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Abstract

Introduction

Recent studies have highlighted the potential functions of immune cells and serum metabolites in the
progression of ovarian cancer (OC). Therefore, this study executed Mendelian randomization (MR)
methodology to seek out causal links among serum metabolites, immune cells, and OC.

Material and methods

This study wielded data from multiple sources to obtain genetic data related to immune cell
phenotypes, serum metabolites, and OC. The causal effects were estimated using the inverse
variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to assess potential
causal effects. Finally, mediation analysis was conducted to ascertain the potential mediating functions
of immune cell phenotypes and serum metabolites in OC.

Results

36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4 regulatory T
cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while "lgD- CD38dim B cell %B
cell" (OR =1.027, p = 0.021) was risk factor. Additionally, 89 causal relationships were identified
between serum metabolites and OC. "Gluconate levels" (OR = 0.925, p = 0.047) was protective, while
"fructose levels" (OR = 1.097, p = 0.019) was risk factor for OC. Mediation analysis identified 3 serum
metabolites that mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell
phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity analysis
validated the robustness of these findings.

Conclusions
This work supplies novel insights into the causal connections among immune cells, serum metabolites,
and OC.



S

Immune Cells, Serum Metabolites, and Ovarian Cancer: A Mediation Mendelian

Randomization Study

Running head: Causal relationships in ovarian cancer



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Abstract

Introduction

Recent studies have highlighted the potential functions of immune cells and serum
metabolites in the progression of ovarian cancer (OC). Therefore, this study executed
Mendelian randomization (MR) methodology to seek out causal links among serum
metabolites, immune cells, and OC.

Material and methods

This study wielded data from multiple sources to obtain genetic data related to immune
cell phenotypes, serum metabolites, and OC. The causal effects were estimated using the
inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted
mode to assess potential causal effects. Finally, mediation analysis was conducted to
ascertain the potential mediating functions of immune cell phenotypes and serum
metabolites in OC.

Results

36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4
regulatory T cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while
"IgD- CD38dim B cell %B cell" (OR = 1.027, p = 0.021) was risk factor. Additionally,
89 causal relationships were identified between serum metabolites and OC. "Gluconate
levels" (OR = 0.925, p = 0.047) was protective, while "fructose levels" (OR = 1.097, p =
0.019) was risk factor for OC. Mediation analysis identified 3 serum metabolites that

mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell
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phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity
analysis validated the robustness of these findings.

Conclusions

This work supplies novel insights into the causal connections among immune cells, serum

metabolites, and OC.

Keywords: Ovarian cancer, Immune cells phenotype, Serum metabolites, Mendelian

randomization, Mediation analysis

1. Introduction

Ovarian cancer (OC) remains a lethal gynecological malignancy with a 5-year survival
rate of approximately 47%. This is mostly due to the absence of early symptoms, resulting
in the majority of patients being detected at an advanced stage[1]. Moreover, the etiology
of OC remains unclear, further complicating early diagnosis[2]. While current therapies
partially control progression, high recurrence rates persist, highlighting an urgent need
for improved early diagnostic biomarkers and therapeutic targets[3].

Recent studies have linked the immune system to OC progression: macrophage
homeostasis dysregulation drives tumor microenvironment immunosuppression[4,5];
and altered lymphocyte subsets (e.g., T/B cells) correlate with prognosis[6]. In particular,
regulatory T cells (Tregs) and regulatory B cells (Bregs) inhibit the proliferation of other

immune cells by expressing different immune checkpoint molecules and secreting
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immunosuppressive substances, thereby promoting tumor growth and progression[7—10].
In parallel, the rapid advancement of metabolomics has offered a new lens to clarify OC
pathogenesis while being widely utilized in OC studies over recent years[11,12]. Serum
metabolites, as direct reflections of biochemical activities in the body, are considerable
for risk assessment and prognosis prediction of female cancers[13]. Fatty acids (such as
C16 and C22), amino acids, and various chemical substances have been recognized as
possible serum indicators for OC[14,15]. These findings underscore the critical role of
serum metabolites in OC, but their causal relationship with OC—and whether they
mediate the crosstalk between immune cells and OC pathogenesis—has not been
validated. Traditional observational studies, limited by confounding factors and reverse
causality, cannot resolve these uncertainties.

Based on this, the present study aims to systematically evaluate the causal relationship
between immune cells and serum metabolites with OC through Mendelian randomization
(MR) analysis, which leverages genetic variants as instrumental variables (IVs) to infer
causal relationships while minimizing bias[16,17]. We further integrated mediation
analysis to dissect the potential pathways: specifically, whether serum metabolites
mediate the effect of immune cells on OC, or vice versa. This approach aims to clarify
the immunometabolic network in OC, providing a theoretical basis for developing novel
diagnostic strategies and therapeutic interventions.

2. Materials and methods

2.1 Data collection
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This study incorporated 731 immune phenotypes, all retrieved from the GWAS catalog
(https://www.ebi.ac.uk/gwas/) (GCST90001391 to GCST90002121) and encompassing
3,757 individuals of European ancestry with no cohort overlap[18]. Additionally, 1,400
serum metabolites (GCST90199621 to GCST90201020) were retrieved from the GWAS
catalog, originating from the Canadian Longitudinal Study on Aging (CLSA) cohort. This
cohorts contained 8,299 randomly selected European-descent individuals with no blood
relations[19]. Meanwhile, the GWAS data for OC (ieu-a-1120) were obtained from the
IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/), comprising 40,941 controls and
25,509 case samples of European origin, totaling 470,825 single nucleotide
polymorphisms (SNPs).

2.3 Acquisition of IVs

MR analysis was conducted based on the following three fundamental assumptions: (1)
IVs must demonstrate a consistent correlation with the exposure factors being examined,
(2) IVs must be unaffected by any identifiable or unidentifiable confounding variables;
(3) IVs must affect the outcome only via the exposure factor, rather than through
alternative direct causal mechanisms. Based on these assumptions, we followed the initial
step of selecting ['Vs by setting the SNP selection threshold at p <1x10~° when regarding
immune cells and serum metabolites as exposure factors[20,21]. Second, the ieugwasr
package (v 1.0.0) [22] was used to eliminate SNPs with linkage disequilibrium,
(parameters: 12 = 0.001, kb = 10000). Subsequently, we calculated the F-statistic for each

genetic variant and retained only those with an F-statistic > 10. Based on GWAS catalog,
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SNPs potentially associated with outcome GWAS traits were excluded at a threshold of p
< 1*107 to satisfy the independence assumption. Additionally, the Steiger method was
employed for directionality testing to ensure the unidirectionality of causal relationships.
To ensure that the effects of SNPs on exposure and outcome corresponded with those of
the identical allele, palindromic SNPs were omitted.

2.4 MR analysis

This study followed the Mendelian reporting specifications for randomised studies
(STROBE-MR)[23]. This study employed multiple MR analysis methods to assess causal
relationships. The inverse variance weighted (IVW) [24] method, which typically has the
highest statistical power[24,25], was chosen as the primary method, supplemented by
other approaches including MR-Egger[26], weighted median[27], simple mode[28], and
weighted mode[28]. Moreover, the mediating roles of immune cells and serum
metabolites in OC was explored. First, the overall effect of the main exposure on OC was
assessed (a), reflecting the combined direct and indirect effects of the exposure on OC
without considering mediating variables. Subsequently, the effects of exposure on the
mediator (c) and the mediator on the outcome (b) were analyzed. In quantifying mediating
effects, c*b was used to represent the mediating effect. Additionally, the direct effect was
computed using the formula a-c*b, while the proportion of mediation was quantified as
c*b/a.

2.5 Statistical analysis

Sensitivity analyses were conducted to assess the robustness of causal inferences.
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Heterogeneity was evaluated using the mr heterogeneity function and pleiotropy was
assessed through MR-Egger regression and MR-PRESSO methods-outliers with p < 0.05
were excluded. Additionally, leave-one-out analysis was conducted to test the reliance of
results on individual SNPs: one SNP was removed sequentially to check if any single SNP
influenced the causal estimates. All analyses were completed using the TwoSampleMR
(v 0.6.0)[29] and MRPRESSO packages (v 1.0)[30], and the Delta method was utilized
to compute standard errors for mediating effects, direct effects, and proportions
mediated[31].

3. Result

3.1 Selection of I'Vs

SNPs were screened to meet the necessary assumptions for MR analysis. In the analysis
of immune cells phenotype and OC, a total of 17,757 SNPs were included for further
study, with F-statistics fluctuating from 19.537 to 3159.289 (Table S1). For the analysis
of serum metabolites and OC, 34,513 SNPs were used, with F-statistics spanning from
19.503 to 2297.785 (Table S2). In the analysis from immune cells phenotype to serum
metabolites, 17,836 SNPs were included, with F-statistics varying from 19.537 to
3159.289 (Table S3). Finally, in the analysis from serum metabolites to immune cells
phenotype, 34,856 SNPs were included, with F-statistics fluctuating from 19.503 to
2297.785 (Table S4). All selected SNPs had F-statistics exceeding 10, thereby affirming
their reliability.

3.2 Investigating the mediating role of serum metabolites in immune cells and OC
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Given that immune cells are essential for ovarian development, pathogenic processes, and
functional maintenance[32], we probed into the causal links between immune cells and
OC. Among the 731 immune cells phenotype and OC were analyzed, 36 significant causal
relationships were identified, with 15 being protective factors and 21 being risk factors.
Specifically, "resting CD4 regulatory T cell %CD4 regulatory T cell" [odds ratio (OR) =
0.977, 95% confidence interval (CI) = 0.958-0.996, p = 0.018) and "CD25 on CD39"
resting CD4 regulatory T cell" (OR = 0.946, 95% CI = 0.899-0.995, p = 0.032) were
protective against OC. Conversely, "CD19 on IgD" CD38" unswitched memory B cell"
(OR =1.037, 95% CI = 1.014-1.060, p = 0.002) and "IgD~ CD38%™ B cell %B cell" (OR
= 1.027, 95% CI = 1.004-1.050, p = 0.021) were risk factors for OC (Figure 1).
Subsequently, reverse MR analysis was performed to exclude potential bidirectional
effects, with no significant associations found, confirming the validity of the causal links
identified in the forward MR analysis.

Considering the substantial effect of immune cells, we further explored their influence on
OC through serum metabolites. This involved analyzing the causal links between 1,400
serum metabolites and OC, leading to the identification of 89 significant associations
(Figure 2). On this basis, we checked into the causal relationships between immune cells
phenotype and serum metabolites, finding 156 associations between 36 immune cells
phenotype and 80 serum metabolites, including 78 protective and 78 risk factors (Table
S5). In the mediation analysis, 4 significant associations were identified:

"2R,3R—dihydroxybutyrate levels" increased the risk effect of "CDIll¢"™ CD62L"
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monocyte Absolute Count" on OC (11.300%). "N—lactoyl phenylalanine (Lac-Phe)
levels" attenuated the risk effect of "CD27 on IgD™ CD38" B cell" on OC (21.230%), and
"X—-12221 levels" attenuated the risk effect of "CD19 on IgD" CD38 unswitched
memory B cell" on OC (12.342%). "Pseudouridine levels" attenuated the protective effect
of "CD4+CD8+ T cell Absolute Count" on OC (14.010%) (Figure 3). Due to the unclear
levels of X—12221, 3 mediating associations were finally validated, uncovering the
interactions between metabolites and immune cell phenotypes as well as their influence
on OC risk.

3.3 Exploring the influence of serum metabolites on OC via immune cells phenotype
Metabolomics, an emerging branch of systems biology, has made significant progress in
cancer research in recent years, substantially enhancing the understanding, diagnosis, and
treatment of diverse cancers, including OC[33]. Metabolomics can provide detailed
information on metabolic changes during disease onset and progression, offering new
perspectives for early diagnosis. Therefore, MR analysis was conducted on 1,400 serum
metabolites and OC. In this process, 89 significant associations were identified, including
49 protective factors and 40 risk factors for OC (Figure 2). "Mannose to mannitol to
sorbitol ratio" (OR = 1.104, 95% CI = 1.008-1.208, p = 0.033) and
"Oleoyl—linoleoyl—glycerol (18:1 to 18:2) to linoleoyl—arachidonoyl—glycerol (18:2 to
20:4) ratio" (OR =1.058, 95% CI=1.012-1.106, p = 0.013) exhibited risk effects on OC.
Conversely, "Adenosine 5'-monophosphate (AMP) to acetoacetate ratio" (OR = 0.929,

95% CI = 0.866-0.997, p = 0.041) and "sulfate of piperine metabolite CI8H2INO3 (1)
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levels" (OR =0.925, 95% CI=0.860-0.996, p = 0.039) were protective factors. Similarly,
to exclude the possibility of bidirectional effects, the causal impact of OC on these serum
metabolites was assessed, with no significant reverse associations found.

Subsequently, the role of serum metabolites in influencing OC through immune cells
phenotype was explored. By calculating the causal relationships between 731 immune
cells phenotype and OC, 36 significant associations were identified (Figure 1). Based on
these significant results, the causal links between serum metabolites and immune cells
phenotype were evaluated, identifying 143 significant associations between 69 serum
metabolites and 34 immune cells phenotype, including 68 protective and 75 risk factors
(Table S6). Subsequently, mediation analysis was conducted to explore whether these
serum metabolites influenced OC through specific immune cells. The results identified
two significant associations: "IgD™ CD24~ AC" attenuated the protective effect of
"arachidonate (20:4n6) to paraxanthine ratio" on OC (19.450%), and "CD4 Treg %CD4"
attenuated the risk effect of "Gamma—CEHC glucuronide levels" on OC (17.580%)
(Figure 4). These findings suggested that certain metabolites might alter the immune
microenvironment of OC by adjusting immune cell activity or function, which in turn
affects OC’s onset and progression.

3.4 Sensitivity analysis

To verify the accuracy of causal inferences in this study, comprehensive sensitivity
analyses were performed. The causal results were consistent with the MR-PRESSO

method, with no outliers detected. The MR-Egger test results showed p-values exceeding

10
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0.05, indicating no pleiotropic bias (Table S7). Subsequently, when facing heterogeneity
in MR analysis, a random-effects IVW was employed (Table S7), still yielding robust
causal inference results. Furthermore, leave-one-out analysis revealed that the causal
inference conclusions remained largely unaffected despite the removal of one SNP in each
iteration. These findings ensured the reliability of the analysis results.

4. Discussion

Given the unclear interrelationships among immune cells, serum metabolites, and OC,
this study utilized MR analysis to systematically probe into the causal links between
immune cells/serum metabolites and OC, further investigating the mediating roles of
these factors in OC development. We ultimately identified 3 significant pairs of
relationships mediated by serum metabolites and 2 associations mediated by immune
cells. These findings not only established a novel theoretical framework for
comprehending the etiology of OC but also presented new avenues for its early
identification and therapy.

Through MR analysis, we identified "HLA DR monocyte %monocyte" as a protective
factor for OC. Monocytes' HLA-DR surface expression denotes their activation state[34],
which aids in determining their immunological status[35]. Some studies indicate that a
certain monocyte subpopulation may possess immunosuppressive properties by
suppressing T cell proliferation and differentiation, facilitating the development of
regulatory T cells, and secreting anti-inflammatory mediators. This immune regulatory

mechanism can safeguard the ovaries from autoimmune injury, therefore diminishing the
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chance of premature ovarian failure (POF) [36], which seemed to be consistent with our
findings. Besides, our research revealed that "CD28  CD25"™ CDS8" T cell Absolute
Count" is a risk factor for OC, corroborated by existing research results. Studies have
shown that an increased relative count of CD28 CD25CDS8 T cells correlates with an
elevated risk of infertility in women[37]. Another MR analysis revealed that the greatest
risk factor for infertility is CD28 CD25™ CD8" %T cells[38]. The results indicated that
the onset and advancement of OC were intricately affected by the immune system.

Metabolites, as products and substrates of cellular metabolic processes, which was tightly
tied to cancer[39]. Therefore, we marched investigation into the link between serum
metabolites and OC and ultimately identified 89 associations with causal relationships.
Among these associations, "palmitoylcarnitine levels" were considered a protective factor
for OC. The primary job of palmitoylcarnitine is to ferry long-chain fatty acids into the
mitochondria for B-oxidation, thereby providing cell energy[40]. Consequently, focusing
on palmitoylcarnitine and leveraging its capacity to provoke oxidative stress in cancer
cells may offer a possible supplementary approach for the treatment of OC[41,42]. In
contrast, "Trimethylamine N—oxide (TMAO) levels" were recognized as a risk factor for
OC. Studies have shown that TMAO can upregulate macrophage scavenger receptors,
promotes cholesterol accumulation and foam cell formation, activates MAPK and nuclear
factor-kB pathways, thereby promoting plaque formation and inflammatory
responses[43]. Moreover, heightened plasma levels of TMAO may correlate with the

pathophysiology of polycystic ovarian syndrome (PCOS) absent hyperandrogenism (HA)
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and are significantly linked to augmented systemic inflammation[44]. This discovery
indicates that TMAO may facilitate the onset and progression of OC via many pathways,
which aligned with our results. In summary, the intricate connection between OC and
serum metabolites has been made clear by this investigation.

To explore immune cells’ mediating role in the serum metabolites-OC relationship,
mediation analysis revealed that "CD4 Treg %CD4" attenuated OC risk associated with
"Gamma—CEHC glucuronide levels"- a vitamin E metabolite and OC risk factor.
Research has proven that the anticancer efficacy of tumor-infiltrating cytotoxic CD8+ T
cells in OC seems to be impacted by the presence of CD4 Tregs[45], suggesting that CD4
Tregs may promote the progression of OC. However, studies have certified that depleting
Tregs during OC can boost immunity and perhaps have therapeutic benefits[46,47].
Additionally, studies have maintained that and elevated number of CD4+ T cells is
positively connected with the clinical features and tumor size of OC[48,49]. This
suggested that modulating the ratio of CD4 Tregs to CD4+ T cells might provide a
potential target for developing novel immunomodulatory therapeutic strategies.
Additionally, we also addressed the mediating function of serum metabolites in the
interaction between immune cells and OC. Mediation analysis showed that "Lac-Phe
levels" attenuated the risk of OC associated with "CD27 on IgD~ CD38" B cell"- a
confirmed risk factor for OC. Higher IgD~ CD38" B cells link to stronger
inflammation[50], which may promote OC via tumor microenvironment formation. In

both mice and humans, plasma Lac-Phe concentrations rise in response to stimuli that
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enhance circulating lactate or phenylalanine levels or increase glycolytic flux[51].
Research indicates that elevated levels of Lac-Phe serve as a significant protective factor
against OC[52]. These findings suggest Lac-Phe’s mediated protective effect may stem
from its role in modulating immune cell function and suppressing inflammation, offering
a fresh perspective on OC’s underlying immunometabolic mechanisms.

We have broken through the traditional single-variable research model in terms of
perspective and are the first to use mediating MR to systematically evaluate the causal
relationship among immune cell phenotypes, serum metabolites and OC. Specific targets
such as "CD4 Treg %CD4" and "Lac-Phe levels" have been proposed and hold promise
for advancing targeted regulatory therapies. For instance, strategies involving the
selective depletion of CD4 Treg cells or the development of Lac-Phe or its analogs as
metabolic intervention agents warrant further investigation and validation. Despite
making significant progress in elucidating the immunometabolic mechanisms of OC, our
research has encountered tons limitations. The principal constraint is the substantial
dependence on data from European populations, potentially introducing specific biases.
Furthermore, the outcomes of our mediation study have not been corroborated by further
experimental trials, necessitating further research to validate these causal links. The
stratification of the research subjects is not clear and only some immune cells and serum
metabolites are focused on, which may limit the universality of the conclusion and miss
key mediator pathways.

5. Conclusion
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In summary, our MR study thoroughly investigated the causative connections among
immune cell phenotypes, serum metabolites, and OC. The research discovered 36 notable
causal relationships between immune cell phenotypes and OC, along with 89 connections
between serum metabolites and and OC. Furthermore, by mediation analysis, we clarified
the mediating role of serum metabolites and immune cells in OC. These findings elucidate
the significant functions of immune cells and serum metabolites in OC and offer new

perspectives for its early identification..
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Figure legends

Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype
on ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single
nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio P,
pleiotropy pvalue.

Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse
variance weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or,

odds ratio; CI, confidence interval; pleio P, pleiotropy pvalue.
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Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites.
nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,
confidence interval; pleio P, pleiotropy pvalue; a, the total effect of immune cells
phenotype on OC; b, the effect of serum metabolites on OC; c, the effect of immune cells
phenotype on serum metabolites.

Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype
for OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,
confidence interval; pleio P, pleiotropy pvalue; a, the total effect of serum metabolites on
OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on

immune cells phenotype.

Supplementary information

Table S1. Screening results of single nucleotide polymorphisms (SNPs) with immune
cells phenotype on ovarian cancer (OC).

Table S2. Screening results of SNPs with serum metabolites on OC.

Table S3. Screening results of SNPs with immune cells phenotype on serum metabolites.
Table S4. Screening results of SNPs with serum metabolites on immune cells phenotype.
Table S5. Mendelian randomization (MR) analysis between immune cells phenotype and
serum metabolites.

Table S6. MR analysis between serum metabolites and immune cells phenotype.

Table S7. Heterogeneity and horizontal pleiotropy tests for MR analysis.
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Immune Cells, Serum Metabolites, and Ovarian Cancer:
A Mediation Mendelian Randomization Study
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exposure outcome method nsnp pval OR(95% CI) pleio_P

1gD+ CD38- B cell Absolute Count Ovarian cancer || ieu-a-1120 vw 17 0.022 0.940 (0.892 0 0.991) 0430
Plasma Blast-Plasma Cell %B cell vw 26 0018 1.039 (1.007 to 1.072) 0.389
Plasma Blast-Plasma Cell Absolute Count vw 23 0.021 ; 0.968 (0.942 t0 0.995) 0.600
1gD- CD24- B cell Absolute Count vw 18 <0.001 b o— 1.081(1.033 to 1.133) 0633

IgD- CD38+ B cell %lymphocyte VW 27 0.036 >—< 0.976 (0.953 to 0.998) 0.835

1gD- CD38dim B cell %B cell vw 24 0.021 — 1.027 (1.004 to 1.050) 0.468

CD11c+ CD62L- monocyte Absolute Count vw 22 0.018 >—< 1.042 (1.007 to 1.079) 0.509
HLA DR++ monocyte %monocyte vw 20 0.008 Ju— 0.957 (0.927 t0 0.989) 0657

CD4 regulatory T cell %CD4+ T cell vw 18 <0.001 fo—— 1.077 (1.033 to 1.123) 0352
Resting CD4 regulatory T cell %CD4 regulatory T cell vw 30 0.018 —i 0.977 (0.958 t0 0.996) 0772
Resting CD4 regulatory T cell %CD4+ T cell VW 32 0.009 — 0.974 (0.954 0 0.993) 0.142
Central Memory CD4-CD8- T cell Absolute Count ww 4 0.003 fo— 1.079 (1.027 to 1.134) 0340
CD4+CD8+ T cell Absolute Count vw 18 0023 ——ii 0.945 (0.900 t0 0.992) 0.085
CD28- CD25++ CD8+ T cell Absolute Count vw 25 0.042 L—< 1.030 (1.001 to 1.061) 0.658
CD25++ CD8+ T cell %T cell vw 17 0.028 — 1.048 (1.005 to 1.093) 0934

CD25++ CD8+ T cell %CD8+ T cell vw 22 0.006 Tt 1.059 (1.017 to 1.103) 0171
CD28+ CD45RA+ CD8+ T cell Absolute Count vw 53 0.021 4 1.009 (1.001 to 1.016) 0548
CD19 on IgD+ CD38- unswitched memory B cell vw 24 0.002 —_ 1.037 (1.014 to 1.060) 0535
C€D20 on IgD+ CD24~ B cell VW 23 0.037 — 1.027 (1.002 to 1.053) 0744

CD25 on CD20- CD38- B cell vw 14 0.028 iy 1.064 (1.007 to 1.125) 0.481

C€D27 on IgD- CD38+ B cell vw 11 0.037 — 1.079 (1.005 to 1.159) 0793

C€D38 on IgD+ CD24- B cell vw 17 0.044 — 1.047 (1.001 to 1.095) 0867

CD62L on CD62L+ Denditic Cell vw 24 0.042 — 1.040 (1.001 to 1.080) 0136

CD3 on CD4 regulatory T cell vw 11 0.017 —_— 1.042 (1.007 to 1.078) 0257

HVEM on Effector Memory CD8+ T cell vw 18 0.003 — 0.962 (0.937 t0 0.987) 0282
C€D45 on HLA DR+ T cell vw 16 0.031 — 1.042 (1.004 to 1.082) 0.784

CD127 on CD45RA+ CD4+ T cell vw 21 0.035 :)—1 1.039 (1.003 to 1.077) 0.389

CD25 on CD39+ resting CD4 regulatory T cell vw 15 0032 ——ri 0.946 (0.899 t0 0.995) 0941
CD25 on CD39+ activated CD4 regulatory T cell vw 12 0.044 ;—* 1.061(1.002 to 1.123) 0.457
CD33 on CD33+ HLA DR+ CD14dim vw 27 0.046 — 1.017 (1.000 to 1.034) 0121
FSC-A on HLA DR+ CD4+ T cell vw 16 0007 —— 0941 (0.901 t0 0.984) 0902

CCR2 on granulocyte vw 17 0.041 — 0.966 (0.934 t0 0.998) 0.667

CD80 on CD62L+ myeloid Dendritic Cell VW 26 0.023 —_— 0.968 (0.941 to 0.996) 0.985
SSC-A on plasmacytoid Denditic Cell vw 24 0.039 — 0.967 (0.936 t0 0.998) 0441
SSC-A on HLA DR+ T cell vw 22 0038 i 0.958 (0.920 t0 0.997) 0217

CD45RA on naive CD4+ T cell vw 31 0.031 —i 0.976 (0.954 t0 0.998) 0.051

Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype on
ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single nucleotide
polymorphism; pval, pvalue; or, odds ratio; Cl, confidence interval; pleio_P, pleiotropy
pvalue.



method nsnp pval OR(95% CI) pleio_P

Ribitol levels Ovarian cancer || ieu-a-1120. W 33 0.046 FE— 1.057 (1.001 to 1.115) 0812
Alpha-hydroxyisocaproate levels vw 21 0.023 —_— 1.105 (1.014 to 1.206) 0572
Palmitoylcarnitine levels (Metabolon platform) vw 28 0043 ——— 0.932 (0.870 to 0.998) 0349
Tartronate (hycroxymalonate) levels w 2 0008 —— 0,909 (0.847 10 0.975) 0520
1-iinoleoyl-gpc (18:2)levels w 2 0008 — 1098 (1027 t0 1.173) 0646
‘5-acetylamino-6-amino-3-methyluracil levels vw 34 <0.001 — 1.116 (1.061 to 1.173) 0.555
Ni-methylinosine levels w 2 0.048 _— 1083 (1,001 to 1.171) 0626
5,6-dihydrouridine levels wvw 29 0034 —— 0.930 (0.870 to 0.995) 0370

Phenol sulfate levels w 10 0049 ——i 0918 (0:842 10 1.000) 0943

5-methyluridine (rbothymidine) levels w 2 0004 ——r 0,935 (0.894 10 0.978) 0571
No-acetylysine levels ~w 17 0012 —— 0,925 (0.870 10 0.983) 0720

N-acetylserine levels vw 25 0045 —— 0.923 (0.854 to 0.998) 0211

Glycocholenate sulfate levels vw 33 0026 —— 0.941(0.891 to 0.993) 0274

lpha-preg . 20aipha-diol w 30 0048 ——i 0,944 (089210 0.999) 0126
4-hycroxycoumarin levels ww 20 0033 —— 0,920 (0851 t0 0.993) 0.969

2R 3R-dihydroxybulyrate levels ww 0 <0001 — 0.905 (0.857 to 0.955) 0997
2-o-methylascorbic acid levels. vw 26 0035 — 0.922 (0.854 to 0.994) 0.222

Imidazole propionate levels ww 22 0048 +——— 0.920 (0.847 to 0.999) 0.885

Trimethylamine n-oxide levels ww 14 0.025 —_— 1.134 (1.016 to 1.266) 0.102
Margaroyicarnitine (C17) levels w 2 0024 —t 0916 (0849 t0 0.988) 0090
Gamma-CEHC glucuronide levels w 30 0046 —_— 1056 (1001 to 1.114) 0.483
‘Sphingomyelin (d18:1/20:0, d16:1/22:0) levels vw 23 0.006 — 1.083 (1.023 to 1.145) 0417
Dopamine 3-o-sulfate levels vw 24 0020 ~——— 0.910 (0.840 to 0.985) 0.800
1-stearoyl-2-linoleoyl-gpc (18:0/18:2) levels vw 22 0.034 —_— 1.078 (1.006 to 1.155) 0.988
1-palmitoyi-2-stearoyi-gpc (16:0/18:0) levels w Y 0006 0,919 (08650 0.976) 0.066
Myristoyl dinydrosphingomyelin (d18:0114.0) levels w 2 0029 —— 0931 (087310 0.992) 0368
paimitoy ¢ 6) levels w 27 0013 — 1071 (1015 t0 1.130) 0a12
1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) levels vw 22 0.039 —s 1.067 (1.003 to 1.135) 0.491
Linoleoyl-arachidonoyl-glycerol (18:2/20:4) [1] levels. vw 19 0008 — 0.928 (0.878 to 0.981) 0.368
Gamma-glutamyl-alpha-lysine levels vw 31 0002 +—— 0.902 (0.846 to 0.963) 0.094

Ceramide (d18:1/14:0, d16:1/16:0) levels w % <0001 — 1122 (1055 to 1.104) 0.144
Linoleoyicholine levels ww 2 0047 — 1.090 (1001 to 1.186) 0.401
Linolenoylcamnitine (C18:3) levels vw 21 <0.001 +— 0.876 (0.810 to 0.947) 0.680
Dihomo-linoleoylcarnitine (C20:2) levels vw 28 0043 +——— 0.946 (0.896 to 0.998) 0117
Eicosenoylcarnitine (C20:1) levels vw 30 0024 ——— 0.928 (0.870 to 0.990) 0.858
Arachidonoylcarnitine (C20:4) levels w £ 0019 —— 0954 (0918 10 0.992) 0181
3-carboxy~4-methyl-5-pentyl~2-furanpropionate (3-CMPFP) levels w 27 0027 —_— 1077 (1008 to 1.151) 0079
Glucuronide of C12H2204 (1) levels ~w 19 0027 —_— 1.087 (1010 t0 1.170) 0894

Glycine conjugate of C10H1202 levels vw 26 0011 —— 0.922 (0.866 to 0.981) 0.225
3-amino-2-piperidone levels wvw 24 0.037 ——s 1.087 (1.005 to 1.176) 0.705

N-lactoyl phenylalanine levels w 16 0001 0,849 (0.769 10 0.937) 059

N-lactoyl isoleucine levels w 16 0011 —— 0,883 (0.803 10 0.972) 0787

Sulfate of piperine metaboiite C18H21NO3 (1) levels w 2 0039 —— 0.925 (0,860 to 0.996) 0891
Sulfate of piperine metabolite C16H19NO3 (2) levels. vw 26 0023 —— 0.918 (0.852 to 0.988) 0.102
3-hydroxy-2-methylpyridine sulfate levels vw 20 0030 —— 0.911(0.838 0 0.991) 0810
Hydroxypaimitoyl sphingomyelin (d18:1/16:0(0H)) levels vw 30 0.002 — 1.096 (1.035 to 1.160) 0733
Metabolonic lactone sulfate levels w 2 oo — 0,959 (0.922 10 0.998) 0897

Bilrubin degradation product, C17H20N205 (1) levels w 2 0049 —_— 1.082 (1000 to 1.170) 0943
Eicosapentaenoate (EPA; 20:5n3) levels. vw 27 0013 —— 0.919 (0.860 to 0.982) 0.536
NN-acetylputrescine levels. vw 23 0.025 e 1.053 (1.006 to 1.103) 0512

Gluconate levels. vw 23 0047 +—— 0.925 (0.857 to 0.999) 0.168

Fructose levels ~w 2 0019 —_— 1097 (1015 to 1.186) 0370

Alpha-ketobutyrate levels w 15 0042 —— 0.902 (0817 t0 0.996) 0958

Pseudouridine levels w 2 0011 —— 0,895 (0.82210 0.974) 0332

Dihydroorotate levels vw 29 0.040 — 1.056 (1.002 to 1.112) 0.3%0

Caproate (6:0) levels vw 21 0.025 —_— 1.085 (1.010 to 1.165) 0513

X-11847 levels ~w 10 0030 —_— 1.098 (1009 to 1.195) 0.067

X-11795 levels w 15 0042 ——i 0,911 (08320 0.996) 0.8

X-12221 levels vw 23 0.001 — 1.130 (1.050 to 1.217) 0.286

X=12410 levels vw 25 <0.001 — 1.114 (1.045 to 1.187) 0.385

X=12730 levels vw 19 0034 —— 0.914 (0.841 to 0.993) 0.696

X-13553 levels vw 22 0025 — 0.908 (0.834 to 0.988) 0926

X-16087 levels w 2 0024 —_— 1070 (1009 to 1.134) 0536

X-17351 levels w 18 0043 — 1.091(1.003 t0 1.186) 0111

X-21752 levels . 2 0083 i 0.926 (0.860to 0.998) 0.088

X-23678 levels vw 19 0008 +—— 0.906 (0.842 to 0.974) 0.730

X-24951 levels vw 19 0.009 —_— 1.128 (1.030 to 1.236) 0302

X-24588 levels ww K 0040 ——i 0944 (0893 t0 0.997) 0354
5-acetylamino-6-formylamino-3-methyluracil levels w 2 0006 —_— 1,062 (1,017 10 1.108) 02387
1-stearoyl~2-arachidonoyl-gpc (18:0/20:4) levels w 3 0040 ——t 0.963 (0.930 t0 0.998) 0572
1-palmitoyl-2-arachidonoyl-gpc (16:0/20:4n6) levels vw 21 0.036 ——— 0.957 (0.919 to 0.997) 0.691
Ethyimalonate levels. vw 33 0023 ——— 0.931 (0.876 to 0.990) 0718
N-acetylputrescine to (N(1) + N(8))-acetylspermidine ratio vw 33 0.020 —— 1.048 (1.007 to 1.091) 0.103
Histidine o trans-urocanate ratio w 2 0021 — 1097 (1014 t0 1.186) 076

glycerol (18:1 to 18:2) 2] yi-glycerol (18:2 ww 2 0013 —_— 1.058 (101210 1.106) 0912
ol (18:11018:2) [2] oyl-glyc (18:2 vw 25 0.015 —t— 1.059 (1.011 to 1.109) 0.169
‘Spermidine to (N(1) + N(8))-acetylspermidine ratio vw 23 0.045  p— 1.073 (1.002 to 1.150) 0.271
Spermidine to N-acetylputrescine ratio ww 20 <0001 — 0893 (084110 0.947) 0129
Adenosine 5-monophosphate (AMP)to tyrosine ratio ~w 16 0029 —_— 1115 (1011 10 1.229) 0666
Adenosine 5-monophosphate (AMP) to aceloacelate ratio ww 2 0041 ——i 0,929 (0.866 10 0.997) 0681
ryptophan to yrosine ratio ~w 2 0028 —_— 1.086 (1009 to 1.169) 0.869

Tyrosine to pyruvate ratio w 2 0038 i 0.924 (0857 t0 0.996) 0499

Mannose to mannitol to sorbitol ratio vw 18 0.033 —_— 1.104 (1.008 to 1.208) 0871

Adenosine 5~diphosphate (ADP) to N-acetyineuraminate ratio w 1 0030 — 1,089 (1.008 to 1.177) 0847
Arachidonate (20:4n6) to paraxanthine ratio w 2 0038 — 0,923 (0.857 10 0.994) 0793
Cholesterol to inoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [1] ratio ww 2 0023 —_— 1071 (1009 to 1.137) 0.63
Cholesterol o linoleoyl-arachidonoyl-glycerol (18:2 to 20:4) [2] ratio vw 30 0.027 P 1.064 (1.007 to 1.125) 0.867
Salicylate to oxalate (ethanedioate) ratio ww 18 0034 —— 0.908 (0.831 to 0.993) 0683
Paraxanthine to 5-acetylamino-6-formylamino-3-methyluracil ratio w 25 0.009 —_— 0.954 (0.920 to 0.988) 0495

Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse variance
weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; Cl,
confidence interval; pleio_P, pleiotropy pvalue.



Outcome(Y) Expouse(X) Mediate(M) beta nsnp pval OR(95% Cl) pleio P Mediated effect Direct effect Mediated proportion(%)

Ovarian cancer CD11c+ CD62L- monocyte Absolute Count 2R,3R-dihydroxybutyrate levels ~ a 22 0.018 3'—' 1.042 (1.007 to 1.079)  0.509 c'b a-c'b c*bla
c 23 0008 — 0954 (0.921100.988) 0.191  1.005(1.000 o 1.009) 1.038 (1.002 to 1.074) 11.300 (0.656 to 21.944)
b 30 <0.001<— | 0.905 (0.857 10 0.955) _ 0.997 pval=0.0374 pval=0.0376 pval=0.0374
CD19 on IgD+ CD38- unswitched memory B cell X-12221 levels a 24 0.002 i——  1.037(1.014to 1.060) 0.535 c'b a-c'b c*bla
c 2 0007 0964 (0.939100.990) 0.690  0.996 (0.991 0 1.000) 1.041 (1.018 t0 1.065) 12.342 (0.380 to 24.303)
b 23 0.001 |+~ 1.430(1.050101.217) 0.286 pval=0.0431 pval=0.000463 pval=0.0431
CD27 on IgD- CD38+ B cell N-lactoyl phenylalanine levels a " 0.037 i'—" 1.079 (1.005t0 1.159)  0.793 c'b a-c'b c*bla
c 15 0.003 3 — 1.104 (1.033t0 1.179) 0.776  0.984 (0.969 to 0.999) 1.097 (1.020 to 1.180) 21.230 (1.620 to 40.840)
b 16 0.001 <« ' 0.849 (0.769 t0 0.937)  0.596 pval=0.0338 pval=0.0132 pval=0.0338
CD4+CD8+ T cell Absolute Count Pseudouridine levels a 18 0.023 «——; 0.945 (0.900 t0 0.992)  0.085 c'b a-c'b c*bla
c 19 0.001 «— 3 0.931(0.89210 0.972) 0.442 1.008 (1.000 to 1.016) 0.938 (0.892 to 0.985) 14.010 (0.005 to 28.015)
b2 001 e—i  08%(082100974) 03% pval=0.0499 pval=0.0106 pval=0.0499
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Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites.
nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; Cl, confidence
interval; pleio_P, pleiotropy pvalue; a, the total effect of immune cells phenotype on OC; b,
the effect of serum metabolites on OC; c, the effect of immune cells phenotype on serum
metabolites.



Outcome(Y) Expouse(X) Mediate(M) beta nsnp pval OR(95% CI) pleio_P Mediated effect Direct effect Mediated proportion(%)

Ovarian cancer i (20:4n6) to ine ratio  IgD- CD24-AC  a 20 0.033 ] 0.923 (0.857 t0 0.994)  0.793 c'b a—c'b c*bla
c 21 0.002 1—— 1220(1.075t01.385) 0.829 1.016 (1.002to 1.030) 0.909 (0.843 to 0.980) 19.450 (2.179 to 36.721)
b 18 <0.001 i 1.081(1.033t0 1.133)  0.633 pval=0.0273 pval=0.0125 pval=0.0273
Gamma-CEHC glucuronide levels CD4 Treg %CD4 a 30 0.046 - 1.056 (1.001 to 1.114)  0.483 c'b a-c*'b c*bla
c 31 0.010 ’—4 0.879 (0.797 t0 0.970) 0.684  0.990 (0.981 to 1.000) 1.066 (1.010 to 1.126) 17.580 (0.495 to 34.666)
b 18  <0.001 i 1.077 (1.033t0 1.123)  0.352 pval=0.0437 pval=0.021 pval=0.0437
y t T
05 1 15

Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype for
OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; Cl,
confidence interval; pleio_P, pleiotropy pvalue; a, the total effect of serum metabolites on

OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on
immune cells phenotype.
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