, P.; Pan,  
507 S.; Wang, F. Changes in Regulatory T Cells in Patients with Ovarian Cancer  
508 Undergoing Surgery: Preliminary Results. *Int. Immunopharmacol.* **2017**, *47*, 244–

509 250, doi:10.1016/j.intimp.2017.04.004.

510 49. Zhang, S.; Ke, X.; Zeng, S.; Wu, M.; Lou, J.; Wu, L.; Huang, P.; Huang, L.; Wang,  
511 F.; Pan, S. Analysis of CD8+ Treg Cells in Patients with Ovarian Cancer: A Possible  
512 Mechanism for Immune Impairment. *Cell. Mol. Immunol.* **2015**, *12*, 580–591,  
513 doi:10.1038/cmi.2015.57.

514 50. Wang, C.; Li, Z.-Y.; Gong, Y.; You, R.; Ming-Hui; Zhao; Chen, M. Increased  
515 Frequency of IgD-CD27(Hi)CD38(Hi) B Cells and Its Association with the Renal  
516 Involvement in ANCA-Associated Vasculitis. *Arthritis Res. Ther.* **2022**, *24*, 109,  
517 doi:10.1186/s13075-022-02796-9.

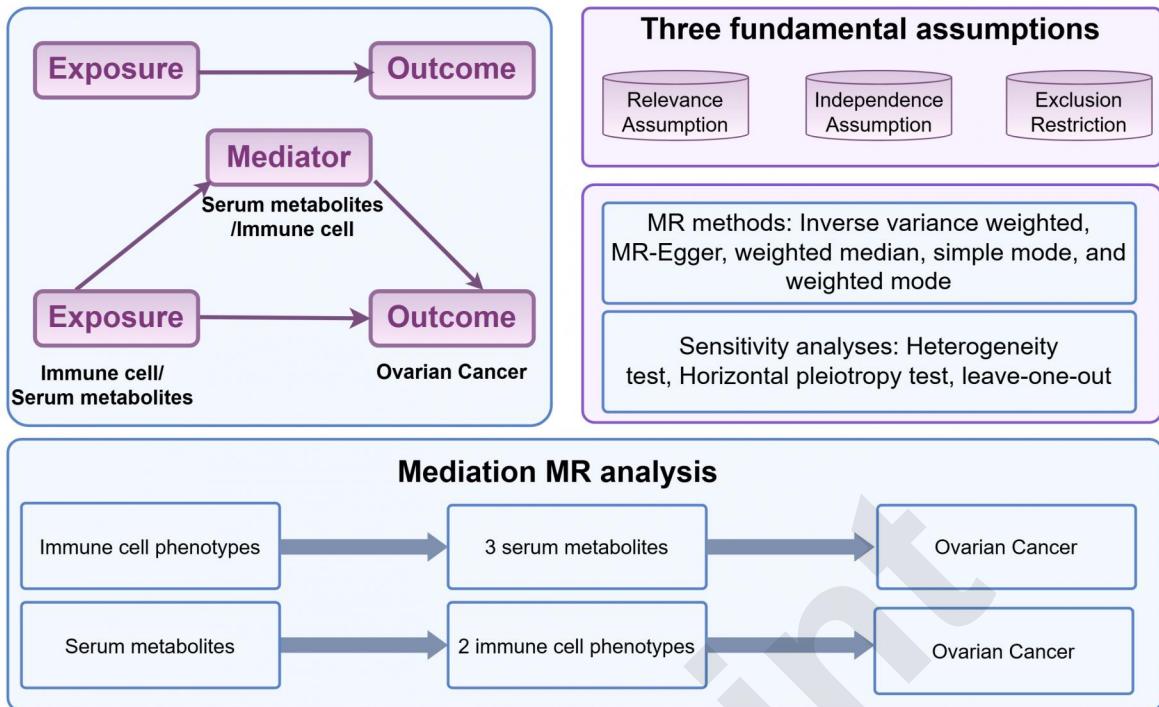
518 51. Xiao, S.; Li, V.L.; Long, J.Z. Lac-Phe (N-Lactoyl-Phenylalanine). *Trends  
519 Endocrinol. Metab.* **2024**, *35*, 758–759, doi:10.1016/j.tem.2024.05.007.

520 52. Guo, J.; Wang, C.; Li, H.; Ding, C. Exploring the Causal Associations of the Gut  
521 Microbiota and Plasma Metabolites with Ovarian Cancer: An Approach of  
522 Mendelian Randomization Analysis Combined with Network Pharmacology and  
523 Molecular Docking. *J. Ovarian Res.* **2025**, *18*, 27, doi:10.1186/s13048-025-01610-  
524 9.

525

526

## Immune Cells, Serum Metabolites, and Ovarian Cancer: A Mediation Mendelian Randomization Study



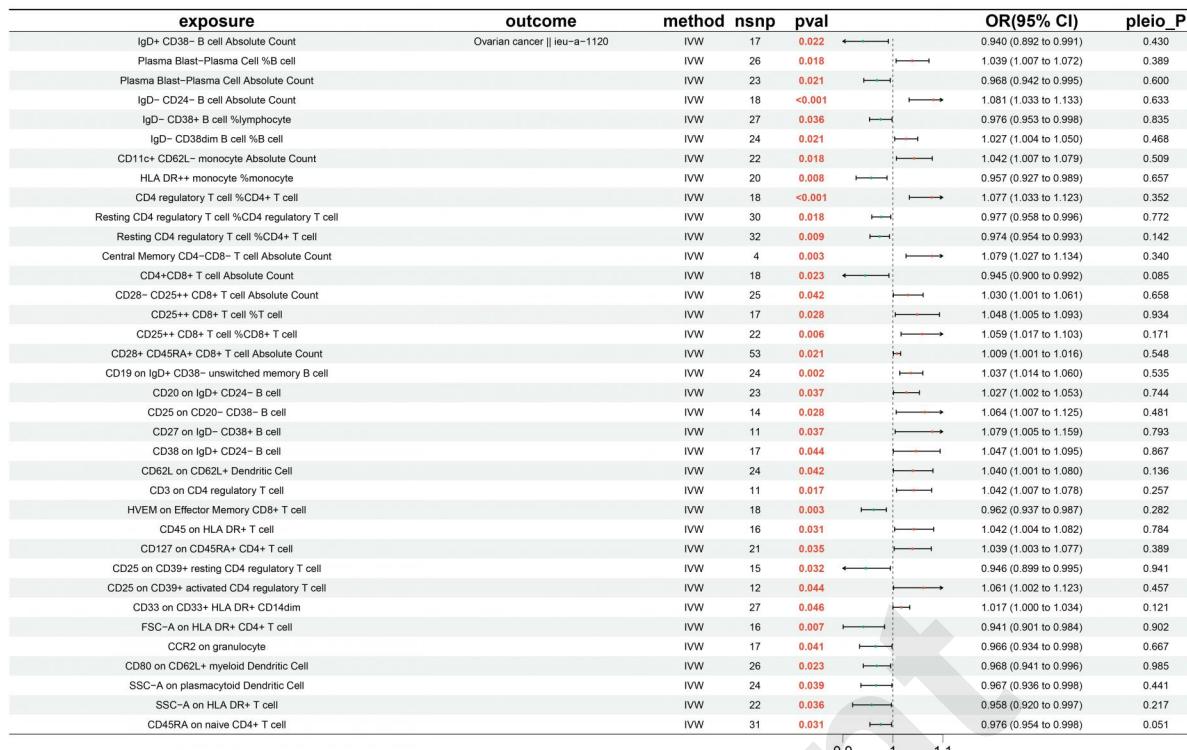


Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype on ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio\_P, pleiotropy pvalue.

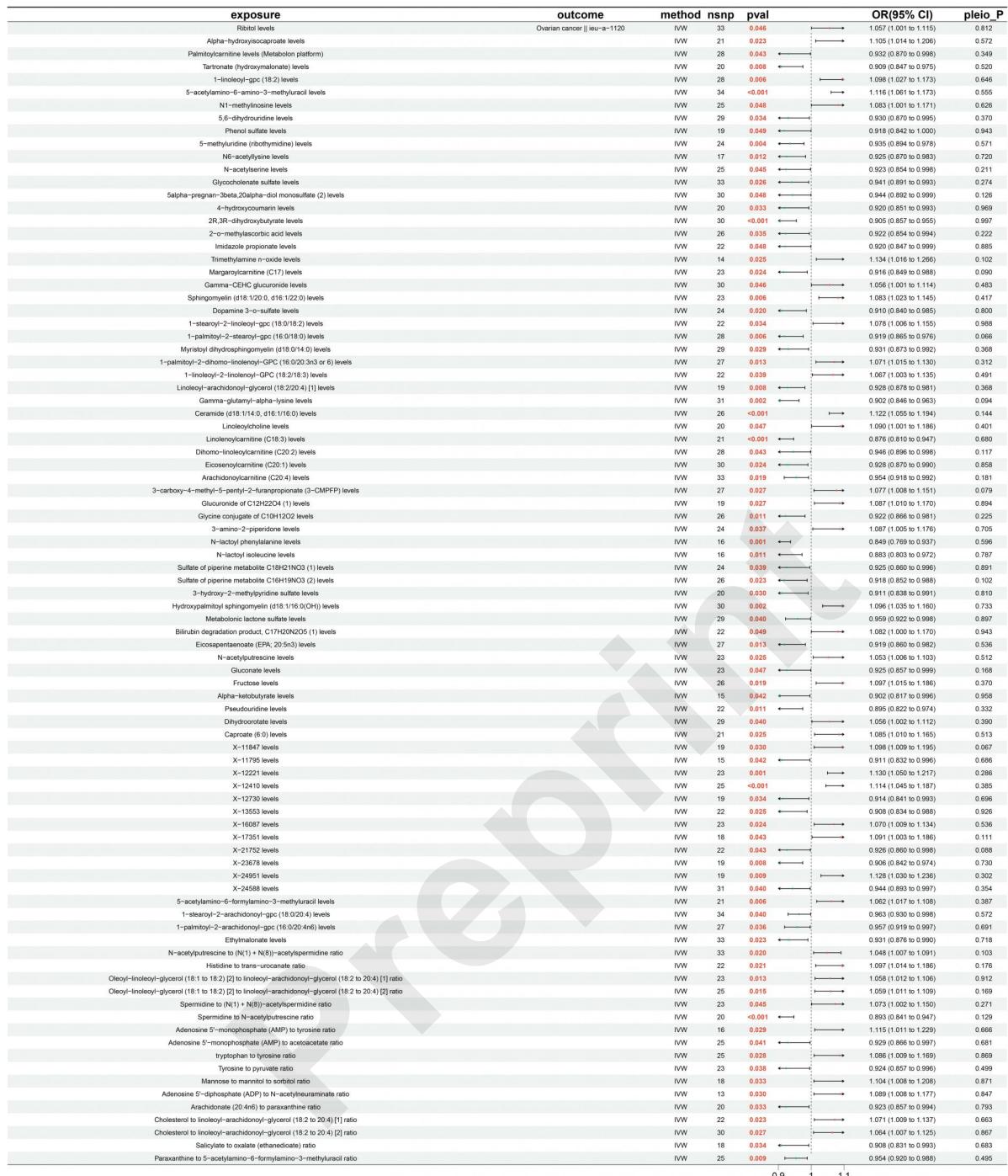


Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse variance weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio\_P, pleiotropy pvalue.

| Outcome(Y)                                  | Exposue(X)                            | Mediate(M)                     | beta | nsnp             | pval | OR(95% CI)             | pleio_P | Mediated effect        | Direct effect          | Mediated proportion(%)   |
|---------------------------------------------|---------------------------------------|--------------------------------|------|------------------|------|------------------------|---------|------------------------|------------------------|--------------------------|
| Ovarian cancer                              | CD11c+ CD62L- monocyte Absolute Count | 2R,3R-dihydroxybutyrate levels | a 22 | <b>0.018</b>     |      | 1.042 (1.007 to 1.079) | 0.509   | c*b                    | a-c*b                  | c*b/a                    |
|                                             |                                       |                                | c 23 | <b>0.008</b>     |      | 0.954 (0.921 to 0.988) | 0.191   | 1.005 (1.000 to 1.009) | 1.038 (1.002 to 1.074) | 11.300 (0.656 to 21.944) |
|                                             |                                       |                                | b 30 | <b>&lt;0.001</b> |      | 0.905 (0.857 to 0.955) | 0.997   |                        | pval=0.0374            | pval=0.0374              |
| CD19 on IgD+ CD38- unswitched memory B cell | X-12221 levels                        |                                | a 24 | <b>0.002</b>     |      | 1.037 (1.014 to 1.060) | 0.535   | c*b                    | a-c*b                  | c*b/a                    |
|                                             |                                       |                                | c 22 | <b>0.007</b>     |      | 0.964 (0.939 to 0.990) | 0.690   | 0.996 (0.991 to 1.000) | 1.041 (1.018 to 1.065) | 12.342 (0.380 to 24.303) |
|                                             |                                       |                                | b 23 | <b>0.001</b>     |      | 1.130 (1.050 to 1.217) | 0.286   |                        | pval=0.0431            | pval=0.0431              |
| CD27 on IgD- CD38+ B cell                   | N-lactoyl phenylalanine levels        |                                | a 11 | <b>0.037</b>     |      | 1.079 (1.005 to 1.159) | 0.793   | c*b                    | a-c*b                  | c*b/a                    |
|                                             |                                       |                                | c 15 | <b>0.003</b>     |      | 1.104 (1.033 to 1.179) | 0.776   | 0.984 (0.969 to 0.999) | 1.097 (1.020 to 1.180) | 21.230 (1.620 to 40.840) |
|                                             |                                       |                                | b 16 | <b>0.001</b>     |      | 0.849 (0.769 to 0.937) | 0.596   |                        | pval=0.0338            | pval=0.0338              |
| CD4+CD8+ T cell Absolute Count              | Pseudouridine levels                  |                                | a 18 | <b>0.023</b>     |      | 0.945 (0.900 to 0.992) | 0.085   | c*b                    | a-c*b                  | c*b/a                    |
|                                             |                                       |                                | c 19 | <b>0.001</b>     |      | 0.931 (0.892 to 0.972) | 0.442   | 1.008 (1.000 to 1.016) | 0.938 (0.892 to 0.985) | 14.010 (0.005 to 28.015) |
|                                             |                                       |                                | b 22 | <b>0.011</b>     |      | 0.895 (0.822 to 0.974) | 0.332   |                        | pval=0.0499            | pval=0.0499              |
|                                             |                                       |                                |      |                  |      | 0.9                    | 1       | 1.1                    |                        |                          |

Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio\_P, pleiotropy pvalue; a, the total effect of immune cells phenotype on OC; b, the effect of serum metabolites on OC; c, the effect of immune cells phenotype on serum metabolites.

| Outcome(Y)                    | Exposue(X)                                  | Mediate(M)    | beta | nsnp | pval             | OR(95% CI)             | pleio_P | Mediated effect        | Direct effect          | Mediated proportion(%)   |
|-------------------------------|---------------------------------------------|---------------|------|------|------------------|------------------------|---------|------------------------|------------------------|--------------------------|
| Ovarian cancer                | Arachidonate (20:4n6) to paraxanthine ratio | IgD- CD24- AC | a    | 20   | <b>0.033</b>     | 0.923 (0.857 to 0.994) | 0.793   | c*b                    | a-c*b                  | c*b/a                    |
|                               |                                             |               | c    | 21   | <b>0.002</b>     | 1.220 (1.075 to 1.385) | 0.829   | 1.016 (1.002 to 1.030) | 0.909 (0.843 to 0.980) | 19.450 (2.179 to 36.721) |
|                               |                                             |               | b    | 18   | <b>&lt;0.001</b> | 1.081 (1.033 to 1.133) | 0.633   | pval=0.0273            | pval=0.0125            | pval=0.0273              |
| Gamma-CEHC glucuronide levels | CD4 Treg %CD4                               |               | a    | 30   | <b>0.046</b>     | 1.056 (1.001 to 1.114) | 0.483   | c*b                    | a-c*b                  | c*b/a                    |
|                               |                                             |               | c    | 31   | <b>0.010</b>     | 0.879 (0.797 to 0.970) | 0.684   | 0.990 (0.981 to 1.000) | 1.066 (1.010 to 1.126) | 17.580 (0.495 to 34.666) |
|                               |                                             |               | b    | 18   | <b>&lt;0.001</b> | 1.077 (1.033 to 1.123) | 0.352   | pval=0.0437            | pval=0.021             | pval=0.0437              |

Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype for OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio\_P, pleiotropy pvalue; a, the total effect of serum metabolites on OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on immune cells phenotype.