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Abstract

Introduction: Ovarian cancer (OV), ranking among the most lethal gyne-
cologic malignancies, is characterized by elevated mortality rates primarily
attributable to immature diagnostic tools and the insensitivity of chemo-
therapy. Despite the impressive success of immune checkpoint inhibitor (ICI)
therapy in the treatment of several solid tumors, OV patients only partially
benefit from immune checkpoint blockade. Therefore, a biomarker is neces-
sary to predict the responsiveness of OV patients to immunotherapy. This
study sought to identify an immune-associated IncRNA-based prognostic
signature to predict immunotherapy efficacy and chemosensitivity in OV
patients.

Material and methods: We used ovarian cancer transcriptional profiles of
patients from TCGA and GTEx databases with immune-related signature
genes to screen immune-related IncRNAs. Furthermore, we integrated the
GEO database to evaluate an immune-related IncRNA prognostic score (IRL-
RPI), and then verified the model in all aspects to distinguish biomarkers of
IRLRPI subtypes.

Results: Our findings demonstrated that patients with elevated IRLRPI
scores had a poorer prognosis and tended to be more immunosuppressed;
in terms of treatment, these patients may exhibit resistance to immuno-
therapy and be less sensitive to several chemotherapeutic agents. Finally,
the biomarkers KIF26B and VSTM2L were found to distinguish IRLRPI type.
Conclusions: The IRLRPI model we developed can predict immunotherapy
responsiveness and chemotherapy sensitivity in ovarian cancer patients and
demonstrates potential for clinical application.
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Introduction

Ovarian cancer is a highly lethal malignancy, with most patients di-
agnosed at an advanced stage, leading to a 5-year survival rate below
45% [1, 2]. Despite initial treatment with surgery and chemotherapy,
the majority of patients develop chemoresistance and face recurrence
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within a few years, highlighting a critical need for
improved therapeutic strategies.

Despite the efficacy of immune checkpoint
inhibitors (ICls) in multiple solid tumors, their
response rates in ovarian cancer remain dismal
[3-5]. It is largely due to the high heterogeneity
of ovarian cancer, which manifests in diverse tu-
mor immune infiltration, metastatic potential, and
treatment response. This underscores the imper-
ative for predictive biomarkers. Immune-related
gene prognostic scores (IRGPI) have emerged as
a powerful tool for this purpose. In cancers such as
head and neck squamous cell carcinoma (HNSCC),
hepatocellular carcinoma, and esophageal carci-
noma, low IRGPI scores are associated with favor-
able immune contexts (e.g., high CD8+ T cell in-
filtration) and predict superior ICl response [6-8].
Constructing such models via Cox regression rep-
resents a clinically convenient and highly predic-
tive approach.

In recent years, the role of long non-coding
RNAs (IncRNAs) in cancer has been increasing-
ly elucidated. Accumulating evidence indicates
that dysregulated IncRNA expression is closely
implicated in tumor initiation and progression
[9-11], establishing them as promising diagnostic
biomarkers [12]. Furthermore, their potential as
therapeutic targets underscores significant clini-
cal value [13, 14]. Additionally, numerous studies
have revealed that IncRNAs are pivotal regulators
of the tumor immune microenvironment [15-17].
Emerging evidence indicates that immune-associ-
ated IncRNAs modulate tumor microenvironment
composition and PD-1 blockade efficacy across
multiple malignancies [18]. Therefore, multiple
investigations employ immune-associated In-
cRNAs (IRIncRNAs) to develop prognostic signa-
tures that predict immunotherapy efficacy across
diverse cancers [19-21]. Previously, IRGPI and
IRIncRNA-related models have been built for pre-
dicting the drug sensitivity, immune cell infiltra-
tion, and prognosis of clinical patients with OV [22,
23]. However, no existing models have been used
for patients’ immunotherapeutic response to OV.

By integrating TCGA and GTEX data, we es-
tablished an IRIncRNA-based prognostic score
(IRLRPI) for ovarian cancer. This model, trained in
TCGA and validated in GEO, effectively stratified
patients into high- and low-risk subgroups with
distinct clinical outcomes, tumor immune micro-
environments, and therapeutic responses. Two
biomarkers, KIF26B and VSTM2L, were identified
to aid in IRLRPI subtyping and prognosis assess-
ment. The results showed that the IRLRPI score
developed in this study provides a predictive indi-
cator for immunotherapy and is also instrumental
in identifying susceptible drugs for ovarian cancer
patients.

Material and methods
Patients and data sources

In this study, 376 ovarian cancer samples
from TCGA (https://portal.gdc.cancer.gov/) were
selected to obtain gene expression data, clinical
information, and single nucleotide mutation data.
Transcriptome data of 88 normal ovarian tissue
samples were downloaded from Genotype Tissue
Expression (GTEx) (www.gtexportal.org/). Clin-
ical and transcriptome data for GSE9891 were
sourced from GEO (https://www.ncbi.nlm.nih.gov/
geo/). Ensembl GTF annotations (http://asia.en-
sembl.org) enabled mRNA-IncRNA classification.
Immune-related genes were curated from Im-
mPort (https://www.immport.org/) and InnateDB
(https://www.innatedb.com/).

Construction of prognosis-related
differentially expressed IRIncRNA sets

To analyze the correlation between im-
mune-related genes and IncRNAs, we identified
immune-related IncRNAs (IRIncRNAs) using |Pear-
son R| > 0.4 and p < 0.001 thresholds. The limma
package in R software (https://www.r-project.
org/) was used to analyze differences in the ex-
pression of IRIncRNA between tumor and normal
tissue samples. Differentially expressed IRIncRNAs
(DEIRINcRNAs) were identified using the criteria
of log2FC (fold change) > 2 and a false discovery
rate (FDR) < 0.05. Next, the obtained DEIRIncRNA
sets were normalized to the expression data from
the GEO cohort. Finally, the overall survival was
calculated using Kaplan-Meier survival analysis
and log-rank tests. DEIRIncRNAs with significant
effects on overall survival were screened to con-
struct the prognosis-related DEIRINcRNA set.

Construction and verification of the IRLRPI

The IRLRPI was developed via multivariate Cox
regression of prognosis-linked DEIRINcRNAs. For
each sample, the index was computed as the sum
of specific IncRNAs’ expression values multiplied
by their Cox regression coefficients. The formula of
IRLRPI was as follows: IRLRPI = (-0.4243 x LEMD1-
AS1 expression) + (0.1681 x LINCO1127 expres-
sion) +(-0.2439 x TLR8-AS1 expression) + (—0.4590
x TYMSOS expression) + (0.9881 x LINCO0452 ex-
pression) + (0.9418 x CACNA1G-AS1 expression)
+ (0.4219 x LINCO0702 expression) + (-1.2146 x
LINCO0996 expression). The IRLRPI high/low-risk
threshold corresponded to the cohort’s median
score. Consequently, the cut-off value is 1.

Kaplan-Meier/log-rank analyses assessed the
IRLRPI’s prognostic power in TCGA and GEO co-
horts. To validate its independent prognostic val-
ue, ROC curves and univariate/multivariate Cox
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regression were conducted using R packages (sur-
vival, survivalROC, survminer).

A prognostic nomogram was subsequently
constructed using the R packages survival, reg-
plot, and rms.

Analysis of tumor immune
microenvironment

To characterize immune microenvironment
variations across IRLRPI subtypes, we employed
CIBERSORT to quantify the immune cell infiltration
in the tumor microenvironment (TME) of patients.
Then, we compared immune cell infiltration, im-
mune activity, and checkpoint molecule expression
between risk groups using R packages. Immune
cells were tested using the Pearson correlation
test, where p < 0.05 is shown in box plots, and re-
sults for immune response and checkpoint expres-
sion are displayed in box plots using the Wilcoxon
rank sum test.

Immunotherapy responsiveness prediction

We downloaded immunophenoscores (IPS) of
TCGA ovarian cancer patients from the TCIA da-
tabase (https://tcia.at/) [24]. To anticipate immu-
notherapy response, IPS values were compared
between IRLRPI subtypes using Wilcoxon rank-
sum testing. We then obtained acquired transcrip-
tomic data and clinical metadata for the phase |l
immunotherapy cohort (IMvigor210: http://re-
search-pub.gene.com/IMvigor210CoreBiologies/)
[25] and preprocessed the data using the authors’
R package IMvigor210CoreBiologies. Patients in
the cohort were scored for IRLRPI, and the predic-
tive effect of different IRLRPI subtypes on immu-
notherapy response was observed [26].

Analysis of tumor mutation burden in
different IRGPI subgroups

We calculated tumor mutation burden (TMB,
number of mutations per 1Mb) for ovarian cancer
patients using TCGA-derived SNP data. We pro-
filed mutation landscapes across IRLRPI subtypes
with the R package mafTools. We assessed TMB
disparities between high- and low-risk groups via
the %2 test [27].

Analysis of chemotherapy sensitivity in
different IRGPI subgroups

We analyzed platinum, paclitaxel, PARP inhibi-
tors, and other drugs commonly used in the TCGA
ovarian cancer cohort (n = 376). Wilcoxon testing
was used to assess differences in half-maximal
inhibitory concentration (IC, ) between risk-strati-
fied groups. The main R package used in this pro-
cess was pRRophetic [28].

Unsupervised clustering

Consensus clustering was conducted via Con-
sensus Cluster Plus with K-means [29], executing
100 iterations at 80% TCGA sample resampling.
The cumulative distribution function (CDF) curve of
consensus scores identified three optimal clusters.

IRLRPI-related biomarker screening

In the signal pathway analysis, the differen-
tially expressed genes (DEGs) between IRLRPI risk
groups (|log2FC| > 2, FDR < 0.05) underwent gene
set enrichment analysis (GSEA) using KEGG path-
ways (p < 0.05, FDR < 0.25), followed by functional
annotation via GO enrichment.

Subsequently, LASSO (least absolute shrink-
age and selection operator) [30] regression and
SVM-REF (support vector machine-recursive fea-
ture elimination) [31] analysis were performed
on all DEGs to screen for markers associated with
IRLRPI typing. After the intersection of the genes
obtained by the two machine learning methods,
the differential gene expression in tumor versus
normal tissues was analyzed via GEPIA (http://ge-
pia.cancer-pku.cn/) [32]. The effects of these genes
on OS were evaluated using K-M Plotter (http://
kmplot.com) [33]. Finally, protein expression pro-
files in human tissues were evaluated by immuno-
histochemistry (IHC) using the Human Protein At-
las [34]. Following the above steps, the best quality
biomarkers were finally selected from all genes
obtained by machine learning.

Quantitative RT-PCR (QRT-PCR)

We obtained 15 ovarian cancer and 15 unpaired
adjacent tissue from Shanghai Tenth People’s
Hospital. Following the manufacturer’s guidelines,
total RNA was extracted from tissues with TRIzol
reagent (Takara, Japan). Reverse transcription was
performed using the PrimeScript RT Master Mix
kit (TaKaRa, Japan) and random primers. Real-time
gPCR was performed following the supplier’s in-
structions, with GAPDH acting as the endogenous
control. The relative RNA expression was calculat-
ed using the 224 method. Sequences of primers
used in this study were as follows:

Forward (VSTM2L): 5-CAGTGGTGGTATGTACG-
GAGC-3';

Reverse (VSTM2L): 5'-CCTGCTTGTCGGTCCAG-
TC-3%

Forward (KIF26B): 5'-GCTGGGAATAAAGAGAG-
GCTTG-3%

Reverse (KIF26B): 5'-ACTCCTCGTATGCTTTCCG-
GT-3%;

Forward (GAPDH): 5'-GAAGGTGAAGGTCGGAG-
TC-3%

Reverse (GAPDH): 5'-GAAGATGGTGATGGGATT-
TC-3".
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Statistical analysis

The independent prognostic value of the
IRLRPI was evaluated using ROC curve analy-
sis and univariate and multivariate Cox regres-
sion analyses, which were performed with the R
packages survival, survival ROC, and survminer.
Moreover, multivariable Cox regression modeling
assessed survival outcomes as detailed in the
Methods section.

A two-sided threshold of p < 0.05 was applied
for significance.

Age was grouped as < 65 and > 65 years. Stag-
ing was performed according to the FIGO stag-
ing system. Pathological diagnosis, tumor grade,
and survival data were directly downloaded
from TCGA (https://portal.gdc.cancer.gov/). The
R package limma quantified differential immune
features (cellular infiltration, functional respons-
es, checkpoint markers) across IRLRPI risk strata.
Immune cells were tested using the Pearson cor-
relation test, where p < 0.05 is shown in box plots,
and results for immune response and checkpoint
expression are displayed in box plots, using the
Wilcoxon rank sum test. The QRT-PCR results were
compared using the unpaired t-test.

Results

Correlation between IncRNAs and
prognosis in ovarian cancer

To determine whether IncRNAs regulate immune
responses, 2935 immune genes and 2069 IRIn-
cRNAs were selected from 13427 IncRNAs based on
correlation analysis with the 2935 immune genes.
We compared 376 ovarian cancer specimens and
88 normal specimens to obtain 1134 differential-
ly expressed IRIncRNAs (Figure 1 A), of which 761
and 373 genes exhibited upregulation and down-
regulation, respectively, in OV (Figure 1 B). Through
standardization and survival analysis, we selected
15 prognostic DEIRINcRNAs (Figure 1 C). Finally, for
Cox regression analysis, the TCGA and GEO cohorts
served as retrospective training and validation
sets, respectively. As a result, eight IncRNAs were
identified: LEMD1-AS1, LINCO1127, TLR8-ASI,
TYMSOS, LINCO0452, ACNA1G-AS1, LINCO0702,
and LINCO0996. These were used to construct an
immuno-related IncRNA prognostic index (IRLRPI).
Subsequently, we conducted univariate and multi-
variate Cox proportional hazards regression to as-
sess the IRLRPI’s prognostic utility. We found that
IRLRPI served as an independent prognostic factor
for patients (Figures 1 D, E), and the predictive ef-
fect of IRLRPI was stable over time (Figures 1 F, G).
The overall survival of the two IRLRPI subtypes
also showed significant differences. Patients with
high IRLRPI scores exhibited poorer overall sur-
vival, while those with low IRLRPI scores showed

improved prognosis (Figures 1 H, I). Regarding
clinical staging, a greater proportion of patients in
the high-IRLRPI group were classified as advanced
stage compared with those in the low-IRLRPI group
(Supplementary Figure S1). Finally, to further im-
prove the diagnostic efficiency of IRLRPI, we added
age, clinical stage, and case grading to construct
a nomogram (Supplementary Figure S2 A), and the
nomogram was used to repredict the prognosis
of the patients (Supplementary Figure S2 B). The
nomogram facilitates clinical translation of the
prognostic model. Thus, we identified a significant
association between IRLRPI and ovarian cancer
prognosis via the nomogram.

Relationship between IRLRPI and immune
infiltration to predict immunotherapy in
ovarian cancer

Since  immune-related IncRNAs  underpin
IRLRPI construction, we investigated associations
between IRLRPI subtypes and immune cell infiltra-
tion as well as biological functions in ovarian can-
cer. Tumor samples were categorized into high- and
low-risk subtypes according to IRLRPI expression
levels. First, we analyzed the immune infiltrated
cells in the tumor microenvironment (TME) be-
tween two IRLRPI subtypes. We found that most im-
mune cells were negatively correlated with scores,
while tumor-associated fibroblasts and regulatory
T cells (Treg) were positively correlated (Figure 2 A).
Interestingly, differences in immune responses and
immunophenotyping were observed between the
two IRLRPI subtypes: the immune scores of inflam-
mations promoting HLA, MHC class |, and type | IFN
response were significantly lower in the high-IRLRPI
group, while type Il IFN response was significant-
ly activated (Figure 2 B); in immunophenotyping,
patients with high IRLRPI scores predominantly ex-
hibited a wound healing phenotype, whereas those
with low IRLRPI scores were mostly IFN-y-dominant
(Supplementary Figure S3).

Subsequently, we profiled immune checkpoint
gene expression across IRLRPI subtypes. We
found that immunotherapy-related targets with
significant differences all showed low expression
in high-IRLRPI subtypes, including the commonly
used immune checkpoint blocker targets PDCD1,
CD274, and CTLA4, which may predict that the
immunotherapy sensitivity in the high-IRLRPI sub-
type may be lower (p < 0.05) (Figure 2 C). Our IPS
scoring of immune response in ovarian cancer pa-
tients further validated this conclusion using TCIA
(p < 0.05) (Figure 2 D). We leveraged the landmark
IMvigor210 immunotherapy cohort to validate the
IRLRPI’s predictive capacity for immunotherapy re-
sponse. The results revealed that the high-IRLRPI
subtype had lower CR/PR rates (p = 0.013) after
immunotherapy, with poor prognosis (p < 0.001)

Arch Med Sci


https://portal.gdc.cancer.gov/

Prognostic index of immune-related IncRNAs for immunotherapy responsiveness and chemotherapy sensitivity in ovarian cancer patients

A Total LncRNA B
(n=13427)
Immune related gene _ - 40
(n = 2035) i Correlation test
Immune related LncRNA
(IRLNCRNA) (n = 2069) _ 304
Different expression analysis v %
Different expressed IRLncRNA £ 207
(n=1134)
Standardize v Survival analysis 10 -
Prognosis related DEIRLncRNA
(n=15) o
Cox model v -6
Validate the model in > Risk model
GEO cohort (n = 278) (n=28)
C
P-value Hazard ratio 3
LEMD1-AS1 0.026 0.764 (0.603-0.968) HH
LINCO1127 0.047 1.165 (1.002-1.355) ;—I—{
USP30-AS1 0.002 0.636 (0.476-0.851) HIH 3
DLG3-AS1 0.040 0.704 (0.503-0.984) )—.—{3
DEPDC1-AS1 0.031 0.498 (0.264-0.936) i—.—li
UBXN10-AS1 0.008 0.709 (0.549-0.916) FI—{E
TLR8-AS1 0.026 0.769 (0.610-0.970) )—.—{i
TYMSOS < 0.001 0.570 (0.415-0.782) HH ‘
NDUFB2-AS1 0.046 0.618 (0.385-0.991) FIA:
ZFHX4-AS1 0.007 1.763 (1.170-2.657) i —a—
LINCO0452 0.035 2.081 (1.051-4.118) 3)—.7\
CACNA1G-AS1 < 0.001 2.998 (1.592-5.647) 3 } ]
LINCO1231 0.031 0.687 (0.488-0.966) FI—(E
LINC00702 0.041 1.737 (1.024-2.945) i)—.*\
LINCO0996 0.003 0.337 (0.166-0.685) HlH 3
o 1 2 3 4 5
D Hazard ratio
P-value Hazard ratio i
|
Age <0.01 1.023 (1.010-1.038) h
i
Stage 0.068 1.312 (0.980-1.755) é—.*\
i
Grade 0.372 1.202 (0.803-1.798) %.7\
i
RiskScore < 0.001 1.601 (1.435-1.786) ! .
0 0.‘5 1.‘0 115

Hazard ratio

Figure 1. Construction and predictive effect assessment of IRLRPI. A - Screening process of IncRNAs used for model
construction. B — Volcano map of IncRNAs differentially expressed in ovarian cancer and normal tissues. C — Forest
plot of IncRNA risk associated with prognosis of ovarian cancer patients. D — Univariate and multivariate Cox (E)
analysis for assessing the effect of IRLRPI
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(Figure 2 E). These results demonstrate the IRLR-
PI’s strong potential as a predictor of immunother-
apy response in patients.

Analysis of TMB and chemotherapy drug
sensitivity according to IRLRPI

The tumor mutation burden (TMB) and the
efficacy of immunotherapy were closely correlat-

A

ed [35, 36]. Thus, we compared TMB profiles
between IRLRPI subtypes (Figure 3 A), observing
no significant difference. Subsequent survival
analysis revealed improved prognosis in patients
with elevated TMB (Figure 3 B). Patients had the
best overall survival when they were also in the
low-IRLRPI group, and vice versa (Figure 3 C).
Therefore, it is suggested that TMB be added as
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Figure 2. Cont. D — Violin plot of differences in IPS
immunotherapy-related scores between high and
low IRLRPI. E — IRLRPI assessment, immunotherapy
efficacy, and patient prognosis in the uroepithe-
lial carcinoma cohort (IMvigor210) (ns, p > 0.05,
*p < 0.05, **p < 0.01, **p < 0.001)

types, identifying statistically significant differen-
tial responses between these subgroups. Among
them, the low-IRLRPI type was more sensitive to
paclitaxel, PARP1 inhibitor (ABT.888), mitomycin C,
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and methotrexate, while high-IRLRPI was more
sensitive to tyrosine kinase inhibitor (pazopanib)
(Figure 3 D). These drugs constitute standard-of-
care regimens for ovarian cancer; therefore, the
results could provide some advice and guidance
on chemotherapy for both types of patients.

Consensus clustering is classified according
to IRLRPI in OV patients

To better characterize the type of patients with
ovarian cancer, we performed consensus cluster-
ing of the two IRLRPI subgroups and obtained
3 clusters (Figure 4 A). Among them, cluster 1 (C1)
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Figure 3. Correlation analysis between IRLRPI and TMB and chemotherapeutic drug sensitivity. A — Significantly
mutated genes in ovarian cancer samples with mutations in different IRLRPI subgroups. Mutated genes (rows, top
10) are sorted by mutation rate; samples (columns) are arranged to emphasize reciprocity between mutations.
The percentage of mutations is shown on the right, and the total number of mutations is shown at the top. Color
coding indicates mutation type. B — Survival analysis of high and low tumor mutational load (TMB) in ovarian

cancer patients
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had greater representation of patients in the
high-IRLRPI subtype, cluster 2 (C2) had a higher
proportion of patients in the low IRLRPI subtype,
and cluster 3 (C3) was almost equally composed
of patients in both subtypes (Figure 4 B). The
survival analysis results were broadly consistent
with the IRLRPI results, with C1, which had more
high-IRLRPI subtypes, having the worst prognosis,
and C2, which had the fewest high-IRLRPI sub-
types, having a relatively good prognosis (Figure
4 (). Subsequently, we analyzed immune check-
point gene expression across three clusters, iden-
tifying significantly differential PD-L1 (CD274)
expression (Figure 4 D). We profiled immune cell
infiltration across three clusters, revealing signif-
icant differences in select immune cell subsets:
B cells, myeloid dendritic cells, and specific T cell
subpopulations (Figure 4 E). Finally, we assessed
chemotherapy sensitivity profiles across the three
clusters, and we found that: C3 patients were the
least sensitive to MEK inhibitor (AZD6244) but

A Consensus matrix k = 3

Figure 4. Consensus clustering refinement of IRL-
RPI patients into three different clusters. A — Con-
sensus clustering analysis heat map to reclassify
patients into three clusters. B — t-distributed sto-
chastic neighbor embedding (t-SNE) visualization
of IRLRPI and cluster scatter plot

most sensitive to cisplatin and vincristine; and
C2 patients were the most insensitive to tyrosine
kinase inhibitor (pazopanib) (Figure 4 F). Through
this unsupervised clustering method, patients
could be divided into their IRLRPI subtypes, and
the accuracy of the IRLRPI model was improved.

Screening for signature genes VSTM2L and
KIF26B for IRLRPI typing using machine
learning

To better understand the related functions
of differentially expressed genes (DEGs) and
screen out novel biomarkers suitable to assist in
screening the IRLRPI subtypes, we obtained DEGs
between IRLRPI subgroups (Figure 5 A). We per-
formed a functional enrichment analysis of these
genes. Among them, genes in the high-IRLRPI sub-
type were enriched in tumor proliferation (MAPK
signaling pathway) and migration (ECM receptor
interaction, focal adhesion) related pathways (Fig-
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ure 5 B). Conversely, low-risk patients exhibited
significant enrichment in immune pathways: an-
tigen processing/presentation, chemokine signal-
ing, and primary immunodeficiency (Figure 5 C).
Comprehensive GO analysis of all combined dif-
ferential genes revealed significant enrichment
in immune system processes and cell migration
pathways (Figure 5 D). Next, to find the biomark-
ers associated with our IRLRPI model of DEGs,
we first screened a total of 22 IRLRPI signature
genes using lasso regression (Figure 5 E) and 34
IRLRPI signature genes using SVM-REF analysis
(Figure 5 F). After taking the intersection of the
signature genes obtained from the two machine
learning approaches, 21 genes were identified as
significantly associated with IRLRPI-based molec-
ular subtyping (Supplementary Figure S4 A). We
finally selected two genes, VSTM2L and KIF26B, as
biomarkers of IRLRPI based on the expression of
these genes and their impact on patient survival
prognosis. Both genes exhibited marked upregu-
lation in OV (Figures 5 G, H; Supplementary Fig-
ure S4 B, Q). Also, high expression of both genes
corresponded to a worse prognosis of patients
(Figure 5 I; Supplementary Figure S4 D). Notably,
VSTM2L expression positively correlated with clin-
ical stage, exhibiting progressive upregulation in
advanced ovarian cancer (Figure 5 J).

Finally, a total of 15 ovarian cancer tissue sam-
ples and 15 unpaired adjacent normal tissue sam-
ples were acquired from Shanghai Tenth People’s
Hospital. It was found that two marker genes
exhibited significant upregulation in the ovari-
an cancer group (Figure 6 A). We also observed
a positive correlation between IRLRPI scores and
expression of two signature genes in TCGA ovari-
an cancer patients (Figure 6 B), as well as with the
expression levels of the IncRNAs constituting the
scoring system (Supplementary Figure S5 A, B).
This further demonstrates the reliability of these
two genes as auxiliary biomarkers for [RLRPI

grouping.

Discussion

OV has the highest mortality rate among gyne-
cologic tumors because of difficulties in diagnosis
and chemotherapy resistance. Meanwhile, immu-
notherapy, which has achieved good results in
other gynecologic tumors [37, 38], has been less
effective in OV. Thus, there is an urgent demand
to develop relevant markers for the early triage of
patients. In the present work, we constructed an
immune-related IncRNA prognostic index (IRLRPI)
comprising eight IncRNAs from the TCGA ovarian
cancer cohort, and then evaluated the predictive
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efficiency of the IRLRPI in all aspects. Finally, we ovarian cancer (EOC). However, they were used
screened for biomarkers among DEGs associated as an independent predictive signature with
with the typing of IRLRPI. This study comprehen- significant prognostic value in ovarian carcino-
sively illustrated that our constructed IRLRPI mod- ma [22, 23, 39, 40]. Thus, these existing models
el not only could predict the immunotherapeutic  have some limitations in clinical application. Sig-
response, but also had greater clinical value than nificantly, IncRNAs comprising our model partic-
other established models. ipate in ovarian carcinogenesis and progression.

Previous studies predominantly examined sur- Reduced LEMD-AS1 expression correlates with

vival-associated immune IncRNAs in epithelial poorer outcomes and diminished immune infil-
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Figure 5. Signature genes between the two IRLRPI subtypes were screened based on machine learning. A — Heat
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Figure 5. Cont. D — Gene Ontology enrichment analysis of total differential genes. The chord diagram illustrates
the most significantly differentially expressed genes (left) between the two IRLRPI groups and their corresponding
enriched pathways (right). E — Absolute shrinkage and selection operator regression screening for genes associated
with IRLRPI grouping. F — Support vector machine—recursive feature elimination analyzing genes associated with
IRLRPI grouping. G — Box plot of the difference in VSTM2L expression between normal and tumor tissues (log2 fold
change > 1; p < 0.05). H — Pathological section of VSRM2L with TCGA ovarian cancer and GTEx normal ovaries in
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Figure 5. Cont. | — K-M curves of survival differences between high and low VSTM2L expression in ovarian cancer
patients. J — Violin plot of the correlation between VSRM2L and patients’ tumor stage

tration in patients [41]. LINCO1127 was shown to
regulate the cell cycle and promote the develop-
ment of ovarian tumors [42]. TLR8-AS1 enhanced
metastasis ability and chemoresistance in ovar-
ian cancer [43]. LINCO0452 drives ovarian onco-
genesis via miR-501-3p sequestration and ROCK1
stabilization through impaired ubiquitin-mediat-
ed degradation [44]. LINCOO702 promotes ovari-
an tumor progression by recruiting EZH2 to tran-
scriptionally repress KLF2 [45]. However, TMYSOS,
ACNA1G-AS1, and LINC00996 were not found to
be involved in ovarian cancer-related biological
functions. These studies involving the function of
IncRNAs used in this model could partially explain
why our model could predict patients’ prognosis
and treatment response. In subsequent results,
we assessed the differences in the tumor micro-
environment among different IRLRPI subtypes,
which included tumor-infiltrating immune cells
and stromal cells. Among tumor-infiltrating im-
mune cells, the high-IRLRPI group exhibited low-
er T cell and macrophage infiltration, whereas
Treg cell infiltration was elevated. Accumulating
evidence has established robust correlations be-
tween diminished T-lymphocyte and macrophage
infiltration [46], concomitant elevation in regula-
tory T-cell abundance [47], and inferior clinical re-
sponses to immunotherapeutic interventions [48,
49]. On the other hand, cancer-associated fibro-
blasts (CAFs) demonstrated the most pronounced
stromal variation, exhibiting elevated abundance
in high-IRLRPI subtypes. CAFs have been shown
to enhance chemoresistance and promote cancer
progression in ovarian cancer [50, 51]. Therefore,
differences in immune infiltration may contribute
to poor prognosis and insensitivity to chemother-
apeutic agents in patients with the high-IRLRPI
subtype.

Furthermore, we identified significant associa-
tions of IRLRPI with key immune processes and im-
mune checkpoint gene expression profiles. The re-
sults suggested that antigen-presenting processes
and type | interferon responses are significantly
inhibited, but type Il interferon responses are acti-
vated in the tumor microenvironment in high-risk
patients. This paradox might be explained by their
different roles in the immune process. Commonly,
the type | interferon response has been shown to
kill tumors [52, 53] and influence the efficacy of
therapy [54]. As for type Il interferon, recent re-
search showed that it could suppress antitumor
immune responses [55]. It might explain why
the type Il interferon responses are activated in
high-risk subtypes. On the other hand, expression
levels of immune checkpoint genes such as PD-1,
CD274, and CTLA4 are generally significantly re-
duced in patients in the high-IRLRPI group [56]. All
these results could explain the differences in im-
munotherapy response between IRLRPI subtypes.

To date, clinical evidence demonstrates lim-
ited efficacy of immunotherapy for OV whether
alone or combined with chemotherapeutic agents
[57-59]. For instance, the KEYNOTE-100 trial used
immune checkpoint inhibitors in 376 patients and
observed a very low overall remission rate (8.5%).
Therefore, we hypothesize that IRLRPI is expect-
ed to have great potential in the prediction of
immunotherapy effects. To verify the predictive
performance of IRLRPI regarding immunotherapy
response, we used IPS to predict patients’ immu-
notherapy responses. The IPS scoring system ex-
hibits strong predictive performance for anti-PD-1
and anti-CTLA-4 efficacy [24], with higher scores
correlating to improved immunotherapy response.
Reduced IPS scores in high-IRLRPI patients cor-
relate with attenuated immunotherapy response.
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with patient IRLRPI scores (B)

We also used IMvigor210, a classic immunother-
apy cohort for urothelial carcinoma, to externally
verify the IRLRPI’s prognostic utility for immuno-
therapy response [60-62]. High-IRLRPI patients
demonstrated inferior immunotherapy responses
and clinical outcomes. Collectively, these findings
position the IRLRPI score as a novel biomarker
capable of predicting immunotherapy response,
thereby holding significant potential to guide and
optimize therapeutic selection for patients with
ovarian cancer.

Tumor mutation burden (TMB) closely correlates
with tumor neoantigen load and critically medi-
ates immune clearance of tumor cells through
neoantigen recognition. Thus, TMB is considered
associated with immunotherapeutic efficacy [35].
Our IRLRPI typing result was not significantly re-
lated to patients’ TMB, probably because the es-
tablishment of our model may focus more on the
immune infiltration and response rather than the
amount of neoantigen in patients [63]. TMB is
also an important adjunct to our model, and we
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found that high-risk IRLRPI scores tend to be ac-
companied by lower TMB, which suggests that pa-
tients probably have worse treatment outcomes.
In terms of chemotherapy response, we assessed
patients’ sensitivity to targeted chemotherapeu-
tic agents using the metric IC, . Paclitaxel, used in
first-line chemotherapy for ovarian cancer, was in-
sensitive in patients with the high-IRLRPI subtype.
In contrast, high-IRLRPI patients demonstrated
pazopanib sensitivity, correlating with established
progression-free survival (PFS) benefits in ovarian
cancer [64]. Thus, pazopanib is recommended for
early treatment in those high-risk subtype pa-
tients [65]. Interestingly, the analysis revealed that
low-risk patients demonstrated enhanced velipa-
rib sensitivity specifically among PARP inhibitors.
Therefore, veliparib is recommended for low-risk
patients. These results suggest that our model
could predict patients’ sensitivity to some chemo-
therapeutic agents and the triage of patients for
better treatment outcomes.

Finally, we used machine learning to screen for
the IRLRPI typing-specific biomarkers VSTM2L and
KIF26B, reported in previous studies. VSTM2L was
associated with tumor immunity in a pan-cancer
study and was correlated with poor patient prog-
nosis in ovarian cancer [66, 67]. KIF26B was an im-
mune marker for tumors and could predict patient
prognosis in various cancers [68]. This gene was
also shown to promote proliferation and migratory
activity in an OV cell line [69]. VSTM2L and KIF26B
exhibited increased expression in the high-IRLRPI
cohort, suggesting biomarker utility and partially
accounting for worse prognosis in these patients.

Our findings demonstrate that the IRLRPI score
has dual utility in predicting immunotherapy re-
sponse and informing drug selection. Neverthe-
less, certain limitations of this study must be
considered. First, the scoring model has not been
clinically validated, and there is no prospective
cohort study to further illustrate its actual value
in immunotherapy prediction. Second, the metrics
used to observe the effects of various treatments
in patients are indirect indicators with no actual
clinical medication outcomes as validation. These
issues will be addressed and further validated be-
fore clinical implementation of this model.

In conclusion, by using immune-related IncRNA,
we constructed the IRLRPI and demonstrated,
through multiple analyses, that typing could assist
in predicting immunotherapy responsiveness and
chemotherapy drug sensitivity in patients. This
may help guide triage of patients and optimize
treatment decisions in advance.
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