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sensitivity in ovarian cancer patients
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A b s t r a c t

Introduction: Ovarian cancer (OV), ranking among the most lethal gyne-
cologic malignancies, is characterized by elevated mortality rates primarily 
attributable to immature diagnostic tools and the insensitivity of chemo-
therapy. Despite the impressive success of immune checkpoint inhibitor (ICI) 
therapy in the treatment of several solid tumors, OV patients only partially 
benefit from immune checkpoint blockade. Therefore, a biomarker is neces-
sary to predict the responsiveness of OV patients to immunotherapy. This 
study sought to identify an immune-associated lncRNA-based prognostic 
signature to predict immunotherapy efficacy and chemosensitivity in OV 
patients. 
Material and methods: We used ovarian cancer transcriptional profiles of 
patients from TCGA and GTEx databases with immune-related signature 
genes to screen immune-related lncRNAs. Furthermore, we integrated the 
GEO database to evaluate an immune-related lncRNA prognostic score (IRL-
RPI), and then verified the model in all aspects to distinguish biomarkers of 
IRLRPI subtypes. 
Results: Our findings demonstrated that patients with elevated IRLRPI 
scores had a poorer prognosis and tended to be more immunosuppressed; 
in terms of treatment, these patients may exhibit resistance to immuno-
therapy and be less sensitive to several chemotherapeutic agents. Finally, 
the biomarkers KIF26B and VSTM2L were found to distinguish IRLRPI type. 
Conclusions: The IRLRPI model we developed can predict immunotherapy 
responsiveness and chemotherapy sensitivity in ovarian cancer patients and 
demonstrates potential for clinical application.
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Introduction

Ovarian cancer is a highly lethal malignancy, with most patients di-
agnosed at an advanced stage, leading to a 5-year survival rate below 
45% [1, 2]. Despite initial treatment with surgery and chemotherapy, 
the majority of patients develop chemoresistance and face recurrence 
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within a few years, highlighting a critical need for 
improved therapeutic strategies.

Despite the efficacy of immune checkpoint 
inhibitors (ICIs) in multiple solid tumors, their 
response rates in ovarian cancer remain dismal 
[3–5]. It is largely due to the high heterogeneity 
of ovarian cancer, which manifests in diverse tu-
mor immune infiltration, metastatic potential, and 
treatment response. This underscores the imper-
ative for predictive biomarkers. Immune-related 
gene prognostic scores (IRGPI) have emerged as 
a powerful tool for this purpose. In cancers such as 
head and neck squamous cell carcinoma (HNSCC), 
hepatocellular carcinoma, and esophageal carci-
noma, low IRGPI scores are associated with favor-
able immune contexts (e.g., high CD8+ T cell in-
filtration) and predict superior ICI response [6–8].  
Constructing such models via Cox regression rep-
resents a clinically convenient and highly predic-
tive approach.

In recent years, the role of long non-coding 
RNAs (lncRNAs) in cancer has been increasing-
ly elucidated. Accumulating evidence indicates 
that dysregulated lncRNA expression is closely 
implicated in tumor initiation and progression 
[9–11], establishing them as promising diagnostic 
biomarkers [12]. Furthermore, their potential as 
therapeutic targets underscores significant clini-
cal value [13, 14]. Additionally, numerous studies 
have revealed that lncRNAs are pivotal regulators 
of the tumor immune microenvironment [15–17]. 
Emerging evidence indicates that immune-associ-
ated lncRNAs modulate tumor microenvironment 
composition and PD-1 blockade efficacy across 
multiple malignancies [18]. Therefore, multiple 
investigations employ immune-associated ln-
cRNAs (IRlncRNAs) to develop prognostic signa-
tures that predict immunotherapy efficacy across 
diverse cancers [19–21]. Previously, IRGPI and  
IRlncRNA-related models have been built for pre-
dicting the drug sensitivity, immune cell infiltra-
tion, and prognosis of clinical patients with OV [22, 
23]. However, no existing models have been used 
for patients’ immunotherapeutic response to OV. 

By integrating TCGA and GTEX data, we es-
tablished an IRlncRNA-based prognostic score 
(IRLRPI) for ovarian cancer. This model, trained in 
TCGA and validated in GEO, effectively stratified 
patients into high- and low-risk subgroups with 
distinct clinical outcomes, tumor immune micro-
environments, and therapeutic responses. Two 
biomarkers, KIF26B and VSTM2L, were identified 
to aid in IRLRPI subtyping and prognosis assess-
ment. The results showed that the IRLRPI score 
developed in this study provides a predictive indi-
cator for immunotherapy and is also instrumental 
in identifying susceptible drugs for ovarian cancer 
patients.

Material and methods

Patients and data sources

In this study, 376 ovarian cancer samples 
from TCGA (https://portal.gdc.cancer.gov/) were 
selected to obtain gene expression data, clinical 
information, and single nucleotide mutation data. 
Transcriptome data of 88 normal ovarian tissue 
samples were downloaded from Genotype Tissue 
Expression (GTEx) (www.gtexportal.org/). Clin-
ical and transcriptome data for GSE9891 were 
sourced from GEO (https://www.ncbi.nlm.nih.gov/
geo/). Ensembl GTF annotations (http://asia.en-
sembl.org) enabled mRNA-lncRNA classification. 
Immune-related genes were curated from Im-
mPort (https://www.immport.org/) and InnateDB 
(https://www.innatedb.com/).

Construction of prognosis-related 
differentially expressed IRlncRNA sets

To analyze the correlation between im-
mune-related genes and lncRNAs, we identified 
immune-related lncRNAs (IRlncRNAs) using |Pear-
son R| > 0.4 and p < 0.001 thresholds. The limma 
package in R software (https://www.r-project.
org/) was used to analyze differences in the ex-
pression of IRlncRNA between tumor and normal 
tissue samples. Differentially expressed IRlncRNAs 
(DEIRlncRNAs) were identified using the criteria 
of log2FC (fold change) ≥ 2 and a false discovery 
rate (FDR) < 0.05. Next, the obtained DEIRlncRNA 
sets were normalized to the expression data from 
the GEO cohort. Finally, the overall survival was 
calculated using Kaplan-Meier survival analysis 
and log-rank tests. DEIRlncRNAs with significant 
effects on overall survival were screened to con-
struct the prognosis-related DEIRlncRNA set. 

Construction and verification of the IRLRPI

The IRLRPI was developed via multivariate Cox 
regression of prognosis-linked DEIRlncRNAs. For 
each sample, the index was computed as the sum 
of specific lncRNAs’ expression values multiplied 
by their Cox regression coefficients. The formula of 
IRLRPI was as follows: IRLRPI = (–0.4243 × LEMD1-
AS1 expression) + (0.1681 × LINC01127 expres-
sion) + (–0.2439 × TLR8-AS1 expression) + (–0.4590 
× TYMSOS expression) + (0.9881 × LINC00452 ex-
pression) + (0.9418 × CACNA1G-AS1 expression) 
+ (0.4219 × LINC00702 expression) + (–1.2146 × 
LINC00996 expression). The IRLRPI high/low-risk 
threshold corresponded to the cohort’s median 
score. Consequently, the cut-off value is 1.

Kaplan-Meier/log-rank analyses assessed the 
IRLRPI’s prognostic power in TCGA and GEO co-
horts. To validate its independent prognostic val-
ue, ROC curves and univariate/multivariate Cox 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://asia.ensembl.org/
http://asia.ensembl.org/
https://www.immport.org/
https://www.innatedb.com/
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regression were conducted using R packages (sur-
vival, survivalROC, survminer).

A  prognostic nomogram was subsequently 
constructed using the R packages survival, reg-
plot, and rms.

Analysis of tumor immune 
microenvironment

To characterize immune microenvironment 
variations across IRLRPI subtypes, we employed 
CIBERSORT to quantify the immune cell infiltration 
in the tumor microenvironment (TME) of patients. 
Then, we compared immune cell infiltration, im-
mune activity, and checkpoint molecule expression 
between risk groups using R packages. Immune 
cells were tested using the Pearson correlation 
test, where p < 0.05 is shown in box plots, and re-
sults for immune response and checkpoint expres-
sion are displayed in box plots using the Wilcoxon 
rank sum test.

Immunotherapy responsiveness prediction

We downloaded immunophenoscores (IPS) of 
TCGA ovarian cancer patients from the TCIA da-
tabase (https://tcia.at/) [24]. To anticipate immu-
notherapy response, IPS values were compared 
between IRLRPI subtypes using Wilcoxon rank-
sum testing. We then obtained acquired transcrip-
tomic data and clinical metadata for the phase II 
immunotherapy cohort (IMvigor210: http://re-
search-pub.gene.com/IMvigor210CoreBiologies/) 
[25] and preprocessed the data using the authors’ 
R package IMvigor210CoreBiologies. Patients in 
the cohort were scored for IRLRPI, and the predic-
tive effect of different IRLRPI subtypes on immu-
notherapy response was observed [26]. 

Analysis of tumor mutation burden in 
different IRGPI subgroups

We calculated tumor mutation burden (TMB, 
number of mutations per 1Mb) for ovarian cancer 
patients using TCGA-derived SNP data. We pro-
filed mutation landscapes across IRLRPI subtypes 
with the R package mafTools. We assessed TMB 
disparities between high- and low-risk groups via 
the c2 test [27].

Analysis of chemotherapy sensitivity in 
different IRGPI subgroups

We analyzed platinum, paclitaxel, PARP inhibi-
tors, and other drugs commonly used in the TCGA 
ovarian cancer cohort (n = 376). Wilcoxon testing 
was used to assess differences in half-maximal 
inhibitory concentration (IC

50) between risk-strati-
fied groups. The main R package used in this pro-
cess was pRRophetic [28].

Unsupervised clustering

Consensus clustering was conducted via Con-
sensus Cluster Plus with K-means [29], executing 
100 iterations at 80% TCGA sample resampling. 
The cumulative distribution function (CDF) curve of 
consensus scores identified three optimal clusters.

IRLRPI-related biomarker screening 

In the signal pathway analysis, the differen-
tially expressed genes (DEGs) between IRLRPI risk 
groups (|log2FC| ≥ 2, FDR < 0.05) underwent gene 
set enrichment analysis (GSEA) using KEGG path-
ways (p < 0.05, FDR < 0.25), followed by functional 
annotation via GO enrichment.

Subsequently, LASSO (least absolute shrink-
age and selection operator) [30] regression and 
SVM-REF (support vector machine–recursive fea-
ture elimination) [31] analysis were performed 
on all DEGs to screen for markers associated with  
IRLRPI typing. After the intersection of the genes 
obtained by the two machine learning methods, 
the differential gene expression in tumor versus 
normal tissues was analyzed via GEPIA (http://ge-
pia.cancer-pku.cn/) [32]. The effects of these genes 
on OS were evaluated using K-M Plotter (http://
kmplot.com) [33]. Finally, protein expression pro-
files in human tissues were evaluated by immuno-
histochemistry (IHC) using the Human Protein At-
las [34]. Following the above steps, the best quality 
biomarkers were finally selected from all genes 
obtained by machine learning.

Quantitative RT-PCR (QRT-PCR) 

We obtained 15 ovarian cancer and 15 unpaired 
adjacent tissue from Shanghai Tenth People’s 
Hospital. Following the manufacturer’s guidelines, 
total RNA was extracted from tissues with TRIzol 
reagent (Takara, Japan). Reverse transcription was 
performed using the PrimeScript RT Master Mix 
kit (TaKaRa, Japan) and random primers. Real-time 
qPCR was performed following the supplier’s in-
structions, with GAPDH acting as the endogenous 
control. The relative RNA expression was calculat-
ed using the 2–DDCT method. Sequences of primers 
used in this study were as follows: 

Forward (VSTM2L): 5′-CAGTGGTGGTATGTACG-
GAGC-3′; 

Reverse (VSTM2L): 5′-CCTGCTTGTCGGTCCAG- 
TC-3′;

Forward (KIF26B): 5′-GCTGGGAATAAAGAGAG-
GCTTG-3′; 

Reverse (KIF26B): 5′-ACTCCTCGTATGCTTTCCG-
GT-3′; 

Forward (GAPDH): 5′-GAAGGTGAAGGTCGGAG- 
TC-3′; 

Reverse (GAPDH): 5′-GAAGATGGTGATGGGATT- 
TC -3′.

https://tcia.at/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://kmplot.com
http://kmplot.com
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Statistical analysis

The independent prognostic value of the  
IRLRPI was evaluated using ROC curve analy-
sis and univariate and multivariate Cox regres-
sion analyses, which were performed with the R 
packages survival, survival ROC, and survminer. 
Moreover, multivariable Cox regression modeling 
assessed survival outcomes as detailed in the 
Methods section. 

A two-sided threshold of p < 0.05 was applied 
for significance.

Age was grouped as < 65 and ≥ 65 years. Stag-
ing was performed according to the FIGO stag-
ing system. Pathological diagnosis, tumor grade, 
and survival data were directly downloaded 
from TCGA (https://portal.gdc.cancer.gov/). The 
R package limma quantified differential immune 
features (cellular infiltration, functional respons-
es, checkpoint markers) across IRLRPI risk strata. 
Immune cells were tested using the Pearson cor-
relation test, where p < 0.05 is shown in box plots, 
and results for immune response and checkpoint 
expression are displayed in box plots, using the 
Wilcoxon rank sum test. The QRT-PCR results were 
compared using the unpaired t-test.

Results

Correlation between lncRNAs and 
prognosis in ovarian cancer

To determine whether lncRNAs regulate immune 
responses, 2935 immune genes and 2069 IRln-
cRNAs were selected from 13427 lncRNAs based on 
correlation analysis with the 2935 immune genes. 
We compared 376 ovarian cancer specimens and 
88 normal specimens to obtain 1134 differential-
ly expressed IRlncRNAs (Figure 1 A), of which 761 
and 373 genes exhibited upregulation and down-
regulation, respectively, in OV (Figure 1 B). Through 
standardization and survival analysis, we selected 
15 prognostic DEIRlncRNAs (Figure 1 C). Finally, for 
Cox regression analysis, the TCGA and GEO cohorts 
served as retrospective training and validation 
sets, respectively. As a  result, eight lncRNAs were 
identified: LEMD1-AS1, LINC01127, TLR8-AS1, 
TYMSOS, LINC00452, ACNA1G-AS1, LINC00702, 
and LINC00996. These were used to construct an 
immuno-related lncRNA prognostic index (IRLRPI). 
Subsequently, we conducted univariate and multi-
variate Cox proportional hazards regression to as-
sess the IRLRPI’s prognostic utility. We found that 
IRLRPI served as an independent prognostic factor 
for patients (Figures 1 D, E), and the predictive ef-
fect of IRLRPI was stable over time (Figures 1 F, G).  
The overall survival of the two IRLRPI subtypes 
also showed significant differences. Patients with 
high IRLRPI scores exhibited poorer overall sur-
vival, while those with low IRLRPI scores showed 

improved prognosis (Figures 1 H, I). Regarding 
clinical staging, a greater proportion of patients in 
the high-IRLRPI group were classified as advanced 
stage compared with those in the low-IRLRPI group 
(Supplementary Figure S1). Finally, to further im-
prove the diagnostic efficiency of IRLRPI, we added 
age, clinical stage, and case grading to construct 
a nomogram (Supplementary Figure S2 A), and the 
nomogram was used to repredict the prognosis 
of the patients (Supplementary Figure S2 B). The 
nomogram facilitates clinical translation of the 
prognostic model. Thus, we identified a significant 
association between IRLRPI and ovarian cancer 
prognosis via the nomogram.

Relationship between IRLRPI and immune 
infiltration to predict immunotherapy in 
ovarian cancer

Since immune-related lncRNAs underpin  
IRLRPI construction, we investigated associations 
between IRLRPI subtypes and immune cell infiltra-
tion as well as biological functions in ovarian can-
cer. Tumor samples were categorized into high- and 
low-risk subtypes according to IRLRPI expression 
levels. First, we analyzed the immune infiltrated 
cells in the tumor microenvironment (TME) be-
tween two IRLRPI subtypes. We found that most im-
mune cells were negatively correlated with scores, 
while tumor-associated fibroblasts and regulatory 
T cells (Treg) were positively correlated (Figure 2 A). 
Interestingly, differences in immune responses and 
immunophenotyping were observed between the 
two IRLRPI subtypes: the immune scores of inflam-
mations promoting HLA, MHC class I, and type I IFN 
response were significantly lower in the high-IRLRPI 
group, while type II IFN response was significant-
ly activated (Figure 2 B); in immunophenotyping, 
patients with high IRLRPI scores predominantly ex-
hibited a wound healing phenotype, whereas those 
with low IRLRPI scores were mostly IFN-γ-dominant 
(Supplementary Figure S3).

Subsequently, we profiled immune checkpoint 
gene expression across IRLRPI subtypes. We 
found that immunotherapy-related targets with 
significant differences all showed low expression 
in high-IRLRPI subtypes, including the commonly 
used immune checkpoint blocker targets PDCD1, 
CD274, and CTLA4, which may predict that the 
immunotherapy sensitivity in the high-IRLRPI sub-
type may be lower (p < 0.05) (Figure 2 C). Our IPS 
scoring of immune response in ovarian cancer pa-
tients further validated this conclusion using TCIA 
(p < 0.05) (Figure 2 D). We leveraged the landmark 
IMvigor210 immunotherapy cohort to validate the 
IRLRPI’s predictive capacity for immunotherapy re-
sponse. The results revealed that the high-IRLRPI 
subtype had lower CR/PR rates (p = 0.013) after 
immunotherapy, with poor prognosis (p < 0.001) 

https://portal.gdc.cancer.gov/
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Figure 1. Construction and predictive effect assessment of IRLRPI. A – Screening process of lncRNAs used for model 
construction. B – Volcano map of lncRNAs differentially expressed in ovarian cancer and normal tissues. C – Forest 
plot of lncRNA risk associated with prognosis of ovarian cancer patients. D – Univariate and multivariate Cox (E) 
analysis for assessing the effect of IRLRPI

A

C

D

BTotal LncRNA  
(n = 13427) 

Immune related gene 
(n = 2035) 

Validate the model in 
GEO cohort (n = 278)

Risk model  
(n = 8) 

Immune related LncRNA 
(IRLncRNA) (n = 2069)

Different expressed IRLncRNA 
(n = 1134) 

Prognosis related DEIRLncRNA 
(n = 15)

Correlation test

Different expression analysis

Standardize� Survival analysis

Cox model

40

30

20

10

0

–l
og

10
(f

dr
)

	 –6	 –4	 –2	 0	 2	 4	 6

log2FC

	 P-value 	 Hazard ratio
LEMD1-AS1 	 0.026	 0.764 (0.603–0.968)�

LINC01127	 0.047	 1.165 (1.002–1.355) �

USP30-AS1 	 0.002 	 0.636 (0.476–0.851) �

DLG3-AS1 	 0.040 	 0.704 (0.503–0.984) �

DEPDC1-AS1 	 0.031 	 0.498 (0.264-0.936) �

UBXN10-AS1 	 0.008 	 0.709 (0.549–0.916) �

TLR8-AS1 	 0.026 	 0.769 (0.610–0.970) �

TYMSOS 	 < 0.001 	 0.570 (0.415-0.782) �

NDUFB2-AS1 	 0.046 	 0.618 (0.385–0.991) �

ZFHX4-AS1 	 0.007 	 1.763 (1.170–2.657) �

LINC00452 	 0.035	 2.081 (1.051–4.118)�

CACNA1G-AS1 	 < 0.001 	 2.998 (1.592–5.647) �

LINC01231 	 0.031 	 0.687 (0.488-0.966) �

LINC00702 	 0.041 	 1.737 (1.024-2.945)�

LINC00996 	 0.003 	 0.337 (0.166-0.685) �

	 P-value 	 Hazard ratio

Age 	 < 0.01 	 1.023 (1.010–1.038) �

Stage 	 0.068 	 1.312 (0.980–1.755)�

Grade 	 0.372 	 1.202 (0.803–1.798) �

RiskScore 	 < 0.001 	 1.601 (1.435–1.786) �

	 0	 1	 2	 3	 4	 5

Hazard ratio

	 0	 0.5	 1.0	 1.5

Hazard ratio 



Xinxin Xu, Chen Zhang, Lingfei Han

6� Arch Med Sci

Figure 1. Cont. D – Univariate and multivariate Cox (E) analysis for assessing the effect of IRLRPI. F – ROC analysis 
of age, stage, grade, and IRLRPI. G – ROC analysis of 1-year, 3-year, and 5-year IRLRPI. H – Survival analysis of high 
and low IRLRPI in TCGA cohort, IRLRPI thresholds and scatter plots of IRLRPI versus patient survival. I – Survival 
analysis of high and low IRLRPI in GSE9891, IRLRPI thresholds, and scatter plots of IRLRPI versus patient survival
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(Figure 2 E). These results demonstrate the IRLR-
PI’s strong potential as a predictor of immunother-
apy response in patients.

Analysis of TMB and chemotherapy drug 
sensitivity according to IRLRPI 

The tumor mutation burden (TMB) and the 
efficacy of immunotherapy were closely correlat-

ed [35, 36]. Thus, we compared TMB profiles 
between IRLRPI subtypes (Figure 3 A), observing 
no significant difference. Subsequent survival 
analysis revealed improved prognosis in patients 
with elevated TMB (Figure 3 B). Patients had the 
best overall survival when they were also in the 
low-IRLRPI group, and vice versa (Figure 3 C). 
Therefore, it is suggested that TMB be added as 
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a  relevant index in practical clinical applications 
to provide a more accurate prediction of patient 
prognosis. We systematically evaluated chemo-
therapy drug sensitivity profiles across IRLRPI sub-

types, identifying statistically significant differen-
tial responses between these subgroups. Among 
them, the low-IRLRPI type was more sensitive to 
paclitaxel, PARP1 inhibitor (ABT.888), mitomycin C,  

Figure 2. Cont. D – Violin plot of differences in IPS 
immunotherapy-related scores between high and 
low IRLRPI. E – IRLRPI assessment, immunotherapy 
efficacy, and patient prognosis in the uroepithe-
lial carcinoma cohort (IMvigor210) (ns, p  >  0.05, 
*p < 0.05, **p < 0.01, ***p < 0.001)
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A

Figure 3. Correlation analysis between IRLRPI and TMB and chemotherapeutic drug sensitivity. A – Significantly 
mutated genes in ovarian cancer samples with mutations in different IRLRPI subgroups. Mutated genes (rows, top 
10) are sorted by mutation rate; samples (columns) are arranged to emphasize reciprocity between mutations. 
The percentage of mutations is shown on the right, and the total number of mutations is shown at the top. Color 
coding indicates mutation type. B – Survival analysis of high and low tumor mutational load (TMB) in ovarian 
cancer patients
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and methotrexate, while high-IRLRPI was more 
sensitive to tyrosine kinase inhibitor (pazopanib) 
(Figure 3 D). These drugs constitute standard-of-
care regimens for ovarian cancer; therefore, the 
results could provide some advice and guidance 
on chemotherapy for both types of patients.

Consensus clustering is classified according 
to IRLRPI in OV patients

To better characterize the type of patients with 
ovarian cancer, we performed consensus cluster-
ing of the two IRLRPI subgroups and obtained  
3 clusters (Figure 4 A). Among them, cluster 1 (C1)  
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Figure 3. Cont. B – Survival analysis of high and 
low tumor mutational load (TMB) in ovarian can-
cer patients. C – Survival curves of combined TMB 
and IRLRPI subgroups in ovarian cancer patients. 
D – Box plot of comparison between chemotherapy 
drug sensitivity and IRLRPI subtypes. IC50: half max-
imal inhibitory concentration. Lower IC50 indicates 
higher sensitivity of the tumor to the drug
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had greater representation of patients in the 
high-IRLRPI subtype, cluster 2 (C2) had a  higher 
proportion of patients in the low IRLRPI subtype, 
and cluster 3 (C3) was almost equally composed 
of patients in both subtypes (Figure 4 B). The 
survival analysis results were broadly consistent 
with the IRLRPI results, with C1, which had more 
high-IRLRPI subtypes, having the worst prognosis, 
and C2, which had the fewest high-IRLRPI sub-
types, having a  relatively good prognosis (Figure 
4 C). Subsequently, we analyzed immune check-
point gene expression across three clusters, iden-
tifying significantly differential PD-L1 (CD274) 
expression (Figure 4 D). We profiled immune cell 
infiltration across three clusters, revealing signif-
icant differences in select immune cell subsets: 
B cells, myeloid dendritic cells, and specific T cell 
subpopulations (Figure 4 E). Finally, we assessed 
chemotherapy sensitivity profiles across the three 
clusters, and we found that: C3 patients were the 
least sensitive to MEK inhibitor (AZD6244) but 

most sensitive to cisplatin and vincristine; and 
C2 patients were the most insensitive to tyrosine 
kinase inhibitor (pazopanib) (Figure 4 F). Through 
this unsupervised clustering method, patients 
could be divided into their IRLRPI subtypes, and 
the accuracy of the IRLRPI model was improved.

Screening for signature genes VSTM2L and 
KIF26B for IRLRPI typing using machine 
learning 

To better understand the related functions 
of differentially expressed genes (DEGs) and 
screen out novel biomarkers suitable to assist in 
screening the IRLRPI subtypes, we obtained DEGs 
between IRLRPI subgroups (Figure 5 A). We per-
formed a functional enrichment analysis of these 
genes. Among them, genes in the high-IRLRPI sub-
type were enriched in tumor proliferation (MAPK 
signaling pathway) and migration (ECM receptor 
interaction, focal adhesion) related pathways (Fig-

A

Figure 4. Consensus clustering refinement of IRL-
RPI patients into three different clusters. A – Con-
sensus clustering analysis heat map to reclassify 
patients into three clusters. B – t-distributed sto-
chastic neighbor embedding (t-SNE) visualization 
of IRLRPI and cluster scatter plot
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Figure 4. Cont. C – Survival curve plot for the three clusters. D – Box plot of the difference of immune checkpoint 
expression between the three clusters (*p < 0.05, **p < 0.01, ***p < 0.001). E – Heat map of cells with significant 
infiltration differences between the three clusters (p < 0.05)
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Figure 4. Cont. F – Box plot of chemotherapeutic drug sensitivity between the different clusters
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ure 5 B).  Conversely, low-risk patients exhibited 
significant enrichment in immune pathways: an-
tigen processing/presentation, chemokine signal-
ing, and primary immunodeficiency (Figure 5 C).  
Comprehensive GO analysis of all combined dif-
ferential genes revealed significant enrichment 
in immune system processes and cell migration 
pathways (Figure 5 D). Next, to find the biomark-
ers associated with our IRLRPI model of DEGs, 
we first screened a  total of 22 IRLRPI signature 
genes using lasso regression (Figure 5 E) and 34 
IRLRPI signature genes using SVM-REF analysis 
(Figure 5 F). After taking the intersection of the 
signature genes obtained from the two machine 
learning approaches, 21 genes were identified as 
significantly associated with IRLRPI-based molec-
ular subtyping (Supplementary Figure S4 A). We 
finally selected two genes, VSTM2L and KIF26B, as 
biomarkers of IRLRPI based on the expression of 
these genes and their impact on patient survival 
prognosis. Both genes exhibited marked upregu-
lation in OV (Figures 5 G, H; Supplementary Fig-
ure S4 B, C). Also, high expression of both genes 
corresponded to a  worse prognosis of patients 
(Figure 5 I; Supplementary Figure S4 D). Notably, 
VSTM2L expression positively correlated with clin-
ical stage, exhibiting progressive upregulation in 
advanced ovarian cancer (Figure 5 J). 

Finally, a total of 15 ovarian cancer tissue sam-
ples and 15 unpaired adjacent normal tissue sam-
ples were acquired from Shanghai Tenth People’s 
Hospital. It was found that two marker genes 
exhibited significant upregulation in the ovari-
an cancer group (Figure 6 A). We also observed 
a positive correlation between IRLRPI scores and 
expression of two signature genes in TCGA ovari-
an cancer patients (Figure 6 B), as well as with the 
expression levels of the lncRNAs constituting the 
scoring system (Supplementary Figure S5 A, B).  
This further demonstrates the reliability of these 
two genes as auxiliary biomarkers for IRLRPI 
grouping.

Discussion

OV has the highest mortality rate among gyne-
cologic tumors because of difficulties in diagnosis 
and chemotherapy resistance. Meanwhile, immu-
notherapy, which has achieved good results in 
other gynecologic tumors [37, 38], has been less 
effective in OV. Thus, there is an urgent demand 
to develop relevant markers for the early triage of 
patients. In the present work, we constructed an 
immune-related lncRNA prognostic index (IRLRPI) 
comprising eight lncRNAs from the TCGA ovarian 
cancer cohort, and then evaluated the predictive 
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Figure 5. Signature genes between the two IRLRPI subtypes were screened based on machine learning. A – Heat 
map of differentially expressed genes between high- and low-IRLRPI groups. The heatmap is annotated with IRLRPI 
groupings (top bar) and gene expression levels (red for high, blue for low). Each vertical line (column) in the plot 
denotes a single patient. B – Gene set enrichment analysis plot for the high-IRLRPI group (p < 0.05, FDR < 0.25).  
C – Gene set enrichment analysis plot for the low-IRLRPI group (p < 0.05, FDR < 0.25)
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efficiency of the IRLRPI in all aspects. Finally, we 
screened for biomarkers among DEGs associated 
with the typing of IRLRPI. This study comprehen-
sively illustrated that our constructed IRLRPI mod-
el not only could predict the immunotherapeutic 
response, but also had greater clinical value than 
other established models.

Previous studies predominantly examined sur-
vival-associated immune lncRNAs in epithelial 

ovarian cancer (EOC). However, they were used 
as an independent predictive signature with 
significant prognostic value in ovarian carcino-
ma [22, 23, 39, 40]. Thus, these existing models 
have some limitations in clinical application. Sig-
nificantly, lncRNAs comprising our model partic-
ipate in ovarian carcinogenesis and progression. 
Reduced LEMD-AS1 expression correlates with 
poorer outcomes and diminished immune infil-
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Figure 5. Cont. D – Gene Ontology enrichment analysis of total differential genes. The chord diagram illustrates 
the most significantly differentially expressed genes (left) between the two IRLRPI groups and their corresponding 
enriched pathways (right). E – Absolute shrinkage and selection operator regression screening for genes associated 
with IRLRPI grouping. F – Support vector machine–recursive feature elimination analyzing genes associated with 
IRLRPI grouping. G – Box plot of the difference in VSTM2L expression between normal and tumor tissues (log2 fold 
change > 1; p < 0.05). H – Pathological section of VSRM2L with TCGA ovarian cancer and GTEx normal ovaries in 
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Figure 5. Cont. I – K-M curves of survival differences between high and low VSTM2L expression in ovarian cancer 
patients. J – Violin plot of the correlation between VSRM2L and patients’ tumor stage
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tration in patients [41]. LINC01127 was shown to 
regulate the cell cycle and promote the develop-
ment of ovarian tumors [42]. TLR8-AS1 enhanced 
metastasis ability and chemoresistance in ovar-
ian cancer [43]. LINC00452 drives ovarian onco-
genesis via miR-501-3p sequestration and ROCK1 
stabilization through impaired ubiquitin-mediat-
ed degradation [44]. LINC00702 promotes ovari-
an tumor progression by recruiting EZH2 to tran-
scriptionally repress KLF2 [45]. However, TMYSOS, 
ACNA1G-AS1, and LINC00996 were not found to 
be involved in ovarian cancer-related biological 
functions. These studies involving the function of 
lncRNAs used in this model could partially explain 
why our model could predict patients’ prognosis 
and treatment response. In subsequent results, 
we assessed the differences in the tumor micro-
environment among different IRLRPI subtypes, 
which included tumor-infiltrating immune cells 
and stromal cells. Among tumor-infiltrating im-
mune cells, the high-IRLRPI group exhibited low-
er T cell and macrophage infiltration, whereas 
Treg cell infiltration was elevated. Accumulating 
evidence has established robust correlations be-
tween diminished T-lymphocyte and macrophage 
infiltration [46], concomitant elevation in regula-
tory T-cell abundance [47], and inferior clinical re-
sponses to immunotherapeutic interventions [48, 
49]. On the other hand, cancer-associated fibro-
blasts (CAFs) demonstrated the most pronounced 
stromal variation, exhibiting elevated abundance 
in high-IRLRPI subtypes. CAFs have been shown 
to enhance chemoresistance and promote cancer 
progression in ovarian cancer [50, 51]. Therefore, 
differences in immune infiltration may contribute 
to poor prognosis and insensitivity to chemother-
apeutic agents in patients with the high-IRLRPI 
subtype.

Furthermore, we identified significant associa-
tions of IRLRPI with key immune processes and im-
mune checkpoint gene expression profiles. The re-
sults suggested that antigen-presenting processes 
and type I  interferon responses are significantly 
inhibited, but type II interferon responses are acti-
vated in the tumor microenvironment in high-risk 
patients. This paradox might be explained by their 
different roles in the immune process. Commonly, 
the type I interferon response has been shown to 
kill tumors [52, 53] and influence the efficacy of 
therapy [54]. As for type II interferon, recent re-
search showed that it could suppress antitumor 
immune responses [55]. It might explain why 
the type II interferon responses are activated in 
high-risk subtypes. On the other hand, expression 
levels of immune checkpoint genes such as PD-1, 
CD274, and CTLA4 are generally significantly re-
duced in patients in the high-IRLRPI group [56]. All 
these results could explain the differences in im-
munotherapy response between IRLRPI subtypes.

To date, clinical evidence demonstrates lim-
ited efficacy of immunotherapy for OV whether 
alone or combined with chemotherapeutic agents 
[57–59]. For instance, the KEYNOTE-100 trial used 
immune checkpoint inhibitors in 376 patients and 
observed a very low overall remission rate (8.5%). 
Therefore, we hypothesize that IRLRPI is expect-
ed to have great potential in the prediction of 
immunotherapy effects. To verify the predictive 
performance of IRLRPI regarding immunotherapy 
response, we used IPS to predict patients’ immu-
notherapy responses. The IPS scoring system ex-
hibits strong predictive performance for anti-PD-1 
and anti-CTLA-4 efficacy [24], with higher scores 
correlating to improved immunotherapy response. 
Reduced IPS scores in high-IRLRPI patients cor-
relate with attenuated immunotherapy response. 
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with patient IRLRPI scores (B)
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We also used IMvigor210, a classic immunother-
apy cohort for urothelial carcinoma, to externally 
verify the IRLRPI’s prognostic utility for immuno-
therapy response [60–62]. High-IRLRPI patients 
demonstrated inferior immunotherapy responses 
and clinical outcomes. Collectively, these findings 
position the IRLRPI score as a  novel biomarker 
capable of predicting immunotherapy response, 
thereby holding significant potential to guide and 
optimize therapeutic selection for patients with 
ovarian cancer.

Tumor mutation burden (TMB) closely correlates 
with tumor neoantigen load and critically medi-
ates immune clearance of tumor cells through 
neoantigen recognition. Thus, TMB is considered 
associated with immunotherapeutic efficacy [35]. 
Our IRLRPI typing result was not significantly re-
lated to patients’ TMB, probably because the es-
tablishment of our model may focus more on the 
immune infiltration and response rather than the 
amount of neoantigen in patients [63]. TMB is 
also an important adjunct to our model, and we 
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found that high-risk IRLRPI scores tend to be ac-
companied by lower TMB, which suggests that pa-
tients probably have worse treatment outcomes. 
In terms of chemotherapy response, we assessed 
patients’ sensitivity to targeted chemotherapeu-
tic agents using the metric IC

50. Paclitaxel, used in 
first-line chemotherapy for ovarian cancer, was in-
sensitive in patients with the high-IRLRPI subtype. 
In contrast, high-IRLRPI patients demonstrated 
pazopanib sensitivity, correlating with established 
progression-free survival (PFS) benefits in ovarian 
cancer [64]. Thus, pazopanib is recommended for 
early treatment in those high-risk subtype pa-
tients [65]. Interestingly, the analysis revealed that 
low-risk patients demonstrated enhanced velipa-
rib sensitivity specifically among PARP inhibitors. 
Therefore, veliparib is recommended for low-risk 
patients. These results suggest that our model 
could predict patients’ sensitivity to some chemo-
therapeutic agents and the triage of patients for 
better treatment outcomes.

Finally, we used machine learning to screen for 
the IRLRPI typing-specific biomarkers VSTM2L and 
KIF26B, reported in previous studies. VSTM2L was 
associated with tumor immunity in a pan-cancer 
study and was correlated with poor patient prog-
nosis in ovarian cancer [66, 67]. KIF26B was an im-
mune marker for tumors and could predict patient 
prognosis in various cancers [68]. This gene was 
also shown to promote proliferation and migratory 
activity in an OV cell line [69]. VSTM2L and KIF26B 
exhibited increased expression in the high-IRLRPI 
cohort, suggesting biomarker utility and partially 
accounting for worse prognosis in these patients.

Our findings demonstrate that the IRLRPI score 
has dual utility in predicting immunotherapy re-
sponse and informing drug selection. Neverthe-
less, certain limitations of this study must be 
considered. First, the scoring model has not been 
clinically validated, and there is no prospective 
cohort study to further illustrate its actual value 
in immunotherapy prediction. Second, the metrics 
used to observe the effects of various treatments 
in patients are indirect indicators with no actual 
clinical medication outcomes as validation. These 
issues will be addressed and further validated be-
fore clinical implementation of this model.

In conclusion, by using immune-related lncRNA, 
we constructed the IRLRPI and demonstrated, 
through multiple analyses, that typing could assist 
in predicting immunotherapy responsiveness and 
chemotherapy drug sensitivity in patients. This 
may help guide triage of patients and optimize 
treatment decisions in advance.
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