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 Abstract
Introduction
Recent studies have highlighted the potential functions of immune cells and serum metabolites in the
progression of ovarian cancer (OC). Therefore, this study executed Mendelian randomization (MR)
methodology to seek out causal links among serum metabolites, immune cells, and OC.

Material and methods
This study wielded data from multiple sources to obtain genetic data related to immune cell
phenotypes, serum metabolites, and OC. The causal effects were estimated using the inverse
variance weighted, MR-Egger, weighted median, simple mode, and weighted mode to assess potential
causal effects. Finally, mediation analysis was conducted to ascertain the potential mediating functions
of immune cell phenotypes and serum metabolites in OC.

Results
36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4 regulatory T
cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while "IgD- CD38dim B cell %B
cell" (OR = 1.027, p = 0.021) was risk factor. Additionally, 89 causal relationships were identified
between serum metabolites and OC. "Gluconate levels" (OR = 0.925, p = 0.047) was protective, while
"fructose levels" (OR = 1.097, p = 0.019) was risk factor for OC. Mediation analysis identified 3 serum
metabolites that mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell
phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity analysis
validated the robustness of these findings.

Conclusions
This work supplies novel insights into the causal connections among immune cells, serum metabolites,
and OC. Prep

rin
t



                                 

 

  

 1 

Immune Cells, Serum Metabolites, and Ovarian Cancer: A Mediation Mendelian 1 

Randomization Study 2 

 3 

Running head: Causal relationships in ovarian cancer  4 

Prep
rin

t



                                 

 

  

 2 

Abstract 5 

Introduction 6 

Recent studies have highlighted the potential functions of immune cells and serum 7 

metabolites in the progression of ovarian cancer (OC). Therefore, this study executed 8 

Mendelian randomization (MR) methodology to seek out causal links among serum 9 

metabolites, immune cells, and OC. 10 

Material and methods 11 

This study wielded data from multiple sources to obtain genetic data related to immune 12 

cell phenotypes, serum metabolites, and OC. The causal effects were estimated using the 13 

inverse variance weighted, MR-Egger, weighted median, simple mode, and weighted 14 

mode to assess potential causal effects. Finally, mediation analysis was conducted to 15 

ascertain the potential mediating functions of immune cell phenotypes and serum 16 

metabolites in OC.  17 

Results 18 

36 causal links between immune cell phenotypes and OC were recognized. "Resting CD4 19 

regulatory T cell %CD4 regulatory T cell" (OR = 0.977, p = 0.018) was protective, while 20 

"IgD- CD38dim B cell %B cell" (OR = 1.027, p = 0.021) was risk factor. Additionally, 21 

89 causal relationships were identified between serum metabolites and OC. "Gluconate 22 

levels" (OR = 0.925, p = 0.047) was protective, while "fructose levels" (OR = 1.097, p = 23 

0.019) was risk factor for OC. Mediation analysis identified 3 serum metabolites that 24 

mediated the influence of immune cell phenotypes on OC, alongside 2 immune cell 25 
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phenotypes acting as mediators between serum metabolites and OC. Notably, sensitivity 26 

analysis validated the robustness of these findings. 27 

Conclusions 28 

This work supplies novel insights into the causal connections among immune cells, serum 29 

metabolites, and OC.  30 

 31 

Keywords: Ovarian cancer, Immune cells phenotype, Serum metabolites, Mendelian 32 

randomization, Mediation analysis 33 

 34 

1. Introduction 35 

Ovarian cancer (OC) remains a lethal gynecological malignancy with a 5-year survival 36 

rate of approximately 47%. This is mostly due to the absence of early symptoms, resulting 37 

in the majority of patients being detected at an advanced stage[1]. Moreover, the etiology 38 

of OC remains unclear, further complicating early diagnosis[2]. While current therapies 39 

partially control progression, high recurrence rates persist, highlighting an urgent need 40 

for improved early diagnostic biomarkers and therapeutic targets[3]. 41 

Recent studies have linked the immune system to OC progression: macrophage 42 

homeostasis dysregulation drives tumor microenvironment immunosuppression[4,5];  43 

and altered lymphocyte subsets (e.g., T/B cells) correlate with prognosis[6]. In particular, 44 

regulatory T cells (Tregs) and regulatory B cells (Bregs) inhibit the proliferation of other 45 

immune cells by expressing different immune checkpoint molecules and secreting 46 
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immunosuppressive substances, thereby promoting tumor growth and progression[7–10]. 47 

In parallel, the rapid advancement of metabolomics has offered a new lens to clarify OC 48 

pathogenesis while being widely utilized in OC studies over recent years[11,12]. Serum 49 

metabolites, as direct reflections of biochemical activities in the body, are considerable 50 

for risk assessment and prognosis prediction of female cancers[13]. Fatty acids (such as 51 

C16 and C22), amino acids, and various chemical substances have been recognized as 52 

possible serum indicators for OC[14,15]. These findings underscore the critical role of 53 

serum metabolites in OC, but their causal relationship with OC—and whether they 54 

mediate the crosstalk between immune cells and OC pathogenesis—has not been 55 

validated. Traditional observational studies, limited by confounding factors and reverse 56 

causality, cannot resolve these uncertainties. 57 

Based on this, the present study aims to systematically evaluate the causal relationship 58 

between immune cells and serum metabolites with OC through Mendelian randomization 59 

(MR) analysis, which leverages genetic variants as instrumental variables (IVs) to infer 60 

causal relationships while minimizing bias[16,17]. We further integrated mediation 61 

analysis to dissect the potential pathways: specifically, whether serum metabolites 62 

mediate the effect of immune cells on OC, or vice versa. This approach aims to clarify 63 

the immunometabolic network in OC, providing a theoretical basis for developing novel 64 

diagnostic strategies and therapeutic interventions. 65 

2. Materials and methods 66 

2.1 Data collection 67 
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This study incorporated 731 immune phenotypes, all retrieved from the GWAS catalog 68 

(https://www.ebi.ac.uk/gwas/) (GCST90001391 to GCST90002121) and encompassing 69 

3,757 individuals of European ancestry with no cohort overlap[18]. Additionally, 1,400 70 

serum metabolites (GCST90199621 to GCST90201020) were retrieved from the GWAS 71 

catalog, originating from the Canadian Longitudinal Study on Aging (CLSA) cohort. This 72 

cohorts contained 8,299 randomly selected European-descent individuals with no blood 73 

relations[19]. Meanwhile, the GWAS data for OC (ieu-a-1120) were obtained from the 74 

IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/), comprising 40,941 controls and 75 

25,509 case samples of European origin, totaling 470,825 single nucleotide 76 

polymorphisms (SNPs). 77 

2.3 Acquisition of IVs 78 

MR analysis was conducted based on the following three fundamental assumptions: (1) 79 

IVs must demonstrate a consistent correlation with the exposure factors being examined; 80 

(2) IVs must be unaffected by any identifiable or unidentifiable confounding variables; 81 

(3) IVs must affect the outcome only via the exposure factor, rather than through 82 

alternative direct causal mechanisms. Based on these assumptions, we followed the initial 83 

step of selecting IVs by setting the SNP selection threshold at p <1×10⁻⁵ when regarding 84 

immune cells and serum metabolites as exposure factors[20,21]. Second, the ieugwasr 85 

package (v 1.0.0) [22] was used to eliminate SNPs with linkage disequilibrium, 86 

(parameters: r2 = 0.001, kb = 10000). Subsequently, we calculated the F-statistic for each 87 

genetic variant and retained only those with an F-statistic > 10. Based on GWAS catalog, 88 
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SNPs potentially associated with outcome GWAS traits were excluded at a threshold of p 89 

< 1*10-5 to satisfy the independence assumption. Additionally, the Steiger method was 90 

employed for directionality testing to ensure the unidirectionality of causal relationships. 91 

To ensure that the effects of SNPs on exposure and outcome corresponded with those of 92 

the identical allele, palindromic SNPs were omitted. 93 

2.4 MR analysis 94 

This study followed the Mendelian reporting specifications for randomised studies 95 

(STROBE-MR)[23]. This study employed multiple MR analysis methods to assess causal 96 

relationships. The inverse variance weighted (IVW) [24] method, which typically has the 97 

highest statistical power[24,25], was chosen as the primary method, supplemented by 98 

other approaches including MR-Egger[26], weighted median[27], simple mode[28], and 99 

weighted mode[28]. Moreover, the mediating roles of immune cells and serum 100 

metabolites in OC was explored. First, the overall effect of the main exposure on OC was 101 

assessed (a), reflecting the combined direct and indirect effects of the exposure on OC 102 

without considering mediating variables. Subsequently, the effects of exposure on the 103 

mediator (c) and the mediator on the outcome (b) were analyzed. In quantifying mediating 104 

effects, c*b was used to represent the mediating effect. Additionally, the direct effect was 105 

computed using the formula a-c*b, while the proportion of mediation was quantified as 106 

c*b/a. 107 

2.5 Statistical analysis 108 

Sensitivity analyses were conducted to assess the robustness of causal inferences. 109 
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Heterogeneity was evaluated using the mr_heterogeneity function and pleiotropy was 110 

assessed through MR-Egger regression and MR-PRESSO methods-outliers with p < 0.05 111 

were excluded. Additionally, leave-one-out analysis was conducted to test the reliance of 112 

results on individual SNPs: one SNP was removed sequentially to check if any single SNP 113 

influenced the causal estimates. All analyses were completed using the TwoSampleMR 114 

(v 0.6.0)[29] and MRPRESSO packages (v 1.0)[30], and the Delta method was utilized 115 

to compute standard errors for mediating effects, direct effects, and proportions 116 

mediated[31]. 117 

3. Result 118 

3.1 Selection of IVs 119 

SNPs were screened to meet the necessary assumptions for MR analysis. In the analysis 120 

of immune cells phenotype and OC, a total of 17,757 SNPs were included for further 121 

study, with F-statistics fluctuating from 19.537 to 3159.289 (Table S1). For the analysis 122 

of serum metabolites and OC, 34,513 SNPs were used, with F-statistics spanning from 123 

19.503 to 2297.785 (Table S2). In the analysis from immune cells phenotype to serum 124 

metabolites, 17,836 SNPs were included, with F-statistics varying from 19.537 to 125 

3159.289 (Table S3). Finally, in the analysis from serum metabolites to immune cells 126 

phenotype, 34,856 SNPs were included, with F-statistics fluctuating from 19.503 to 127 

2297.785 (Table S4). All selected SNPs had F-statistics exceeding 10, thereby affirming 128 

their reliability. 129 

3.2 Investigating the mediating role of serum metabolites in immune cells and OC 130 
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Given that immune cells are essential for ovarian development, pathogenic processes, and 131 

functional maintenance[32], we probed into the causal links between immune cells and 132 

OC. Among the 731 immune cells phenotype and OC were analyzed, 36 significant causal 133 

relationships were identified, with 15 being protective factors and 21 being risk factors. 134 

Specifically, "resting CD4 regulatory T cell %CD4 regulatory T cell" [odds ratio (OR) = 135 

0.977, 95% confidence interval (CI) = 0.958-0.996, p = 0.018) and "CD25 on CD39+ 136 

resting CD4 regulatory T cell" (OR = 0.946, 95% CI = 0.899-0.995, p = 0.032) were 137 

protective against OC. Conversely, "CD19 on IgD+ CD38− unswitched memory B cell" 138 

(OR = 1.037, 95% CI = 1.014-1.060, p = 0.002) and "IgD− CD38dim B cell %B cell" (OR 139 

= 1.027, 95% CI = 1.004-1.050, p = 0.021) were risk factors for OC (Figure 1). 140 

Subsequently, reverse MR analysis was performed to exclude potential bidirectional 141 

effects, with no significant associations found, confirming the validity of the causal links 142 

identified in the forward MR analysis. 143 

Considering the substantial effect of immune cells, we further explored their influence on 144 

OC through serum metabolites. This involved analyzing the causal links between 1,400 145 

serum metabolites and OC, leading to the identification of 89 significant associations 146 

(Figure 2). On this basis, we checked into the causal relationships between immune cells 147 

phenotype and serum metabolites, finding 156 associations between 36 immune cells 148 

phenotype and 80 serum metabolites, including 78 protective and 78 risk factors (Table 149 

S5). In the mediation analysis, 4 significant associations were identified: 150 

"2R,3R−dihydroxybutyrate levels" increased the risk effect of "CD11c+ CD62L− 151 
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monocyte Absolute Count" on OC (11.300%). "N−lactoyl phenylalanine (Lac-Phe) 152 

levels" attenuated the risk effect of "CD27 on IgD− CD38+ B cell" on OC (21.230%), and 153 

"X−12221 levels" attenuated the risk effect of "CD19 on IgD+ CD38− unswitched 154 

memory B cell" on OC (12.342%). "Pseudouridine levels" attenuated the protective effect 155 

of "CD4+CD8+ T cell Absolute Count" on OC (14.010%) (Figure 3). Due to the unclear 156 

levels of X−12221, 3 mediating associations were finally validated, uncovering the 157 

interactions between metabolites and immune cell phenotypes as well as their influence 158 

on OC risk. 159 

3.3 Exploring the influence of serum metabolites on OC via immune cells phenotype 160 

Metabolomics, an emerging branch of systems biology, has made significant progress in 161 

cancer research in recent years, substantially enhancing the understanding, diagnosis, and 162 

treatment of diverse cancers, including OC[33]. Metabolomics can provide detailed 163 

information on metabolic changes during disease onset and progression, offering new 164 

perspectives for early diagnosis. Therefore, MR analysis was conducted on 1,400 serum 165 

metabolites and OC. In this process, 89 significant associations were identified, including 166 

49 protective factors and 40 risk factors for OC (Figure 2). "Mannose to mannitol to 167 

sorbitol ratio" (OR = 1.104, 95% CI = 1.008-1.208, p = 0.033) and 168 

"Oleoyl−linoleoyl−glycerol (18:1 to 18:2) to linoleoyl−arachidonoyl−glycerol (18:2 to 169 

20:4) ratio" (OR = 1.058, 95% CI = 1.012-1.106, p = 0.013) exhibited risk effects on OC. 170 

Conversely, "Adenosine 5'−monophosphate (AMP) to acetoacetate ratio" (OR = 0.929, 171 

95% CI = 0.866-0.997, p = 0.041) and "sulfate of piperine metabolite C18H21NO3 (1) 172 
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levels" (OR = 0.925, 95% CI = 0.860-0.996, p = 0.039) were protective factors. Similarly, 173 

to exclude the possibility of bidirectional effects, the causal impact of OC on these serum 174 

metabolites was assessed, with no significant reverse associations found. 175 

Subsequently, the role of serum metabolites in influencing OC through immune cells 176 

phenotype was explored. By calculating the causal relationships between 731 immune 177 

cells phenotype and OC, 36 significant associations were identified (Figure 1). Based on 178 

these significant results, the causal links between serum metabolites and immune cells 179 

phenotype were evaluated, identifying 143 significant associations between 69 serum 180 

metabolites and 34 immune cells phenotype, including 68 protective and 75 risk factors 181 

(Table S6). Subsequently, mediation analysis was conducted to explore whether these 182 

serum metabolites influenced OC through specific immune cells. The results identified 183 

two significant associations: "IgD− CD24− AC" attenuated the protective effect of 184 

"arachidonate (20:4n6) to paraxanthine ratio" on OC (19.450%), and "CD4 Treg %CD4" 185 

attenuated the risk effect of "Gamma−CEHC glucuronide levels" on OC (17.580%) 186 

(Figure 4). These findings suggested that certain metabolites might alter the immune 187 

microenvironment of OC by adjusting immune cell activity or function, which in turn 188 

affects OC’s onset and progression. 189 

3.4 Sensitivity analysis 190 

To verify the accuracy of causal inferences in this study, comprehensive sensitivity 191 

analyses were performed. The causal results were consistent with the MR-PRESSO 192 

method, with no outliers detected. The MR-Egger test results showed p-values exceeding 193 
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0.05, indicating no pleiotropic bias (Table S7). Subsequently, when facing heterogeneity 194 

in MR analysis, a random-effects IVW was employed (Table S7), still yielding robust 195 

causal inference results. Furthermore, leave-one-out analysis revealed that the causal 196 

inference conclusions remained largely unaffected despite the removal of one SNP in each 197 

iteration. These findings ensured the reliability of the analysis results. 198 

4. Discussion 199 

Given the unclear interrelationships among immune cells, serum metabolites, and OC, 200 

this study utilized MR analysis to systematically probe into the causal links between 201 

immune cells/serum metabolites and OC, further investigating the mediating roles of 202 

these factors in OC development. We ultimately identified 3 significant pairs of 203 

relationships mediated by serum metabolites and 2 associations mediated by immune 204 

cells. These findings not only established a novel theoretical framework for 205 

comprehending the etiology of OC but also presented new avenues for its early 206 

identification and therapy. 207 

Through MR analysis, we identified "HLA DR++ monocyte %monocyte" as a protective 208 

factor for OC. Monocytes' HLA-DR surface expression denotes their activation state[34], 209 

which aids in determining their immunological status[35]. Some studies indicate that a 210 

certain monocyte subpopulation may possess immunosuppressive properties by 211 

suppressing T cell proliferation and differentiation, facilitating the development of 212 

regulatory T cells, and secreting anti-inflammatory mediators. This immune regulatory 213 

mechanism can safeguard the ovaries from autoimmune injury, therefore diminishing the 214 
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chance of premature ovarian failure (POF) [36], which seemed to be consistent with our 215 

findings. Besides, our research revealed that "CD28− CD25++ CD8+ T cell Absolute 216 

Count" is a risk factor for OC, corroborated by existing research results. Studies have 217 

shown that an increased relative count of CD28− CD25CD8 T cells correlates with an 218 

elevated risk of infertility in women[37]. Another MR analysis revealed that the greatest 219 

risk factor for infertility is CD28−CD25++ CD8+ %T cells[38]. The results indicated that 220 

the onset and advancement of OC were intricately affected by the immune system. 221 

Metabolites, as products and substrates of cellular metabolic processes, which was tightly 222 

tied to cancer[39]. Therefore, we marched investigation into the link between serum 223 

metabolites and OC and ultimately identified 89 associations with causal relationships. 224 

Among these associations, "palmitoylcarnitine levels" were considered a protective factor 225 

for OC. The primary job of palmitoylcarnitine is to ferry long-chain fatty acids into the 226 

mitochondria for β-oxidation, thereby providing cell energy[40]. Consequently, focusing 227 

on palmitoylcarnitine and leveraging its capacity to provoke oxidative stress in cancer 228 

cells may offer a possible supplementary approach for the treatment of OC[41,42]. In 229 

contrast, "Trimethylamine N−oxide (TMAO) levels" were recognized as a risk factor for 230 

OC. Studies have shown that TMAO can upregulate macrophage scavenger receptors, 231 

promotes cholesterol accumulation and foam cell formation, activates MAPK and nuclear 232 

factor-κB pathways, thereby promoting plaque formation and inflammatory 233 

responses[43]. Moreover, heightened plasma levels of TMAO may correlate with the 234 

pathophysiology of polycystic ovarian syndrome (PCOS) absent hyperandrogenism (HA) 235 
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and are significantly linked to augmented systemic inflammation[44]. This discovery 236 

indicates that TMAO may facilitate the onset and progression of OC via many pathways, 237 

which aligned with our results. In summary, the intricate connection between OC and 238 

serum metabolites has been made clear by this investigation. 239 

To explore immune cells’ mediating role in the serum metabolites-OC relationship, 240 

mediation analysis revealed that "CD4 Treg %CD4" attenuated OC risk associated with 241 

"Gamma−CEHC glucuronide levels"- a vitamin E metabolite and OC risk factor. 242 

Research has proven that the anticancer efficacy of tumor-infiltrating cytotoxic CD8+ T 243 

cells in OC seems to be impacted by the presence of CD4 Tregs[45], suggesting that CD4 244 

Tregs may promote the progression of OC. However, studies have certified that depleting 245 

Tregs during OC can boost immunity and perhaps have therapeutic benefits[46,47]. 246 

Additionally, studies have maintained that and elevated number of CD4+ T cells is 247 

positively connected with the clinical features and tumor size of OC[48,49]. This 248 

suggested that modulating the ratio of CD4 Tregs to CD4+ T cells might provide a 249 

potential target for developing novel immunomodulatory therapeutic strategies. 250 

Additionally, we also addressed the mediating function of serum metabolites in the 251 

interaction between immune cells and OC. Mediation analysis showed that "Lac-Phe 252 

levels" attenuated the risk of OC associated with "CD27 on IgD− CD38+ B cell"- a 253 

confirmed risk factor for OC. Higher IgD− CD38+ B cells link to stronger 254 

inflammation[50], which may promote OC via tumor microenvironment formation. In 255 

both mice and humans, plasma Lac-Phe concentrations rise in response to stimuli that 256 
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enhance circulating lactate or phenylalanine levels or increase glycolytic flux[51]. 257 

Research indicates that elevated levels of Lac-Phe serve as a significant protective factor 258 

against OC[52]. These findings suggest Lac-Phe’s mediated protective effect may stem 259 

from its role in modulating immune cell function and suppressing inflammation, offering 260 

a fresh perspective on OC’s underlying immunometabolic mechanisms.  261 

We have broken through the traditional single-variable research model in terms of 262 

perspective and are the first to use mediating MR to systematically evaluate the causal 263 

relationship among immune cell phenotypes, serum metabolites and OC. Specific targets 264 

such as "CD4 Treg %CD4" and "Lac-Phe levels" have been proposed and hold promise 265 

for advancing targeted regulatory therapies. For instance, strategies involving the 266 

selective depletion of CD4 Treg cells or the development of Lac-Phe or its analogs as 267 

metabolic intervention agents warrant further investigation and validation. Despite 268 

making significant progress in elucidating the immunometabolic mechanisms of OC, our 269 

research has encountered tons limitations. The principal constraint is the substantial 270 

dependence on data from European populations, potentially introducing specific biases. 271 

Furthermore, the outcomes of our mediation study have not been corroborated by further 272 

experimental trials, necessitating further research to validate these causal links. The 273 

stratification of the research subjects is not clear and only some immune cells and serum 274 

metabolites are focused on, which may limit the universality of the conclusion and miss 275 

key mediator pathways. 276 

5. Conclusion 277 
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In summary, our MR study thoroughly investigated the causative connections among 278 

immune cell phenotypes, serum metabolites, and OC. The research discovered 36 notable 279 

causal relationships between immune cell phenotypes and OC, along with 89 connections 280 

between serum metabolites and and OC. Furthermore, by mediation analysis, we clarified 281 

the mediating role of serum metabolites and immune cells in OC. These findings elucidate 282 

the significant functions of immune cells and serum metabolites in OC and offer new 283 

perspectives for its early identification.. 284 
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Figure legends 312 

Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype 313 

on ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single 314 

nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio_P, 315 

pleiotropy pvalue. 316 

Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse 317 

variance weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or, 318 

odds ratio; CI, confidence interval; pleio_P, pleiotropy pvalue. 319 
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Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites. 320 

nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, 321 

confidence interval; pleio_P, pleiotropy pvalue; a, the total effect of immune cells 322 

phenotype on OC; b, the effect of serum metabolites on OC; c, the effect of immune cells 323 

phenotype on serum metabolites. 324 

Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype 325 

for OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, 326 

confidence interval; pleio_P, pleiotropy pvalue; a, the total effect of serum metabolites on 327 

OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on 328 

immune cells phenotype. 329 
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Figure 1 Results of Mendelian randomization (MR) analysis of immune cells phenotype on
ovarian cancer (OC). IVW, inverse variance weighted; nsnp, number of single nucleotide
polymorphism; pval, pvalue; or, odds ratio; CI, confidence interval; pleio_P, pleiotropy
pvalue.
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Figure 2 Results of MR analysis between serum metabolites and OC. IVW, inverse variance
weighted; nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,
confidence interval; pleio_P, pleiotropy pvalue.
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Figure 3 The impact of immune cells phenotype on OC regulated by serum metabolites.
nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI, confidence
interval; pleio_P, pleiotropy pvalue; a, the total effect of immune cells phenotype on OC; b,
the effect of serum metabolites on OC; c, the effect of immune cells phenotype on serum
metabolites.
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Figure 4 Results of mediation analysis of serum metabolites via immune cells phenotype for
OC. nsnp, number of single nucleotide polymorphism; pval, pvalue; or, odds ratio; CI,
confidence interval; pleio_P, pleiotropy pvalue; a, the total effect of serum metabolites on
OC; b, the effect of immune cells phenotype on OC; c, the effect of serum metabolites on
immune cells phenotype.
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