

Obstructive Sleep Apnea and selected comorbidities- literature review of cohort studies

Keywords

sleep- disordered breathing, intermittent hypoxia, AHI, multimorbidity, prevalence

Abstract

This abstract was sent without corrections marked in red—the abstract with these corrections has been attached as a file in the “Explanation letter” section.

Obstructive sleep apnea (OSA) is the most common type of sleep-related breathing disorder, characterized by repeated episodes of upper airway collapse and resulting hypoxia during sleep. Intermittent hypoxemia may exert a multisystemic impact and modulate the course of comorbidities. Pathophysiological mechanisms such as oxidative stress, inflammation, and endothelial dysfunction contribute to adverse health outcomes, including cardiovascular disease, cerebrovascular complications, metabolic disorders, cancer, neurodegenerative conditions, or behavioral abnormalities. Treatment of OSA may mitigate the progression of comorbidities and reduce the associated social and economic burden. This literature review aims to explore the relationships between OSA and selected co-morbid diseases, including COPD, stroke, diabetes, cancer and hypertension, utilizing the cohort studies in the literature.

Introduction

Obstructive sleep apnea (OSA) is the most common type of sleep-related breathing disorder, characterized by repeated episodes of upper airway collapse. The respiratory events, including such as hypopnea and apnea result in cause intermittent hypoxemia and, hypercapnia, thereby and contributing to sleep fragmentation.^{1, 2, 3, 4, 5, 6} Due to pressure fluctuations inside the thorax, the organs located there are particularly prone to dysfunction.² From a pathophysiological standpoint physiopathological perspective, the hallmark main features of OSA include oxidative stress, low-grade inflammation and endothelial dysfunction.^{5, 7} Clinically, patients often present with loud snoring, recurrent awakenings during sleep, morning headaches, excessive daytime sleepiness and cognitive impairment.^{3, 4, 8} Daytime sleepiness leads to reduced quality of life, increased risk of motor vehicle accidents, workplace accidents.^{1, 3, 4, 9} The gold standard in OSA diagnostics is polysomnography (PSG); however, due to the limited availability, cost, or patients preference, often pneumograms or home sleep studies are utilized.¹⁰ The severity of OSA is determined by the apnea-hypopnea index (AHI), which indicates the number of apneas and hypopneas per hour of sleep. OSA is defined as mild with an AHI of 5 to <15, moderate with values of 15 to <30, and AHI of 30 or more indicates severe disease. Treatment for OSA includes lifestyle modifications, positive airway pressure (PAP) therapy, oral appliances, and surgical interventions in selected patients. Surgical management options interventions include ablative and functional procedures targeting the upper airway or stimulation of the hypoglossal nerve surgeries in the upper airway or hypoglossal nerve stimulation.¹¹ The chronic effects of untreated OSA exert a multisystemic impact, affect virtually every organ, being particularly associated with cardiovascular disease (CVD), cerebrovascular complications sequelae, metabolic disorders, cancer, neurodegenerative conditions diseases or behavioral abnormalities.^{2, 3, 4, 5, 8}

Chronic Obstructive Pulmonary Disease (COPD)

Research on lung disease and OSA raises the topic of overlap syndrome (OS). This condition, first ~~It is a condition~~ described by David Fenley in 1985, refers to the coexistence of ~~where~~ chronic obstructive pulmonary disease (COPD) and OSA ~~within the same individual~~ ~~occur at the same time~~. ^{12, 13} Both diseases are ~~quite~~ common respiratory disorders ~~of the respiratory system~~, where in COPD ~~airflow limitation occurs we deal with limited airflow in~~ the lower respiratory tract, while in OSA, ~~obstruction arises~~ in the upper respiratory tract. ^{7,12,14} In COPD, the reduction in airflow is permanent, and is ~~primarily~~ caused by smoking or exposure to environmental ~~pollutantstion~~. ¹³ The disease ~~represents a is~~ progressive ~~and~~ inflammatory ~~disorder that manifests presenting~~ clinically with dyspnea, chronic cough, and sputum production ~~expectoration~~. ^{7,13} It is important to note that patients with COPD often have other chronic diseases, which ~~are is~~ associated with increased mortality. ^{12, 14} The EpiChron study showed that multimorbidity is more prevalent in patients with chronic obstructive airway diseases ~~compared to than in~~ the general population. ¹² The ~~co-existence~~~~occurrence~~ of COPD and OSA worsens patients prognosis, reduces the quality of life and increases the ~~mortality rate probability of death~~. ^{7, 15, 16} Furthermore, Overlap syndrome OS is associated with a higher incidence of cardiovascular and metabolic diseases, as well as ~~a~~~~n~~ greater frequency of ~~increased~~ COPD exacerbations, ~~increased more frequent~~ hospitalizations and ~~elevated higher~~ healthcare costs. ^{14, 17} Although ~~It is known that~~ both conditions ~~share~~ overlapping pathophysiological mechanisms, it remains unclear ~~may influence each other~~ ~~based on pathophysiology, but it is not entirely clear~~ whether COPD predisposes individuals to ~~the more frequent occurrence of~~ OSA ~~or and~~ vice versa. ⁷ However, it is increasingly believed that COPD may predispose to OSA. ¹³

The “Obstructive Lung Disease and Obstructive Sleep Apnea” study, with the cohort consisted mainly of men (military veteran population) reported ~~found an overlap syndrome OS~~ incidence of 5%. The co-existence~~occurrence~~ of OSA with asthma or COPD, was identified ~~found~~ in 8% of patients in the cohort. The term “alternative overlap syndrome” is used in the literature to define the coexistence of asthma and OSA. ¹⁵ ~~The prevalence of OSA increased with increasing severity of COPD.~~ The prevalence of OSA among COPD patients was similar in studies by Tianfeng Peng et al. and Jose M. Marin et al., who used polygraphy as a diagnostic tool for OSA, reporting rates of 29.1% and 32%, respectively. ^{17, 18} According to studies utilizing PSG, revealed even higher prevalence rates- 44.19% (Khaled Alkhayat et al.) and 50% (Osama Ibrahim Mohammad et al.) (Table I). ^{16, 19} The prevalence of OSA increased with increasing severity of COPD. It should be ~~highlighted noted~~ that the administration of inhaled corticosteroids may contribute to the development of OSA due to steroid- induced upper airway ~~the onset of upper respiratory tract~~ myopathy or extrapulmonary inflammation. ¹⁶

Studies have demonstrated ~~It is known from studies~~ that the incidence of ~~overlap syndrome OS~~ increases with age. ²⁰ Identification of patients with OSA remains ~~appears to be~~ a barrier to ~~making a~~ diagnosing ~~of overlap syndrome OS~~, primarily due to the overnight and expensive ~~PGS~~ PSG testing. ⁷ In 2023, Tianfeng Peng et al. ~~Tianfeng Peng et al. in a 2023~~ developed a nomogram that enables rapid OSA diagnosis ~~among~~ ~~in~~ COPD patients in outpatient settings, incorporating independent risk factors, like age, neck circumference (NC), ~~type 2 diabetes~~ type 2 diabetes mellitus (T2DM), the ~~modified~~ Medical Research Council's ~~modified~~ questionnaire (mMRC), the Sleep Apnea Clinical Score Questionnaire (SACS) and C-reactive protein (CRP). ¹⁷

Patients with overlap syndrome have higher body mass index (BMI) compared to those with COPD or OSA alone. ^{14, 17, 19} Bianca Stepan el al. indicated that ~~overlap syndrome OS~~ patients are older ~~patients are older~~, more obese, have ~~a~~ higher NC and waist-to-hip ratio

(WHR) compared to isolated OSA ones. Considering nocturnal oxygen saturation, worse indices ~~rates~~ are observed in ~~overlap syndrome OS~~ than in COPD or OSA alone.^{14, 19} ~~Alkhayat et al.~~ Khaled Alkhayat et al. observed ~~noted~~ that ~~overlap syndrome OS~~ patients exhibit higher mean PaCO₂ levels resulting from ~~due to~~ hypoventilation during sleep, ~~which may contributeing~~ to chronic hypercapnia in COPD. Polysomnographic parameters such as AHI, respiratory disturbance index (~~RDI~~) and oxygen desaturation index (~~ODI~~) were significantly higher in the ~~overlap syndrome OS~~ group than in the COPD group. Additionally, ~~in the overlap syndrome OS group showed higher scored on the Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Questionnaire (PSQI) scores were observed.~~¹⁹ The results forming the basis for ~~of the studies based on which~~ the nomogram for rapid ~~diagnosis of~~ OSA diagnosis in COPD ~~was constructed~~ indicate that, compared to COPD- only patients, those with ~~overlap syndrome OS~~ exhibit ~~versus COPD patients have~~ higher BMI, NC, and SACS scores, poorer ~~worse~~ sleep quality and a greater burden of comorbidities ~~more underlying diseases~~. In addition, they have fewer COPD exacerbations in the previous year, lower CRP, mMRC and have better airway obstruction.¹⁷

Kimberly L. Sterling et al. showed, that PAP therapy was associated with reduced hospitalizations, emergency room visits, and lower healthcare costs in patients with OS. The results of the study also indicated that PAP treatment reduced severe exacerbations in COPD, underscoring its therapeutic relevance for this patient group ~~which is an important component of treatment for this condition.~~²¹ In the 10-year survival analysis, a significant association was confirmed between lower mortality and initiation ~~of treatment~~ or better adherence to PAP therapy. In this study, the highest mortality was noted in the coexistence of asthma, COPD and OSA.¹⁵

Stroke

OSA is a risk factor for ischemic stroke.²² Among ~~In~~ patients who have experienced ~~undergone~~ a stroke, this breathing disorder is ~~relatively prevalent yet frequently~~ ~~underdiagnosed quite common but not sufficiently recognized.~~ ²³ OSA is known to be associated with recurrent ischemic stroke.^{23, 24} The risk of stroke increases ~~proportionally~~ with the severity of OSA.^{25, 26} In the study by Tuuli-Maria Haula et al., the prevalence of mild OSA in the ~~ischemic group of~~ patients ~~with ischemic stroke~~ was 20%, while ~~and~~ moderate to severe OSA was 39%.²⁷ Another study by the same author showed that the number of ~~cases of~~ moderate to severe OSA ~~cases~~ was higher in patients who survived a wake-up stroke (~~WUS~~) compared to those who did not.²² A study ~~of the~~ assessing OSA prevalence ~~of OSA~~ in patients with acute ischemic stroke in a Taiwanese population showed that the disease was mild in 21.4%, moderate in 25.2%, and severe in 44.7% of patients. Overall, 91.2% of study participants were diagnosed with OSA during the acute phase of ischemic stroke. Based on ~~these the~~ results, it was suggested that elderly people, especially those over 65 years of age, show a significantly higher probability of developing moderate to severe OSA compared to younger people after stroke. This observation may be explained by the increased collapsibility of the upper airway in older populations. ~~The pathophysiological explanation for this is increased airway collapsibility in older people.~~²⁵ Sex- based differences in clinical characteristics among stroke patients with comorbid OSA have also been documented. ~~Differences between gender and clinical characteristics for stroke and comorbid OSA have been documented.~~ In a retrospective study ~~conducted by Camron Edrissi et al.~~ of patients with OSA and acute ischemic stroke (~~AIS~~), conducted by Camron Edrissi et al., it was observed that women were more likely to have peripheral vascular disease (~~PVD~~), depression and to have higher ~~high- density lipoprotein HDL~~-cholesterol levels and BMI than men.²⁶

It has been shown that the presence of OSA in post-stroke patients is associated with a numerous adverse health outcomes ~~number of negative health consequences~~. The presence of moderate and severe OSA in stroke survivors can exacerbate ~~neurological their~~ disability through ~~due to~~ recurrent hypoxemia, fluctuations in blood pressure, increased cardiac arrhythmias and ~~cerebral brain~~ hypoperfusion. Such patients are at risk of prolonged rehabilitation associated with the ~~adverse negative~~ effects of sleep-disordered breathing (SDB) including sleep-wake rhythm disturbances as well as cognitive and mood impairment which collectively contributes to extended hospitalization ~~This contributes to prolonged hospitalization.~~ ^{22, 27} Therefore, timely OSA diagnosis in post- stroke patients is emphasized to facilitate effective treatment and improve recovery outcomes. ~~The need for OSA diagnosis in the group of post stroke patients is emphasized to enable effective treatment and prevent a worse course of convalescence.~~ ²⁷ The clinical phenotype of OSA in stroke patients is heterogeneous, warranting an individualized therapeutic approach ~~diverse and therefore an individual approach to these patients is suggested.~~ ²³ The American Heart Association/American Stroke Association provides a class 2a recommendations ~~that~~ stating: "In patients with an ischemic stroke or transient ischemic attack (TIA) and OSA, treatment with positive airway pressure (e.g. CPAP) can be beneficial for improved sleep apnea, BP, sleepiness, and other apnea-related outcomes." In addition, the guidelines ~~underscore the potential value of OSA diagnostic evaluation in patients with ischemic stroke or TIA include information on the possibility of using diagnostics for OSA in patients with ischemic stroke or TIA.~~ ²⁸

Diabetes

Sleep-disordered breathing (SDB) is associated with glucose intolerance (GIT) and insulin resistance (IR). ^{29, 30} Glucose metabolism disorders are known to be common in patients with OSA. ³¹ These chronic diseases, ~~which are~~ OSA and ~~type 2 diabetes mellitus~~ T2DM,

share common risk factors including age, male gender, high BMI and genetic predisposition.

^{30,31} Both conditions synergistically increase the likelihood of cardiovascular complications.³⁰

The development of complications is caused by long-term hyperglycemia, systemic inflammation and oxidative stress, which contribute to accelerated atherosclerosis and endothelial dysfunction.^{30,32-34} Key pathophysiological mechanisms linking OSA to related to glucose metabolism disorders in OSA are hypoxemia and sleep fragmentation³⁵, which result in increased levels of proinflammatory cytokines e.g. interleukin-6 (IL- 6) and tumor necrosis factor (TNF), activation of the sympathetic nervous system and alteration of the hypothalamic-pituitary axis. Sympathetic overactivity promotes increases hepatic glycogenolysis and gluconeogenesis. While leptin secretion There is decreased secretion or resistance to leptin, and inflammatory adipocytokines are released. The degree of nocturnal hypoxia has been shown to correlate be associated with the severity of glucose intolerance (GIT) GIT and insulin resistance IR. Changes in glucose homeostasis during intermittent hypoxia have been demonstrated documented in animal models and human studies.^{30,31,36,37}

T2DM, by promoting peripheral neuropathy and impaired neural control of ventilation and the upper respiratory tract, potentially contributes to the occurrence of OSA or to its aggravation.

³³ Conversely On the other hand, sleep structure disturbances disorders in OSA may predispose to insulin resistance IR (Figure 1). It has been shown that inhibition of slow-wave sleep leads to reduce insulin resistance IR.³¹

Obesity may occur in both OSA and diabetes.³² OSA risk factors such as neck fat accumulation and high CRP and IL-6 levels are associated with visceral obesity, which is strongly linked to known to affect insulin resistance IR.³¹ Although obesity is a common factor in both OSA and T2DM, insulin resistance IR or GIT may also can develop in non-obese OSA patients patients with OSA even in the absence of obesity.^{31,34} Metrics such as weight, BMI, hip circumference and waist circumference have been shown were observed to

increase with increasing AHI.³⁰ It has been suggested that ~~the waist-to-hip ratio~~ WHR may more accurately represent the impact of obesity on SDB than BMI ~~better than BMI represents the effect of obesity on breathing disorders during sleep.~~³⁷ Studies indicate ~~It has been reported~~ that overweight and obese women over 70 years with mild OSA and T2DM are at significantly increased ~~face a significant~~ risk of major adverse cardiovascular events.³³

A study by Marie Bruyneel et al. found that 66% of overweight and obese patients with moderate to severe OSA had diabetes or ~~glucose intolerance~~ GIT, with 28% being newly diagnosed. The authors ~~This study~~ concluded that ~~insulin resistance~~ IR is positively correlated ~~associated~~ with the severity of OSA, however, this relationship was not confirmed for overt diabetes or GIT. ~~Such a relationship has not been confirmed in relation to diabetes and glucose intolerance.~~ To determine ~~insulin resistance~~ IR, the homeostatic model assessment index was used, ~~with~~ higher values ~~of which were~~ observed ~~in patients~~ with more severe OSA.³¹ More frequent ~~insulin resistance~~ IR with AHI > 30 was confirmed in the PROOF study. It showed an association between triglyceride concentrations and fasting ~~glucose levels~~ glycemia, and OSA severity. Patients with severe OSA exhibited both higher IR and greater metabolic derangements than those without apnea ~~which were significantly higher in patients with severe OSA than in those without apnea, and a higher insulin resistance rate.~~ After 7 years of follow-up, a low incidence of T2DM was found in patients with severe, asymptomatic and untreated OSA. Studies have ~~further~~ shown that newly diagnosed asymptomatic OSA ~~constitutes is~~ a risk factor for ~~insulin resistance~~ IR, which ~~was~~ increased by 36% ~~in with~~ moderate OSA, ~~while severe OSA increased the risk of insulin resistance IR and~~ and by 2.2 – fold ~~times~~ in severe OSA after 7 years.³⁰

An analysis of the Determining Risk of Vascular Events by Apnea Monitoring study, which attempted to identify polysomnographic predictors associated with diabetes and prediabetes, did not reveal ~~find~~ a significant ~~correlation association~~ between these conditions

and AHI. However, it ~~was has been~~ suggested that hypoxia may better reflect the state of carbohydrate metabolism in patients with OSA than AHI.³⁷ Based on the SantOSA cohort study, hypoxemia was considered a ~~superior prognostic marker for mortality in OSA compared to AHI better marker than AHI considering mortality in patients with OSA.~~³⁸ In the Determining Risk of Vascular Events by Apnea Monitoring study, a 9% increase in the risk of diabetes was observed for each 10% increase in total sleep time ~~spent with at~~ oxygen saturation < 90%. The same risk was noted for every 10 ~~additional respiratory arousals events of increase in the number of respiratory awakenings~~ per hour. Conversely, ~~H~~igher mean nocturnal oxygen saturation resulted in a lower incidence of diabetes and prediabetes.³⁷ Polysomnographic phenotypes characterized by periodic limb movements, hypopnea and hypoxia have been linked to an elevated risk of T2DM relative to non-OSA individuals ~~Based on polysomnography, phenotypes with periodic limb movements during sleep as well as hypopnea and hypoxia were indicated, which show an increased risk of T2DM compared to people without OSA.~~³⁵

Ethnic variations in OSA phenotypes have also been described ~~Differences in OSA phenotypes have been investigated in relation to ethnicity.~~ For example, Chinese patients are more likely to experience snoring, while African and Hispanic patients are more likely to experience excessive daytime sleepiness. In a comparison of Caucasians and Africans with OSA, it was found that diabetes is more common in the African race. At the same time, African patients were characterized by a healthier lifestyle, lower BMI, fewer comorbidities and less dyslipidemia. Sleep studies showed ~~that they had~~ a higher AHI in rapid eye movement sleep and a lower periodic leg movements index compared to Caucasians. In the clinical picture of the African population, nighttime choking, which may be related to the features of facial anatomy and cognitive impairment were more common.²⁹

The quality of life of diabetic patients ~~with diabetes~~ is reduced mainly due to microvascular complications and ~~cardiovascular disease~~ CVD. Patients with diabetes who develop OSA constitute a high-risk group. A population-based cohort study showed that patients with T2DM who developed OSA had a ~~more than a~~ $\geq 50\%$ increase in the risk of combined cardiovascular disease (CVD), ischemic heart disease (IHD), heart failure (HF) and stroke/TIA and a 53% higher risk of developing atrial fibrillation (AF) compared to T2DM without OSA. ~~Additionally, In addition~~, the increased risks were ~~noted~~ $\pm 32\%$ for peripheral neuropathy (PN) (32%), ~~42% for~~ diabetes-related foot disease (DFD) (42%), and ~~18% for~~ chronic kidney disease (CKD) in stages 3 to 5 (18%). All- cause mortality ~~Mortality (from all causes)~~ was 24% higher among participants with both T2DM and OSA compared to those with diabetes alone ~~in the group of participants with T2DM and OSA showed a 24% increase relative to participants with T2DM without OSA.~~ ³⁴ A study by Qian Zhang et. al. confirmed that depending on the presence of diabetes, the association between OSA and mortality differed. ³² In the study by Gonzalo Labarca et al., after 5 years of follow-up, an independent risk of cardiovascular mortality was found in the co-occurrence of OSA and DM compared to the presence of both diseases alone. ³⁸

To ~~improve facilitate~~ the diagnosis of OSA in diabetic patients, a nomogram was developed incorporating ~~created that took into account~~ WHR, smoking status, BMI, serum uric acid (UA), homeostasis model assessment insulin resistance index ~~HOMA2-IR~~ and history of fatty liver. It allows ~~for~~ the early ~~initial~~ identification of ~~OSA~~ high- risk patients ~~at risk of OSA~~ before deciding which ones should be referred for ~~PGS~~ PSG- testing, which remains ~~resource- limited study with limited access~~. ³⁶ According to a ~~small-scale~~ study on a ~~small sample of~~ patients with moderate to severe OSA, ~~only~~ short-term CPAP treatment ~~was only able to~~ improved insulin sensitivity in patients without obesity. ³²

Cancer

Cancer is the second leading cause of death in the United States.³⁹ Global statistics for 2022 documented 20 million new cancer cases and 9.7 million cancer-related deaths. The most frequently diagnosed cancer was lung cancer (12.4% of all cases), followed by breast cancer in women (11.6%), colon cancer (9.6%), prostate cancer (7.3%) and stomach cancer (4.9%). The leading cause of death was also lung cancer (18.7% of all cancer deaths), followed by colon cancer (9.3%), liver cancer (7.8%), breast cancer in women (6.9%) and stomach cancer (6.8%).⁴⁰ Overall, **global cancer** mortality was decreasing until 2021 **due** **thanks** to a reduction in smoking, improved **early** diagnostics **capabilities**, and **advancements** in therapeutic modalities **of certain cancers that allow them to be detected at an earlier stage, and the development of therapeutic options.**^{39,41} Nevertheless, an increase in the incidence of 6 out of 10 most commonly diagnosed cancers was reported.³⁹ Additionally, the COVID-19 **coronavirus** pandemic exacerbated difficulties in access to health care facilities, which resulted in **the a** **delay of in the** diagnosis and treatment of cancer patients.³⁹

Tissue- level hypoxia in **OSA** patients **with OSA** creates conditions of susceptibility to the development of malignancies.⁴² Studies on melanoma in mice have provided information that intermittent hypoxia can influence cancer growth in vitro and promote metastasis.^{43,44} Oncogenic processes in OSA are associated with oxidative stress, inflammatory reactions, angiogenesis, as well as increased sympathetic activity and impaired immune response.⁴⁴⁻⁵⁰ Among the key molecular mediators of these processes, hypoxia-inducible factor-1 plays a central role in orchestrating cellular responses to hypoxic stress **When considering the pathophysiological mechanisms that may promote cancer growth in OSA, attention is drawn to hypoxia-inducible factor-1 (HIF-1), which plays an important role in hypoxia-related reactions.**⁴²⁻⁴⁴ Exposure to intermittent hypoxia and/or sleep fragmentation may **differentially** affect cancer cells **differently**, depending on the type of malignancy.⁴⁵ Therefore, OSA may

have a prognostic impact or cause an increased risk of developing only certain types of cancer.⁴²

Ross J. Marriott et al. were the first to report an independent association between nocturnal hypoxemia and cancer prevalence. In this large-sample study (>241,439 patient-years) using PSG data, nocturnal hypoxemia, rather than ~~not~~ AHI, was ~~found to be~~ independently ~~positively correlated associated~~ with cancer prevalence. The observed associations between OSA severity (based on AHI and nocturnal hypoxemia) and cancer incidence were explained by the influence of cancer development factors such as older age, gender, smoking and BMI. However, after ~~an~~ 11.2- year follow-up period, there was no independent association between OSA severity and cancer incidence.⁴³ In contrast, Tetyana Kendzerska et al. demonstrated that both OSA severity and nocturnal hypoxemia were independently associated with cancer incidence. Patients with severe OSA had a 15% ~~higher increased~~ risk of cancer incidence compared to those without OSA, while severe hypoxemia [defined as >30% of sleep spent with oxygen saturation <90% (T90)] was associated with a 30% increased risk.⁴⁵ Similar findings were reported by Hailin Xiong et al., who ~~observed also noted~~ a ~~positive correlation between higher AHI values and cancer risk higher risk of cancer with increasing AHI~~, particularly among patients with OSA under 65 years old.⁴⁴ In the study by Grégoire Justeau et al., nocturnal hypoxemia measured by T90 was associated with the occurrence of lung and breast cancer.⁴⁸ Tetyana Kendzerska et al. reported the association of periodic limb movements during sleep with cancer. ~~Furthermore, This study also showed that~~ reduced sleep quality measured by a.o. reduced rapid eye movement sleep and increased wakefulness after sleep onset (~~WASO~~) were associated with an increased risk of malignant tumors.⁵¹

A multicenter retrospective cohort study identified nocturnal hypoxemia and sleep fragmentation as markers of OSA severity significantly associated with cancer-related

mortality. To determine hypoxemia and sleep fragmentation, the percentage of T90, mean oxygen saturation SaO_2 and percentage of stage 1 sleep were measured. However, AHI was not linked to cancer mortality, which is consistent with other studies (Hailin Xiong et.al.).^{44,46} According to this study, T90 was also not significantly associated with cancer mortality, while OSA increased all-cause mortality.⁴⁴

Not all cohort studies have confirmed that OSA increases cancer incidence or mortality.⁵⁰ Nevertheless, mounting evidence supports an OSA- related risk in specific malignancies, particularly lung and colorectal cancer (CRC)- both characterized by high mortality rates. ~~The literature does, however, provide evidence of OSA association with specific types of cancer, including lung cancer and colorectal cancer (CRC), both of which have high mortality rates.~~⁴⁵ A study on the Korean population identified OSA as an independent risk factor for lung cancer across both sexes and age groups, with association being most pronounced in women and older adults. ~~proved an independent association between OSA and increased risk of lung cancer. It was present in both genders, across age groups and was more pronounced in women and the elderly.~~⁴⁷ Similarly, a ~~A~~ retrospective cohort study found an increased risk of CRC associated with OSA.⁴²

Regarding CPAP adherence in patients with OSA, studies found no clear evidence linking good adherence (defined as ≥ 4 h per night) to reduced incidence of cancer. For lung cancer, ~~a near- significant trend toward risk reduction was observed, though not statistically conclusive association was near statistical significance but not conclusive.~~⁴⁹

Hypertension

The physiological changes induced by OSA predispose individuals to the development of CVD, including hypertension, stroke, arrhythmia, coronary artery disease (**CAD**), and HF.

⁵² OSA is considered as a cause of secondary hypertension in 30% to 50% of patients with

hypertension.^{53,54} Additionally, OSA is prevalent in a significant proportion of patients with resistant hypertension.^{55,56} In ~~case of~~ OSA-related hypertension, masked hypertension and elevated nocturnal blood pressure are ~~frequently observed common~~.⁵⁶ The ~~major main~~ risk factors for OSA, such as age, male gender and higher BMI are also strongly associated with hypertension.⁵⁵ When OSA and hypertension coexist, the risk of cardiovascular events increases.⁵³ Moreover ~~Furthermore~~, short sleep duration (<6 hours) alone has been shown to heighten the risk of developing hypertension and CVD.⁵⁶

The UROSAH study demonstrated that in patients with hypertension and OSA, a higher BMI is a risk factor for cardiovascular events. A ~~more pronounced stronger~~ positive association between obesity and cardiovascular events has been observed in younger individuals.⁵³ An additional publication based on the UROSAH cohort established a significant ~~relationship association~~ between the cardiometabolic index and the risk of CVD. The cardiometabolic index, developed in 2015, is a marker used to assess the risk of metabolic diseases such as diabetes, hypertension, left ventricular hypertrophy or stroke. It is calculated using the waist-to-height ratio and triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio. The "obesity paradox" proposed in the literature, ~~suggest that BMI alone may inadequately reflect metabolic risk, as visceral adipose tissue (VAT) is more pathophysiologically relevant indicator which diminishes the significance of, e.g. BMI as a real indicator of metabolic state, visceral adipose tissue (VAT) seems to better show the disorders occurring in obesity.~~ VAT is a metabolically active tissue, ~~it exhibits that shows a high lipolytic effect, contributing to endothelial dysfunction, local inflammation and prothrombotic states which brings with it several consequences in the form of, a.o., endothelial dysfunction or induction of local inflammation.~~ It is responsible for atherosclerotic complications, contributes to thrombosis and increases risk of ~~insulin resistance IR~~ and hyperglycemia. VAT-related disorders create conditions ~~favorable~~ for the

development of T2DM, metabolic syndrome, dyslipidemia and hypertension. It is suggested that cardiometabolic index reflects the distribution of VAT, the measurement of which requires the use of diagnostic imaging techniques. Thus, cardiometabolic index may become a screening tool as a predictor of CVD.⁵⁷

A multicenter study in China identified age, AHI, and hemoglobin (Hb) as independent risk factors for hypertension in the elderly. ~~Glucose concentration appeared to be a risk factor in men.~~ Higher AHI or Hb levels correlated with ~~higher greater~~ hypertension severity. ~~Intermittent nocturnal hypoxemia, detected by carotid artery chemoreceptors, triggers sympathetic nervous system activation during wakefulness, leading to sustained elevations in blood pressure Due to intermittent nocturnal hypoxemia, which is detected by carotid artery chemoreceptors, the sympathetic nervous system is activated during the day, leading to an increase in blood pressure.~~ Another potential mechanism contributing to hypertension in OSA might be an elevated circulating red blood cell count and hemoglobin level, as a result of erythropoietin stimulation by hypoxia, which contributes to increased peripheral vascular resistance ~~Another mechanism resulting in hypertension in OSA may be increased circulating red blood cell (RBC) count and Hb levels due to erythropoietin stimulated by hypoxia, which contributes to increased peripheral vascular resistance (Figure 2).~~⁵⁴

Depending on the polysomnographic phenotype of OSA, hypertension occurs with different frequency. The Sunmin Park et al. study distinguished ~~three subtypes: between groups with~~ predominant apnea, predominant hypopnea, and predominant respiratory effort-related arousal (RERA). A higher prevalence of hypertension was noted in the groups with predominant apnea and predominant hypopnea. ~~Those Patients~~ with predominant hypopnea also had significantly higher rates of hyperlipidemia, CAD and HF compared to the other groups.⁵⁸ Additionally, respiratory events during rapid eye movement sleep are ~~positively~~

correlated significantly associated with morning hypertension. In this phase of sleep, an increased severity of OSA can be explained by the reduced activity of the genioglossus muscle, promoting increased collapsibility of the upper respiratory tract. Respiratory events in the rapid eye movement phase predispose to a higher risk of CVD than those occurring in the non-rapid eye movement phase. A study conducted by Catherine Falla et al. revealed a significant association between respiratory events during rapid eye movement sleep and morning hypertensive blood pressure values.⁵²

~~Positive airway pressure~~ PAP therapy, the gold standard treatment for OSA, has demonstrated efficacy ~~may be useful~~ in normalizing blood pressure, particularly especially in the patients with ~~ease of~~ resistant hypertension.⁵³ In this group of patients with resistant hypertension, the blood pressure- lowering effect of CPAP therapy was observed to be twice as strong at night as during the day.⁵⁴ The beneficial impact of PAP treatment is associated with a reductions in inflammatory mediators such as CRP and IL-6 and oxidative stress markers including nicotinamide adenine dinucleotide phosphate oxidase, malonaldehyde.⁶⁰

PAP therapy appears to have a stronger effect on reducing diastolic blood pressure. A prospective ~~study with a~~ 5-year follow-up ~~study~~ demonstrated that long-term PAP therapy in patients with OSA ~~led to~~ improved blood pressure control. The rate of adherence to PAP therapy was 39.58%. The main barriers to adherence included economic burden and technical difficulties related to device usage, such as mask leakage ~~The primary barriers to adherence included therapy costs and challenges with device usage, such as mask leakage.~~⁵⁵ According to the study by Yi-Chih Lin et al., in ~~the~~ case of poor CPAP adherence in OSA patients ~~patients with OSA~~, uvulopalatopharyngoplasty (UPPP) may ~~serve be~~ a beneficial alternative, however, surgical intervention ~~but the surgery~~ was less effective in preventing hypertension onset ~~the development of hypertension~~. Nevertheless ~~However, it should be emphasized, that~~ UPPP has been shown to reduce ~~the occurrence of~~ hypertension occurrence in ~~the group of~~

~~patients affected by OSA- affected individuals.⁵⁵ In the group of patients with resistant hypertension, the blood pressure lowering effect of CPAP therapy was observed to be twice as strong at night as during the day.⁵⁶~~

Conclusions

The described associations ~~between of OSA and with~~ selected ~~comorbidities diseases~~ indicate that OSA ~~should not be regarded as an isolated disorder is not a separate condition,~~ but rather due to ~~its shared~~ pathophysiological mechanisms ~~it eonnections~~ coexists with and modulates ~~affect~~ the course of ~~diseases such as~~ COPD, stroke, diabetes, cancer and hypertension. This underscores the importance of an interdisciplinary approach to managing OSA, which clinicians should prioritize. In many ~~clinical contexts eases, the effective treatment of OSA may ean~~ complement the management of underlying chronic ~~conditions diseases, thereby mitigating their progression and reducing helping to alleviate their impact while reducing~~ the associated social and economic burden.

References:

1. Bonsignore MR, Lombardi C, Lombardo S, Fanfulla F. Epidemiology, Physiology and Clinical Approach to Sleepiness at the Wheel in OSA Patients: A Narrative Review. *J Clin Med.* 2022;11(13). doi:10.3390/jcm11133691
2. Locke BW, Lee JJ, Sundar KM. OSA and Chronic Respiratory Disease: Mechanisms and Epidemiology. *Int J Environ Res Public Health.* 2022;19(9). doi:10.3390/ijerph19095473

3. Kuczyński W, Kudrycka A, Małolepsza A, Karwowska U, Białasiewicz P, Białas A. The epidemiology of obstructive sleep apnea in poland—polysomnography and positive airway pressure therapy. *Int J Environ Res Public Health.* 2021;18(4). doi:10.3390/ijerph18042109
4. Hall KA, Singh MM, Mukherjee S, Palmer LJ. Physical activity is associated with reduced prevalence of self-reported obstructive sleep apnea in a large, general population cohort study. *Journal of Clinical Sleep Medicine.* 2020;16(7). doi:10.5664/jcsm.8456
5. Pinilla L, Santamaria-Martos F, Benítez ID, et al. Association of Obstructive Sleep Apnea with the Aging Process. *Ann Am Thorac Soc.* 2021;18(9). doi:10.1513/AnnalsATS.202007-771OC
6. Lopez-Padilla D, Teran-Tinoco J, Cerezo-Lajas A, et al. Moderate obstructive sleep apnea and cardiovascular outcomes in older adults: a propensity score–matched multicenter study (CPAGE-MODE study). *Journal of Clinical Sleep Medicine.* 2022;18(2). doi:10.5664/jcsm.9656
7. Czerwaty K, Dżaman K, Sobczyk KM, Sikorska KI. The Overlap Syndrome of Obstructive Sleep Apnea and Chronic Obstructive Pulmonary Disease: A Systematic Review. *Biomedicines.* 2022;11(1). doi:10.3390/BIOMEDICINES11010016
8. He Z, Xue X, Gao Y, et al. Association analysis of frailty with obstructive sleep apnea syndrome in elderly patients – A Multicenter Cohort Study. Published online May 1, 2023. doi:10.21203/RS.3.RS-2828248/V1
9. Povitz M, Bray Jenkyn K, Kendzerska T, et al. Clinical pathways and wait times for OSA care in Ontario, Canada: A population cohort study. *Canadian Journal of Respiratory, Critical Care, and Sleep Medicine.* 2019;3(2). doi:10.1080/24745332.2018.1512841

10. Di Pumbo M, Nurchis MC, Moffa A, et al. Multiple-access versus telemedicine home-based sleep apnea testing for obstructive sleep apnea (OSA) diagnosis: a cost-minimization study. *Sleep and Breathing*. 2022;26(4). doi:10.1007/s11325-021-02527-5
11. Gottlieb DJ, Punjabi NM. Diagnosis and Management of Obstructive Sleep Apnea: A Review. *JAMA - Journal of the American Medical Association*. 2020;323(14). doi:10.1001/jama.2020.3514
12. Carmona-Pírez J, Poblador-Plou B, Ioakeim-Skoufa I, et al. Multimorbidity clusters in patients with chronic obstructive airway diseases in the EpiChron Cohort. *Sci Rep*. 2021;11(1). doi:10.1038/s41598-021-83964-w
13. Brennan M, McDonnell MJ, Walsh SM, Gargoum F, Rutherford R. Review of the prevalence, pathogenesis and management of OSA-COPD overlap. *Sleep and Breathing*. 2022;26(4). doi:10.1007/s11325-021-02540-8
14. Stepan B, Csérvád L, Raduna O, et al. Severity of oxygen desaturation in OSA-COPD overlap syndrome compared to OSA alone: an observational cohort study. *Pneumologia*. 2022;71(1). doi:10.2478/pneum-2023-0017
15. Ioachimescu OC, Janocko NJ, Ciavatta MM, Howard M, Warnock M V. Obstructive Lung Disease and Obstructive Sleep Apnea (OLDOSA) cohort study: 10-year assessment. *Journal of Clinical Sleep Medicine*. 2020;16(2). doi:10.5664/JCSM.8180
16. Mohammad OI, Elgazzar AG, Mahfouz SM, Elnaggar ME. Prevalence of obstructive sleep apnea among patients with chronic obstructive pulmonary disease. *The Egyptian Journal of Bronchology*. 2021;15(1). doi:10.1186/s43168-021-00093-8

17. Peng T, Yuan S, Wang W, et al. A risk-predictive model for obstructive sleep apnea in patients with chronic obstructive pulmonary disease. *Front Neurosci*. 2023;17. doi:10.3389/fnins.2023.1146424
18. Marin JM, Soriano JB, Marin-Oto M, et al. Sleep-disordered Breathing in Patients with Chronic Obstructive Pulmonary Disease: Prevalence and Outcomes. *Ann Am Thorac Soc*. 2025;22(8):1227-1235. doi:10.1513/ANNALSATS.202501-030OC
19. Alkhayat K, Hussein MT, Mohammed OA, Mohammadien HA. Prevalence of obstructive sleep apnea in patients with chronic obstructive pulmonary disease. *Egypt J Chest Dis Tuberc*. 2021;70(4). doi:10.4103/ecdt.ecdt_12_21
20. Kendzerska T, Povitz M, Bai X, Pakhale S, Wen SW, Gershon AS. Coexistence of clinically significant obstructive sleep apnea with physician-diagnosed asthma or chronic obstructive pulmonary disease: A population study of prevalence and mortality. *Canadian Journal of Respiratory, Critical Care, and Sleep Medicine*. 2022;6(1). doi:10.1080/24745332.2020.1828005
21. Sterling KL, Pépin JL, Linde-Zwirble W, et al. Impact of Positive Airway Pressure Therapy Adherence on Outcomes in Patients with Obstructive Sleep Apnea and Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med*. 2022;206(2). doi:10.1164/rccm.202109-2035OC
22. Haula TM, Puustinen J, Takala M, Holm A. Wake-up strokes are linked to obstructive sleep apnea and worse early functional outcome. *Brain Behav*. 2021;11(8). doi:10.1002/brb3.2284
23. Khot SP, Lisabeth LD, Kwicklis M, et al. Heterogeneity of obstructive sleep apnea phenotypes after ischemic stroke: Outcome variation by cluster analysis. *Sleep Med*. 2024;114. doi:10.1016/j.sleep.2023.12.027

24. Wang B, Hao W, Fan J, et al. Clinical significance of obstructive sleep apnea in patients with acute coronary syndrome with or without prior stroke: a prospective cohort study. *Eur J Med Res.* 2023;28(1). doi:10.1186/s40001-023-01071-0
25. Lin HJ, Chen PC, Liu YH, Hsu CY. Increasing and high prevalence of moderate to severe obstructive sleep apnea in acute ischemic stroke in Taiwan. *Journal of the Formosan Medical Association.* 2024;123(3). doi:10.1016/j.jfma.2023.09.005
26. Edrissi C, Rathfoot C, Knisely K, Sanders CB, Poupor N, Nathaniel T. Gender disparity in a cohort of stroke patients with incidence of obstructive sleep apnea. *Journal of Vascular Nursing.* 2022;40(1). doi:10.1016/j.jvn.2021.10.002
27. Haula TM, Puustinen J, Takala M, Holm A. Relationship between SDB and short-term outcome in Finnish ischemic stroke patients. *Brain Behav.* 2020;10(10). doi:10.1002/brb3.1762
28. Kleindorfer DO, Towfighi A, Chaturvedi S, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. *Stroke.* 2021;52(7). doi:10.1161/STR.0000000000000375
29. Andreozzi F, Van Overstraeten C, Ben Youssef S, et al. African ethnicity is associated with a higher prevalence of diabetes in obstructive sleep apnea patients: results of a retrospective analysis. *Sleep and Breathing.* 2020;24(3). doi:10.1007/s11325-019-01912-5
30. Vacelet L, Hupin D, Pichot V, et al. Insulin Resistance and Type 2 Diabetes in Asymptomatic Obstructive Sleep Apnea: Results of the PROOF Cohort Study After 7 Years of Follow-Up. *Front Physiol.* 2021;12. doi:10.3389/fphys.2021.650758

31. Bruyneel M, Kleynen P, Poppe K. Prevalence of undiagnosed glucose intolerance and type 2 diabetes in patients with moderate-to-severe obstructive sleep apnea syndrome. *Sleep and Breathing*. 2020;24(4). doi:10.1007/s11325-019-01989-y
32. Zhang Q, Zhang Q, Li X, et al. Association of obstructive sleep apnea symptoms with all-cause mortality and cause-specific mortality in adults with or without diabetes: A cohort study based on the NHANES. *J Diabetes*. 2024;16(4). doi:10.1111/1753-0407.13538
33. Su X, Li JH, Gao Y, et al. Impact of obstructive sleep apnea complicated with type 2 diabetes on long-term cardiovascular risks and all-cause mortality in elderly patients. *BMC Geriatr*. 2021;21(1). doi:10.1186/s12877-021-02461-x
34. Adderley NJ, Subramanian A, Toulis K, et al. Obstructive sleep apnea, a risk factor for cardiovascular and microvascular disease in patients with type 2 diabetes: Findings from a population-based cohort study. *Diabetes Care*. 2020;43(8). doi:10.2337/dc19-2116
35. Ding Q, Qin L, Wojeck B, et al. Polysomnographic phenotypes of obstructive sleep apnea and incident type 2 diabetes results from the dream study. *Ann Am Thorac Soc*. 2021;18(12). doi:10.1513/AnnalsATS.202012-1556OC
36. Shi H, Xiang S, Huang X, Wang L, Hua F, Jiang X. Development and validation of a nomogram for predicting the risk of obstructive sleep apnea in patients with type 2 diabetes. *Ann Transl Med*. 2020;8(24). doi:10.21037/atm-20-6890
37. Wojeck BS, Inzucchi SE, Qin L, Yaggi HK. Polysomnographic predictors of incident diabetes and pre-diabetes: an analysis of the DREAM study. *Journal of Clinical Sleep Medicine*. 2023;19(4). doi:10.5664/jcsm.10414

38. Labarca G, Dreyse J, Salas C, et al. Risk of mortality among patients with moderate to severe obstructive sleep apnea and diabetes mellitus: results from the SantOSA cohort. *Sleep and Breathing*. 2021;25(3). doi:10.1007/s11325-020-02283-y

39. Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. *CA Cancer J Clin*. 2024;74(1):12-49. doi:10.3322/CAAC.21820

40. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin*. 2024;74(3):229-263. doi:10.3322/CAAC.21834

41. Dizon DS, Kamal AH. Cancer statistics 2024: All hands on deck. *CA Cancer J Clin*. 2024;74(1). doi:10.3322/caac.21824

42. Chen CY, Hu JM, Shen CJ, et al. Increased incidence of colorectal cancer with obstructive sleep apnea: a nationwide population-based cohort study. *Sleep Med*. 2020;66. doi:10.1016/j.sleep.2019.02.016

43. Marriott RJ, Singh B, McArdle N, et al. Does OSA Increase Risk for Cancer?: A Large Historical Sleep Clinic Cohort Study. In: *Chest*. Vol 164. 2023. doi:10.1016/j.chest.2023.04.043

44. Xiong H, Lao M, Wang L, et al. The Incidence of Cancer Is Increased in Hospitalized Adult Patients With Obstructive Sleep Apnea in China: A Retrospective Cohort Study. *Front Oncol*. 2022;12. doi:10.3389/fonc.2022.856121

45. Kendzerska T, Povitz M, Leung RS, et al. Obstructive sleep apnea and incident cancer: A large retrospective multicenter clinical cohort study. *Cancer Epidemiology Biomarkers and Prevention*. 2021;30(2). doi:10.1158/1055-9965.EPI-20-0975

46. Kendzerska T, Gershon AS, Povitz M, et al. Polysomnographic Markers of Obstructive Sleep Apnea Severity and Cancer-related Mortality A Large Retrospective Multicenter Clinical Cohort Study. *Ann Am Thorac Soc.* 2022;19(5). doi:10.1513/AnnalsATS.202106-738OC

47. Cho J, Jo S. Association of obstructive sleep apnea with risk of lung cancer: a nationwide cohort study in Korea. *Scientific Reports* 2024 14:1. 2024;14(1):1-6. doi:10.1038/s41598-024-63238-x

48. Justeau G, Gervès-Pinquié C, Le Vaillant M, et al. Association Between Nocturnal Hypoxemia and Cancer Incidence in Patients Investigated for OSA: Data From a Large Multicenter French Cohort. *Chest.* 2020;158(6). doi:10.1016/j.chest.2020.06.055

49. Justeau G, Bailly S, Gervès-Pinquié C, et al. Cancer risk in patients with sleep apnoea following adherent 5-year CPAP therapy. *European Respiratory Journal.* 2022;59(4). doi:10.1183/13993003.01935-2021

50. Theorell-Haglöw J, Zhou X, Wittert G, et al. Does obstructive sleep apnea increase the risk of cancer and cancer mortality in combined community-based cohorts? *J Sleep Res.* 2024;33(4). doi:10.1111/jsr.14089

51. Kendzerska T, Murray BJ, Gershon AS, et al. Polysomnographic Assessment of Sleep Disturbances in Cancer Development: A Historical Multicenter Clinical Cohort Study. *Chest.* 2023;164(2). doi:10.1016/j.chest.2023.03.006

52. Falla C, Young A, Pope A, O'Driscoll DM. Obstructive sleep apnea during REM sleep: effects on morning and evening blood pressure. *Sleep.* 2023;46(3). doi:10.1093/sleep/zsac259

53. Yao L, Heizhati M, Lin M, et al. Elevated body mass index increases the risk of cardiovascular events in hypertensive patients accompanied with obstructive sleep apnea: A cohort study. *Obes Res Clin Pract.* 2022;16(6). doi:10.1016/j.orcp.2022.10.010

54. Zhao LB, Gao YH, Xu WH, Li KL, Liu L, Fan L. Factors influencing new-onset hypertension in elderly patients with obstructive sleep apnea: A multicenter cohort study. *Clin Transl Sci.* 2023;16(12). doi:10.1111/cts.13631

55. Lin YC, Chen CT, Chao PZ, et al. Prevention of Incident Hypertension in Patients With Obstructive Sleep Apnea Treated With Uvulopalatopharyngoplasty or Continuous Positive Airway Pressure: A Cohort Study. *Front Surg.* 2022;9. doi:10.3389/fsurg.2022.818591

56. Mancia G, Kreutz R, Brunström M, et al. 2023 ESH Guidelines for the management of arterial hypertension the Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). *J Hypertens.* 2023;41(12). doi:10.1097/HJH.0000000000003480

57. Cai X, Hu J, Wen W, et al. Associations of the Cardiometabolic Index with the Risk of Cardiovascular Disease in Patients with Hypertension and Obstructive Sleep Apnea: Results of a Longitudinal Cohort Study. *Oxid Med Cell Longev.* 2022;2022. doi:10.1155/2022/4914791

58. Park S, Shin B, Lee JH, et al. Polysomnographic phenotype as a risk factor for cardiovascular diseases in patients with obstructive sleep apnea syndrome: A retrospective cohort study. *J Thorac Dis.* 2020;12(3). doi:10.21037/jtd.2019.12.66

59. Zota IM, Roca M, Leon MM, et al. Long-Term Adherence in Overweight Patients with Obstructive Sleep Apnea and Hypertension—A Pilot Prospective Cohort Study. *Diagnostics.* 2023;13(8). doi:10.3390/diagnostics13081447

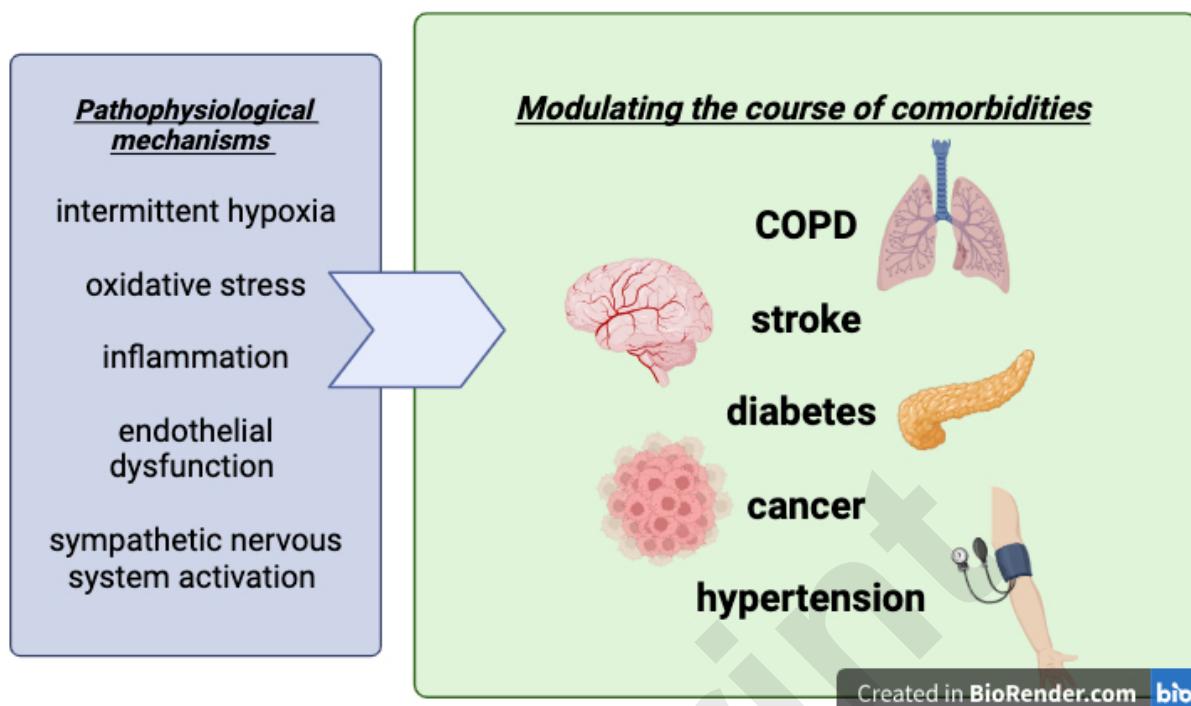
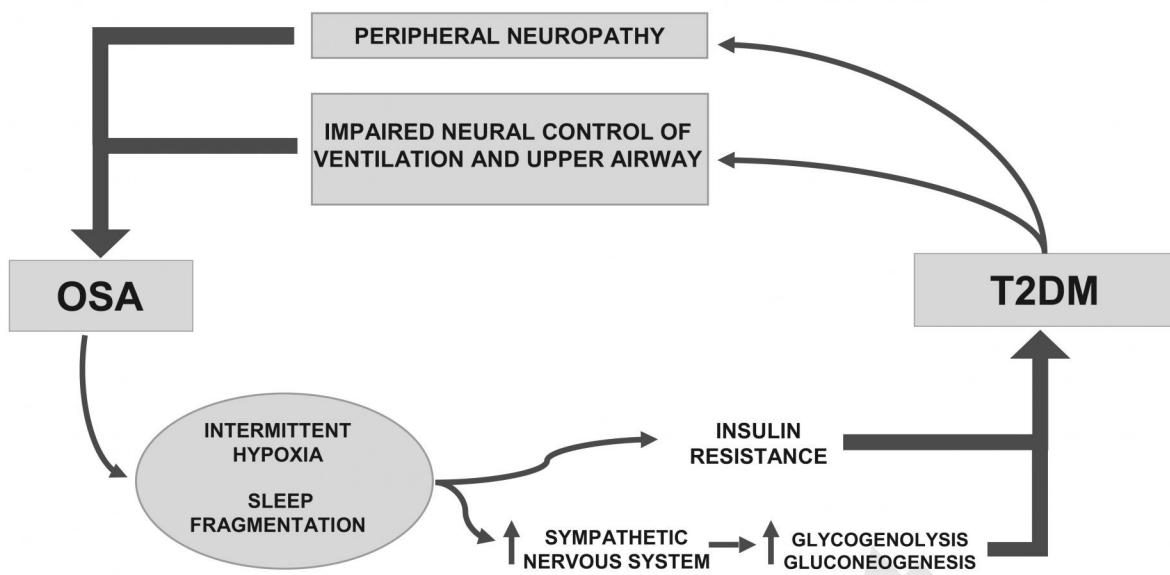
60. Wang X, Guan L, Wu C, Zhao Y, Zhao G. Continuous positive airway pressure may improve hypertension in patients with obstructive sleep apnea-hypopnea syndrome by inhibiting

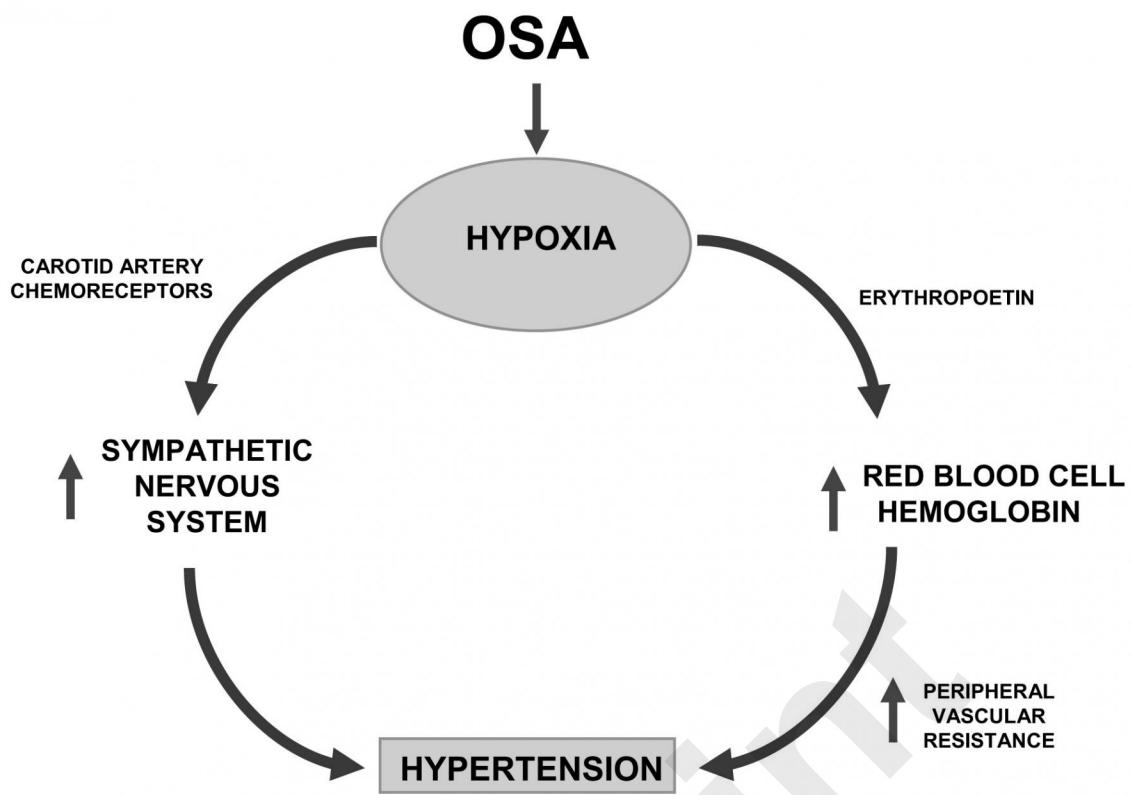
inflammation and oxidative stress. *Archives of Medical Science*. 2023;19(1):237-241.

doi:10.5114/AOMS/156490

Preprint

Obstructive sleep apnea


Table I. Prevalence of OS

Authors, year of publication	Population description	Sample size	Type of study	Sleep study	Findings
Ioachimescu et al 2020	veterans (Atlanta Veterans Affairs) with an acute hospitalization and in whom asthma, COPD, OSA, overlapping conditions, or none of these disorders at baseline had been diagnosed	4980	longitudinal, point-of-care	PSG	5%- patients with COPD and OSA (no asthma), 8%- patients with OSA plus either asthma or COPD
Mohammad et al 2021	patients with stable COPD	100	prospective study	PSG	50% patients with COPD had OSA
Alkhayat et al 2021	patients with COPD free from exacerbation for at least 4 weeks before the study	86	prospective study	PSG	44.19% patients with COPD had OSA
Peng et al 2023	patients with COPD with a recent deterioration of cough, expectoration of phlegm, and shortness of breath	330	retrospective study	PG	29.1% patients with COPD had OSA
Marin et al 2025	patients with COPD clinically stable patients with COPD receiving therapy according to international guidelines at enrollment	428	multicenter, prospective study	PG	32% patients with COPD had OSA

COPD- chronic obstructive pulmonary disease, OSA- obstructive sleep apnea, OS-overlap syndrome, PG- polygraphy, PSG- polysomnography

Associations between OSA and T2DM

Mechanisms of hypertension development in OSA