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Colorectal cancer (CRC) remains a leading cause of cancer-related
death, and many patients still present with metastatic or recurrent dis-
ease despite advances in surgery and systemic therapy [1, 2]. Metabolic
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reprogramming is a hallmark of cancer and an attractive source of bio- China
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markers and therapeutic targets [3]. Arachidonic-acid-derived epoxye- com

icosatrienoic acids (EETs), generated mainly by CYP2C and CYP2) mo-
no-oxygenases, regulate inflammation, angiogenesis, and cell survival,
and have been implicated in several malignancies [4-8]. However, the
contribution of CYP2J2 and its EET products to CRC biology is not clearly
defined.

Guided by untargeted tissue metabolomics, we investigated arachi-
donic-acid-related signatures in CRC, evaluated CYP2J2 expression and
its relationship with clinicopathologic features and epithelial differenti-
ation markers (CDX2, CK20, CK7), and functionally examined CYP2J2 in
CRC cell lines.

Methods. Paired CRC and adjacent mucosa were collected from pa-
tients undergoing curative resection. All participants provided written
informed consent, and the study was approved by the institutional ethics
committee. Treatment-naive primary CRC patients undergoing curative
resection (2020-2024) with paired tumor/adjacent mucosa were includ-
ed. Patients with a history of prior malignancy/IBD/infection or inade-
quate tissue were excluded. No patients received neoadjuvant thera-
py. The study cohort comprised 30 patients aged 40-65, 18 male and
12 female. Tissue extracts were analyzed by LC-MS-based untargeted
metabolomics using paired samples from n = 30 colorectal cancer pa-
tients. Data were normalized and log -transformed before analysis. Dif-
ferential metabolites were identified using variable-importance-in-pro-
jection (VIP) > 1.0 and adjusted p < 0.05 (Benjamini-Hochberg FDR)
as significance thresholds. Batch effects were evaluated and corrected
using QC-based robust LOESS signal correction (QC-RLSC) prior to sta-
tistical analysis. Differential metabolites were identified by multivariable
statistics and mapped to KEGG pathways (Supplementary Figure S1);
particular attention was given to arachidonic-acid-related mediators, in-
cluding 5,6-dihydroxyeicosatrienoic acid (5,6-DHET), the soluble epoxide
hydrolase product of 5,6-EET.

CYP2J2 mRNA and protein were assessed in CRC and mucosa, and clin-
icopathologic variables (stage, tumor size, Ki-67 index) were correlated
with CYP2J2 expression. Co-expression with CDX2, CK20, and CK7 was
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analyzed in clinical specimens, and expression of
CDX2, CK20, and CK7 was summarized at the co-
hort level.

HCT116 and HT29 cells were subjected to
CYP2)2 gain- and loss-of-function using overex-
pression plasmids (OE/OX) and shRNA-mediated
knockdown (sh/KO). Proliferation was measured
by CCK-8 and colony-formation assays, invasion
by Matrigel-coated Transwell chambers, apopto-
sis by TUNEL and flow cytometry, and cell-cycle
distribution by propidium-iodide staining. All ex-
periments were performed in triplicate biological
replicates. Data are presented as mean + SD, and
statistical comparisons were made using two-
tailed Student’s t-tests or one-way ANOVA with
Tukey’s post-hoc correction where appropriate.
Western blots quantified proliferation-, apopto-
sis-, and invasion-related proteins.

CYP2J2 links metabolic reprogramming to colorectal cancer progression

Results. Metabolomic reprogramming and
arachidonic-acid-related changes in CRC. Hierar-
chical clustering and volcano-plot analysis showed
that dozens of metabolites were significantly up-
or downregulated in CRC compared with adjacent
mucosa (Supplementary Figure S1). Among them,
4-fluorocatechol and phosphoenolpyruvic acid
represented markedly downregulated and up-
regulated species, respectively, and metabolites
such as beta-patchoulene and AFN911 had high
VIP scores, indicating strong discriminative value.
Joint pathway analysis highlighted “TGF-B sig-
naling”, “proteoglycans in cancer”, “glutathione
metabolism”, and “central carbon metabolism in
cancer”, underscoring broad metabolic rewiring in
CRC (Supplementary Figure S2).

Arachidonic-acid-related  metabolites  were
prominently altered. In particular, 5,6-DHET was
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Figure 1. A — Violin plot showing the distribution of 5,6-dihydroxyeicosatrienoic acid (5,6-DHET) in colorectal can-
cer and normal tissues. Color: Red represents colorectal cancer tissues, blue represents normal tissues. B — Scat-
ter plot showing the correlation between CYP2)2 and KRT20 (CK20) expression. Axes indicate log2(CYP2J2 TPM)
and log2(KRT20 TPM). n = 269. p-value: Significance of the correlation between the two gene expression levels.
C, D — Cell proliferation curves are presented as mean + SD (n = 3 biological replicates). Statistical significance
between groups across time was assessed by two-way ANOVA (group x time) with Sidak’s multiple-comparisons
test. Control groups: OE-NC (overexpression negative control), sh-NC (knockdown negative control). Experimental
groups: OE-CYP2)J2 (overexpression of CYP2)2), sh-CYP2J2 (knockdown of CYP2)2)
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significantly enriched in CRC tissue compared with
normal mucosa, suggesting enhanced CYP-epoxy-
genase activity and EET turnover in the tumor mi-
croenvironment, consistent with possible involve-
ment of the EET-soluble epoxide hydrolase axis in
CRC pathogenesis (Figure 1 A).

CYP2J2 expression, epithelial markers, and
clinicopathologic correlations. CYP2)2 expres-
sion was significantly higher in CRC tissue than
in matched mucosa. Survival analysis showed no
significant difference between CYP2J2-high and
CYP2J2-low groups (log-rank p = 0.27), indicating
that CYP2J2 alone is not an independent prognos-
tic factor in this cohort. However, CYP2J2 levels
increased with advancing clinical stage (p < 0.01)
and correlated strongly with tumor size (R2 = 0.85,
p < 0.001) and Ki-67 index (R? = 0.88, p < 0.001),
linking CYP2J2 to tumor burden and proliferative
activity rather than long-term outcome (Supple-
mentary Figure S3).

Co-expression analyses demonstrated that
CYP2)2 is integrated into the intestinal epitheli-
al differentiation program. CDX2 and CK20 were
positively expressed in all CRC samples, whereas
CK7 was consistently negative, confirming typi-
cal colorectal immunophenotypes. Quantitatively,
CYP2J2 and CDX2 showed only a weak correlation
(R =0.19, p = 0.0009), whereas CYP2J2 and CK20
exhibited a more pronounced positive correlation
(R=0.27,p =17 x 10 (Figure 1 B and Supple-
mentary Figure S3). Thus, CYP2J2 is preferentially
co-expressed with CK20-defined intestinal epi-
thelial cells while retaining relative independence
from CDX2, supporting its role as an epithelial,
CRC-linked metabolic enzyme.

CYP2J2 promotes proliferation, invasion, and
cell-cycle progression while inhibiting apoptosis.
In both HCT116 and HT29 cells, CYP2)2 overex-
pression significantly increased proliferation in
CCK-8 and colony-formation assays, whereas shR-
NA-mediated knockdown reduced proliferative ca-
pacity, indicating a positive relationship between
CYP2)2 levels and cell growth. Transwell assays
showed that CYP2J2 overexpression enhanced,
and CYP2)2 knockdown diminished, invasive abil-
ity, indicating a key role for CYP2J2 in promoting
colorectal cancer cell invasion (Supplementary
Figure S4).

TUNEL and flow-cytometric analyses revealed
that CYP2J2 knockdown markedly increased apop-
tosis, while CYP2J2 overexpression reduced apop-
totic fractions, suggesting that CYP2)2 expression
inhibits apoptosis and favors cell survival (Sup-
plementary Figure S4). Cell-cycle profiling demon-
strated that CYP2)2 overexpression decreased the
GO/G1 fraction and increased the S and G2/M
fractions; conversely, CYP2J2 knockdown caused
GO/G1 accumulation and reduced cycling fractions

(Supplementary Figure S5). Western-blot analysis
further showed that proliferation-related proteins
were upregulated and apoptosis-associated pro-
teins were downregulated in CYP2)2-overexpress-
ing cells, with the opposite pattern after CYP2)2
knockdown (Supplementary Figures S6 and S7).
Together, these data indicate that CYP2)2 plays
a crucial role in regulating the cell cycle and apop-
tosis in CRC cells.

Discussion. This study integrates metabolom-
ics, clinical tissue analyses, and functional studies
to suggest that CYP2J2 may serve as a metabolic
node potentially linking reprogramming with ma-
lignant behavior in CRC. Untargeted metabolom-
ics revealed a CRC-specific signature character-
ized by dysregulated central-carbon, glutathione,
TGF-B-related, and cancer-associated proteogly-
can pathways and by accumulation of arachi-
donic-acid-derived 5,6-DHET. Within this context,
CYP2J2 was overexpressed, strongly correlated
with tumor size and Ki-67 index, and preferentially
co-expressed with the intestinal epithelial marker
CK20, while CDX2 showed only weak co-variation
and CK7 remained negative. These findings sit-
uate CYP2J2 within a typical CRC differentiation
background but highlight its specific association
with proliferative burden.

Functionally, CYP2J2 enhanced proliferation,
invasion, and cell-cycle progression and sup-
pressed apoptosis in CRC cell lines, consistent
with a model in which CYP2J2-derived EETs
foster EGFR-MAPK-PI3K signaling and meta-
static potential, although direct evidence was
not obtained in this study. Collectively, our re-
sults support CYP2J2 as a biomarker reflecting
proliferative aggressiveness rather than survival
per se, and as a promising therapeutic target.
Isoform-selective inhibition of CYP2J2 or modu-
lation of the EET-soluble epoxide hydrolase axis,
potentially combined with standard chemo- or
radiotherapy, warrants further evaluation in pre-
clinical CRC models, while carefully considering
the physiological roles of CYP2J2 in normal tis-
sues. Limitations of this study include the rel-
atively small metabolomics cohort, the lack of
in vivo validation, and the absence of direct
measurements of EETs/EET-pathway activity,
which are inferred here primarily from increased
5,6-DHET levels.
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