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 Abstract
Introduction
Coronary artery calcification (CAC) is a recognized marker of atherosclerosis and cardiovascular
disease (CVD) risk. While CAC is closely linked to aging, its potential as a marker of biological aging
remains uncertain. Telomere length (TL), epigenetic aging markers, and dental deterioration
parameters have been proposed as indicators of biological aging. However, the extent to which these
biological aging indicators are associated with CAC remains unclear.

Material and methods
Two-sample and three-sample Mendelian Randomization (MR) analyses were conducted to
investigate the potential causal effects of TL, epigenetic aging markers (Intrinsic Epigenetic Age
Acceleration [IEAA], Phenotypic Age [PhenoAge]), and dental deterioration traits on CAC. Summary-
level statistics from large-scale genome-wide association studies (GWASs) were obtained and
analyzed using appropriate MR methods.  

Results
Genetically determined longer TL was significantly associated with lower CAC levels (IVW p < 0.001),
supporting TL as a protective factor against atherosclerosis progression (as measured by CAC). Other
analyses confirmed the robustness of this finding (MR-Egger p = 0.03, WME p = 0.004). A three-
sample MR analysis provided further evidence for this association (IVW p < 0.01). However, neither
epigenetic aging markers nor dental deterioration parameters exhibited a significant causal
relationship with CAC. 

Conclusions
This study supports an inverse causal relationship between TL and CAC, reinforcing CAC as a
biomarker of biological aging. Epigenetic aging markers and dental deterioration parameters were not
significantly linked to CAC. Future studies should explore additional aging-related traits and refine the
genetic instruments for epigenetic aging and dental health to further elucidate their potential roles in
vascular aging.
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Abstract 

Introduction: Coronary artery calcification (CAC) is a recognized marker of atherosclerosis 

and cardiovascular disease (CVD) risk. While CAC is closely linked to aging, its potential as a 

marker of biological aging remains uncertain. Telomere length (TL), epigenetic aging markers, 

and dental deterioration parameters have been proposed as indicators of biological aging. 

However, the extent to which these biological aging indicators are associated with CAC remains 

unclear. 

Material and methods: Two-sample and three-sample Mendelian Randomization (MR) 

analyses were conducted to investigate the potential causal effects of TL, epigenetic aging 

markers (Intrinsic Epigenetic Age Acceleration [IEAA], Phenotypic Age [PhenoAge]), and 

dental deterioration traits on CAC. Summary-level statistics from large-scale genome-wide 

association studies (GWASs) were obtained and analyzed using appropriate MR methods.  

Results: Genetically determined longer TL was significantly associated with lower CAC levels 

(IVW p < 0.001), supporting TL as a protective factor against atherosclerosis progression (as 

measured by CAC). Other analyses confirmed the robustness of this finding (MR-Egger p = 

0.03, WME p = 0.004). A three-sample MR analysis provided further evidence for this 

association (IVW p < 0.01). However, neither epigenetic aging markers nor dental deterioration 

parameters exhibited a significant causal relationship with CAC. 

Conclusions: This study supports an inverse causal relationship between TL and CAC, 

reinforcing CAC as a biomarker of biological aging. Epigenetic aging markers and dental 

deterioration parameters were not significantly linked to CAC. Future studies should explore 

additional aging-related traits and refine the genetic instruments for epigenetic aging and dental 

health to further elucidate their potential roles in vascular aging. 

 

Keywords: coronary artery calcification, telomere length, biological aging, epigenetic aging, 

Mendelian Randomization 
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Coronary artery calcification (CAC) is widely recognized as a crucial biomarker for 

diagnosing coronary artery disease (CAD) [1]. Cardiovascular diseases (CVD), associated with 

a range of modifiable and non-modifiable risk factors, are the leading cause of morbidity and 

mortality worldwide, exerting a significant impact on society and generating high economic 

costs [2]. 

CAC involves the deposition of calcium in coronary arteries during atherosclerotic 

plaque formation, leading to narrowing and reduced vessel elasticity. The presence and extent of 

CAC are closely associated with the predicted incidence of cardiovascular events such as 

myocardial infarction and strokes [3–4]. Furthermore, CAC = 0 (the so-called ‘power of zero’) 

is also associated with a reduced risk of chronic diseases other than CVD, such as cancer, 

chronic obstructive pulmonary disease, and chronic kidney disease [1, 5–6]. CAC likely serves 

as a risk integrator, indicating lifelong exposure to common risk factors for both CVD and non-

CVD conditions [6]. CAC can be assessed using computed tomography (CT), with results 

typically reported using the Agatston score [5]. This value accounts for the volume and density 

of CAC [7]. Clinically, CAC assessment is easy to perform and interpret, widely accessible, and 

safe for patients, primarily because it does not require contrast administration [4]. 

Risk factors associated with CAC are largely consistent with those for atherosclerotic 

CVD (ASCVD), including both modifiable and non-modifiable factors. The most important 

modifiable factors include smoking, hypertension (HTN), hypercholesterolemia (including 

lipoprotein(a)), diabetes, and obesity [8–11]. Non-modifiable factors include age, sex, and 

genetic predisposition. Men, regardless of age, have higher average CAC scores compared to 

women. Higher CAC scores are also observed in older individuals [11–12]. Moreover, studies 

indicate significant racial differences in the prevalence of arterial calcification, with higher CAC 

scores in Caucasians compared to African Americans and Asians [11]. 

Telomeres, located at the ends of chromosomes, play a crucial role in protecting genetic 

material from damage. With age, telomeres gradually shorten, serving as a marker of cellular 

biological aging. Telomere shortening is associated with numerous risk factors and chronic 
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diseases, including CVD [13–14]. Research suggests that telomere length (TL) may serve as a 

biomarker for CVD risk [15–17]. 

Epigenetic mechanisms, such as DNA methylation and histone modification, regulate 

gene expression without altering DNA sequence. These modifications are dynamic and have 

emerged as sensitive biomarkers of biological aging. In particular, epigenetic clocks based on 

methylation patterns at CpG sites have demonstrated high accuracy in estimating biological age 

[18]. 

Clinical and genetic epidemiological research continues to explore the link between 

biological aging and both oral and systemic health. Individuals with periodontitis often exhibit 

signs of accelerated aging, as measured by composite indices such as Phenotypic Age 

(PhenoAge) and Klemera-Doubal method-based biological age (KDM-Age). This accelerated 

aging appears to mediate a substantial portion of the increased cardiovascular risk observed in 

individuals with poor dental health [19–20]. 

This study aims to assess whether TL, epigenetic aging markers, and dental 

deterioration traits are causally related to the presence of CAC and, consequently, to determine 

whether CAC can be used as a marker of biological aging rather than merely a marker of 

atherosclerotic processes. 

 

Material and methods 

Study design 

In this study, we used Mendelian Randomization (MR) to assess the impact of TL and 

other aging-related traits (exposures) on CAC (outcome). The study's flowchart is presented in 

Figure 1. 
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Figure 1. Study workflow 
 
Abbreviations: CAC, coronary artery calcification; GWAS, genome-wide association study; IVW, inverse-variance weighted; LD, 
linkage disequilibrium; MR, Mendelian Randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and 

Outlier; SNPs, single-nucleotide polymorphisms; TL, telomere length; WME, weighted median estimator 
 

 

Publicly available data were used, so no ethical approval or informed consent was 

required for this study [21]. This study adhered to the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guidelines, which were primarily designed 

for MR studies (STROBE-MR) [22]. 
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Exposure data 

 

Telomere length 

Data on the genetic determinants of TL were obtained from the UK Biobank analysis by 

Codd et al. [23]. Access to the Genome-Wide Association Study (GWAS) summary statistics 

was obtained through the OpenGWAS project developed at the MRC Integrative Epidemiology 

Unit (IEU) under accession code “ieu-b-4879” [24]. These data were obtained from a sample of 

472,174 European ancestry patients. Another set of single-nucleotide polymorphisms (SNPs) 

correlated with TL was obtained from a GWAS meta-analysis encompassing 78,592 European 

ancestry patients, published by Li et al., and used for three-sample MR [25]. 

 

Epigenetic markers 

Summary statistics for correlations between SNPs and two epigenetic markers of aging 

– Intrinsic Epigenetic Age Acceleration (IEAA) and PhenoAge were obtained from GWAS 

published by McCartney et al. and were obtained through the OpenGWAS project under 

accession codes “ebi-a-GCST90014290” and “ebi-a-GCST90014292” [24, 26]. These data were 

obtained from multiple cohorts totalling 34,710 participants of European ancestry. 

Both IEAA and PhenoAge represent specific methylation patterns that change over the 

course of a lifetime. IEAA was constructed by studying publicly available data of various tissue 

samples and developed to predict the biological age of a given tissue sample [27]. PhenoAge is 

a composite marker of DNA methylation consisting of individual methylation patterns 

associated with albumin levels, creatinine, C-reactive protein, lymphocyte percent, mean cell 

volume, red cell distribution width, alkaline phosphatase, white blood cell count, and age. 

Importantly, the weights for each pattern were set using Cox regression to accurately reflect the 

risk of death [28]. 
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Dental markers 

As dental markers of teeth loss and periodontal disease, we used: bleeding gums, 

denture use, and the presence of loose teeth. Summary statistics computed by Neale et al. were 

obtained from the UK Biobank and accessed through the OpenGWAS project under accession 

codes “ukb-a-430”, “ukb-a-433”, and “ukb-a-431” [24, 29]. These data were derived from 

336,138 individuals of European ancestry. 

 

Outcome data 

Data on the outcome, CAC, were obtained from a meta-analysis by Kavousi et al. [30–

31]. We have utilised summary statistics from 28,655 individuals of European ancestry across 

14 studies.  

 

Selection of instrumental variables 

A valid instrumental variables (IVs) in MR must satisfy three core assumptions: 

relevance, independence/exchangeability, and exclusion restriction [32]. We have only used 

SNPs with a genome-wide significance (p < 5×10-8) unless otherwise specified. SNPs in linkage 

disequilibrium (LD; r2 < 0.001) within a clumping distance of 10,000 kb were excluded. For 

each instrumental variable (IV), the proportion of variance explained (R²) was computed using 

the formula: R² = 2 × β² × EAF × (1 - EAF), where EAF represents the effect allele frequency, 

and β denotes the estimated effect size. The F-statistic was calculated as F = (β/SE)², where β is 

the SNP’s association with the exposure, and SE is its standard error [32]. SNPs with F-statistics 

less than 10 were classified as weak instruments and were excluded from further analysis [33]. 

SNPs correlated with metabolic, anthropometric, pulmonary, cardiac, and immunological 

parameters were excluded to avoid potential pleiotropy. SNPs associated with hematologic and 

oncological outcomes were not excluded because blood morphological parameters are 

inherently linked with aging, and neoplasms are characterized by altered cell aging and 
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telomerase activity [27–28, 34]. Correlations were searched through the NHGRI-EBI GWAS 

Catalog [35]. 

 

Statistical analysis 

A standard two-sample MR approach was utilised in this study with minor exceptions. 

Variants were harmonised between the exposure and outcome datasets. If the selected SNPs 

were unavailable in the outcome dataset, they were replaced with proxy SNPs with an LD of r2 

> 0.8 or excluded from further MR analysis. The analysis utilized three commonly used MR 

methods: the inverse-variance weighted (IVW) approach with random effects, MR-Egger 

regression, and the weighted median estimator (WME). Sensitivity analyses were performed 

using the following methods. The MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) 

method was used to identify and correct for outlier variants that may be driving pleiotropy. The 

presence of horizontal pleiotropy was detected using the MR-Egger intercept test. The Cochran 

Q statistic was used to measure heterogeneity between variant-specific causal estimates. Finally, 

leave-one-out analyses were performed to determine the possible effect of individual SNPs on 

the causal estimates [32]. 

 As an additional analysis, we used a three-sample method to estimate the effect of TL 

on CAC. We selected genome-wide significant (p < 5×10-8) non-pleiotropic variants with clear 

functions in TL maintenance from the set reported by Li et al [25]. The ‘β’ and ‘SE’ for the 

associations between these SNPs and TL were obtained from Codd et al. analysis of data in the 

UK Biobank [23]. 

 Statistical analyses were performed with R software (version 4.1.1) using 

“TwoSampleMR” (version 0.5.6) and the “MR-PRESSO” package (version 1.0) [36–38]. 

Results 

The impact of TL on CAC 
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A total of 101 SNPs initially matched the inclusion criteria and were included in the 

initial analysis as IVs. A total of 52 SNPs were not included in the analysis: 25 were excluded 

due to associations with known or suspected confounders of CAC, 25 were unavailable in the 

outcome dataset, and 2 were excluded because they were palindromic. We have found that a 

genetically determined increase in TL is associated with a decrease in CAC. Despite statistically 

significant results in this analysis (IVW, WME p < 0.001), a significant degree of horizontal 

pleiotropy was detected with the MR-Egger intercept test (p = 0.01). As a result, the analysis 

was repeated with a genome-wide significance threshold of p < 5×10-10. The results of this 

initial analysis are presented in Supplementary Materials (Supplementary Tables SI-SIII and 

Supplementary Figures S1-S2) 

Using this stricter inclusion criterion, 74 SNPs were included in a stringent analysis. 

The analysis showed that the association between TL and CAC remained statistically significant 

and that the increased TL indeed appeared to protect against calcium deposition in coronary 

arteries (IVW p < 0.001, MR-Egger p = 0.03, WME p = 0.004). No statistically significant 

horizontal pleiotropy and no heterogeneity (MR-Egger intercept test, Cochran’s Q test p > 0.05) 

was detected. No single variant influenced the result appreciably, as demonstrated by leave-one-

out analysis. The results of this analysis are presented in Tables I-II and Figures 2-3. 

 

Table I. Mendelian Randomization between TL and CAC (stringent analysis) 

Exposure Method nSNP β SE P 

TL 

IVW 74 -0.46 0.01 <0.001 

MR-Egger 74 -0.17 0.17 0.03 

WME 74 -0.45 0.15 0.004 

 

Abbreviations: β, MR estimate; IVW, inverse-variance weighted method; nSNP, number of single-nucleotide polymorphisms;  
P, p-value; SE, standard error; TL, telomere length; WME, the weighted median method 

 

 
 

 

 
 

Table II. Sensitivity analyses of the Mendelian Randomization on TL and CAC (stringent analysis) 

Prep
rin

t



10 

Exposure 
Cohrane’s Q  

IVW 

Cohrane’s Q  

MR Egger 
MR Egger MR-PRESSO 

TL 

value P value P intercept P outliers Global P test 

76.41 0.37 72.54 0.46 -0.011 
0.05

4 
- 0.36 

 

Abbreviations: IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; P, p-value;  
TL, telomere length 

 

 

Figure 2. Associations between SNPs correlated to TL and CAC (stringent analysis) 

 
Each genetic variant included in the analysis is represented as a point + 95% CI. Location on the horizontal axis represents the 
correlation between the variant and exposure; location on the vertical axis represents the correlation between the variant and the 

outcome. Lines represent estimates of different MR methods. 
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism  
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Figure 3. Leave-one-out analysis for TL and CAC (stringent analysis) 

Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of genetic associations between exposure 

and outcome. Each dot and confidence interval represents an inverse-variance weighted mean obtained when a variant listed on the 
left side is removed from the analysis. 
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A three-sample MR analysis was also carried out. The most significant SNPs associated 

with TL were identified by Li et al. [25]. A total of 13 SNPs were included in the analysis 

(Supplementary Table SIV). Using the new IVs set, we also found that TL was causally 

associated with CAC. IVW yielded a statistically significant result (p < 0.01), while MR-Egger 

(p = 0.21) and the WME (p = 0.07) produced consistent but non-significant estimates. In the 

sensitivity analyses, no statistically significant heterogeneity was detected (Cochran Q test p > 

0.05), and we did not detect significant horizontal pleiotropy. The results of the three-sample 

MR analyses are presented in Tables III-IV and Figures 4-5. 

 

Table III. Mendelian Randomization between TL and CAC (three-sample) 

Exposure Method nSNP β SE P 

TL 

IVW 13 -0.43 0.15 0.006 

MR-Egger 13 -0.50 0.37 0.21 

WME 13 -0.34 0.19 0.07 

 

Abbreviations: β, MR estimate; IVW, inverse-variance weighted method; nSNP, number of single-nucleotide polymorphisms;  

P, p-value; SE, standard error; TL, telomere length; WME, the weighted median method 

 

Table IV. Sensitivity analyses of the Mendelian Randomization on TL and CAC (three-sample) 

Exposure 
Cohrane’s Q  

IVW 

Cohrane’s Q 

MR Egger 
MR Egger MR-PRESSO 

TL 

value P value P intercept P outliers Global P test 

15.91 0.20 15.84 0.15 0.005 0.83 - 0.22 

 

Abbreviations: IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; P, p-value;  
TL, telomere length 
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Figure 4. Associations between SNPs correlated to TL and CAC (three-sample) 

Each genetic variant included in the analysis is represented as a point + 95% CI. Location on the horizontal axis represents the 

correlation between the variant and exposure; location on the vertical axis represents the correlation between the variant and the 
outcome. Lines represent estimates of different MR methods. 
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism  
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Figure 5. Leave-one-out analysis for TL and CAC (three-sample) 

Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of genetic associations between exposure 

and outcome. Each dot and confidence interval represents an inverse-variance weighted mean obtained when a variant listed on the 

left side is removed from the analysis. 
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The impact of epigenetic proxies of aging on CAC 

A total of 20 SNPs were selected as IVs based on the inclusion criteria for IEAA 

(Supplementary Table SV). We found no genetic liability to IEAA that was causally associated 

with CAC. The results of analyses were not significant (IVW, MR-Egger, WME p > 0.05). A 

significant degree of heterogeneity was detected between the IVs (Cochran’s Q test p < 0.05), 

and there was evidence of horizontal pleiotropy (MR-PRESSO p = 0.02). The results of this 

analysis are presented in Tables V-VI and Figures 6-7. 

 A total of 10 SNPs were selected for the analysis of the impact of PhenoAge on CAC 

(Supplementary Table SVI). We found no genetic liability to PhenoAge that was causally 

associated with CAC. The results of analyses were not significant (IVW, MR-Egger, WME p > 

0.05). No significant heterogeneity was detected between the included SNPs, and there was no 

evidence of horizontal pleiotropy. The results of this analysis are presented in Tables V-VI and 

Figures 8-9. 

 

Table V. Mendelian Randomization between IEAA, PhenoAge, and CAC  

Exposure Method nSNP β SE P 

IEAA 

IVW 20 -0.01 0.03 0.64 

MR-Egger 20 0.08 0.07 0.25 

WME 20 0.002 0.03 0.94 

PhenoAge 

IVW 10 0.02 0.02 0.43 

MR-Egger 10 0.005 0.05 0.92 

WME 10 0.03 0.03 0.36 

 

Abbreviations: β, MR estimate; EAF, effect allele frequency; IVW, inverse-variance weighted method; nSNP, number of single-
nucleotide polymorphisms; P, p-value; PhenoAge, Phenotypic Age; SE, standard error; WME, the weighted median method 
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Table VI. Sensitivity analyses of the Mendelian Randomization on IEAA, PhenoAge and CAC 

Exposure 

Cohrane’s Q 

IVW 

Cohrane’s Q  

MR Egger 
MR Egger MR-PRESSO 

value P value P intercept P outliers Global P test 

IEAA 32.56 0.03 29.04 0.05  -0.03 0.16 - 0.02 

PhenoAge 6.75 0.66 6.68 0.57 0.005 0.80 - 0.70 

 

Abbreviations: EAF, effect allele frequency; IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum 

and Outlier; P, p-value; PhenoAge, Phenotypic Age 

 

 

 

Figure 6. Associations between SNPs correlated to IEAA and CAC 
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Each genetic variant included in the analysis is represented as a point + 95% CI. Location on the horizontal axis represents the 

correlation between the variant and exposure; location on the vertical axis represents the correlation between the variant and the 
outcome. Lines represent estimates of different MR methods. 
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism  

 

 

Figure 7. Leave-one-out analysis for IEAA and CAC 
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Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of genetic associations between exposure 

and outcome. Each dot and confidence interval represents an inverse-variance weighted mean obtained when a variant listed on the 
left side is removed from the analysis. 

 

 

Figure 8. Associations between SNPs correlated to PhenoAge and CAC 

Each genetic variant included in the analysis is represented as a point + 95% CI. Location on the horizontal axis represents the 

correlation between the variant and exposure; location on the vertical axis represents the correlation between the variant and the 
outcome. Lines represent estimates of different MR methods. 
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism  
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Figure 9. Leave-one-out analysis for PhenoAge and CAC 

Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of genetic associations between exposure 

and outcome. Each dot and confidence interval represents an inverse-variance weighted mean obtained when a variant listed on the 

left side is removed from the analysis. 
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The impact of dental deterioration parameters on CAC 

Due to the limited number of potential IVs for loose teeth and bleeding gums, we 

reduced the required genetic significance threshold to p < 5×10-6. We did not identify evidence 

of genetic liability supporting a causal association between dental deterioration parameters and 

CAC. None of the parameters studied significantly affected CAC in analyses (IVW, MR-Egger, 

and WME p > 0.05). Significant heterogeneity and horizontal pleiotropy were detected only for 

loose teeth. 

The SNPs analyzed are presented in Supplementary Tables SVII-SIX, while the results 

of the analyses of dental deterioration parameters and CAC are presented in Supplementary 

Tables SX-SXI and Supplementary Figures S3-S8. 

Discusion 

The study utilized MR to examine the causal relationship between aging and CAC. 

Aging is inherently difficult to measure directly and is commonly assessed using various 

genetically determined biomarkers, such as TL [23, 25], epigenetic age (e.g., DNA methylation 

patterns) [26–28], and changes in dental deterioration [39]. 

Our analysis showed a causal association between genetically longer TL and lower 

CAC, whereas no significant associations were found between epigenetic aging markers (IEAA, 

PhenoAge) and CAC. Similarly, genetically determined parameters related to age-related 

deterioration of dentition (bleeding gums, denture use, loose teeth) had no notable impact on 

CAC. 

TL, as a genetically determined marker of aging, is also associated with the risk of 

morbidity, including CVD. Previous MR studies confirm that longer TL is associated with 

lower CVD risk, although it is also linked to a higher risk of some cancers and HTN [40]. Other 
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studies highlight the inverse relationship between TL and CVD risk, such as coronary 

atherosclerosis, myocardial infarction (MI), and stroke [41]. 

Epigenetic markers may help clarify mechanisms of aging [26–28]. For instance, MR 

analysis using IEAA data suggests that TL, rather than changes in this epigenetic clock, reduces 

the risk of CVD, including related conditions like atherosclerosis, stable and unstable angina 

pectoris, and MI [42]. The potential for a one SD increase in TL to reduce cardiovascular 

complications by 10-30% emphasizes its clinical significance. Moreover, studies using 

PhenoAge data demonstrate that DNA methylation levels are positively associated with the risk 

of heart failure and arrhythmias [43]. 

Genetic factors linked to dentition deterioration (such as tooth mobility, gum bleeding, 

and the use of dentures) were hypothesized to influence aging and CAC. However, no 

significant genetic association with CAC was observed. Other studies investigating the link 

between oral health and CVD have found mixed results. While some of them failed to confirm a 

causal relationship between dental diseases and CVD, a potential link to heart failure was 

suggested [44]. Certain research studies on periodontitis indicate its causal role in increasing the 

risk of minor vessel stroke and CVD [19]. The results presented in the work of Liu et al. 

indicate that MR analysis supports potential causal associations between the use of dentures 

(genetic predisposition) and the risk of heart failure, stroke, type 2 diabetes, and other risk 

factors; no association was observed with CAD, MI, or subtypes of ischemic or haemorrhagic 

stroke [45]. Thus, while oral hygiene is critical in reducing cardiovascular risk, the causal 

mechanisms remain under investigation [2, 45]. 

CAC is a critical predictor of CVD, and CAC > 0 is an essential indication for pharmacological 

intervention. Shorter TL has been associated with higher CAC levels, suggesting an increased 

risk of CVD [46]. Studies show that a significant portion of patients with initially CAC = 0 will 

develop CAC > 0 within a 3-5 year observation period, but assuming age, sex, and individual 

CVD risk category [47–48]. 
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The relationship between TL and CVD remains relatively ambiguous – it is assumed 

that shortened TL is a result of oxidative stress, chronic inflammation, and endothelial damage, 

all of which contribute to CVD [41]. It was demonstrated that telomere shortening in endothelial 

cells promotes the expression of proinflammatory cytokines [16]. Additionally, TL is linked to 

the pathogenesis of type 2 diabetes, a known risk factor for CVD. Environmental and lifestyle 

factors, such as physical inactivity, smoking, and poor diet, can negatively affect TL, further 

increasing the risk for cardiovascular disease [41]. 

However, different studies suggest that mitochondrial dysfunction, rather than telomere 

shortening, may be the primary cause of endothelial damage [49].  

A significant inverse relationship between TL and CAC has been indicated, confirming 

the importance of TL as a biological marker of aging and its association with CAD [46]. CAC 

serves as an essential indicator in predicting cardiovascular events, strongly associated with 

subsequent CAD occurrence and mortality risk [1, 12, 50–51]. Additionally, the absence of 

CAC in CAD cases is very rare, whereas CAC Score >0 may be observed in up to 40% of 

primary care patients, suggesting underlying atherosclerosis progression [4, 52]. The extent of 

CAC is more pronounced in men, while in women, it intensifies in the postmenopausal period. 

Importantly, calcification correlates poorly with vessel lumen narrowing but shows a significant 

association with the total atherosclerotic plaque area [12]. 

Surprisingly, athletes, especially those engaged in endurance sports, often exhibit higher 

CAC levels than sedentary individuals [7]. Intense physical activity increases catecholamine 

levels, blood pressure, hypomagnesemia, and PTH levels, and affects coronary vessel 

hemodynamics. These factors contribute to a higher cardiovascular load, potentially increasing 

the risk of elevated CAC levels. However, the atherosclerotic plaques observed in athletes tend 

to be less vulnerable. Despite higher CAC levels in athletes, these calcifications may not 

indicate advanced atherosclerosis or heightened cardiovascular risk [7, 53]. 

The presence of CAC, particularly its distribution across arterial segments, is a 

significant indicator of vascular disease progression. However, in clinical practice, CAC 
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assessment alone is often insufficient, as coronary CT angiography with stenosis severity 

assessment is more informative [53]. The severity of CAC also corresponds to endothelial cell 

lifespan, thereby contributing to the assessment of arterial biological age by indicating gradual 

arterial aging [1]. Similarly, the correlation with TL allows for the evaluation of CVD and 

premature aging of the organism, independently of environmental influences [4, 12]. 

 

Limitations 

Among the limitations of the conducted analysis, one can point out the exclusion of 

SNPs with weak F-statistics (< 10), which helps avoid weak instrument bias by eliminating 

weak IVs but can also limit the completeness of the analysis, as fewer SNPs reduce statistical 

power.  

 Additionally, the determination of the significance threshold (GWAS) for SNPs 

selected as IVs may impact the statistical significance of the results and limit the effects of 

heterogeneity and pleiotropy in the conducted analysis, in the context of narrowing the selection 

in the additional analysis for TL. In our study, the selection criteria were also relaxed due to the 

very limited number of IVs in the dental parameter analysis.  

 In studies like ours, the accuracy of the procedures used to obtain the underlying data 

may also be indirectly significant to the overall results. Variations in telomere measurement 

methods, such as PCR, may introduce discrepancies, affecting results and, in turn, 

interpretation. Inconsistencies in calibration samples and standard curves across laboratories can 

introduce variability, underscoring the need for consistent research methodology [25].  
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Conclusions 

 This study supports an inverse causal relationship between TL and CAC, reinforcing 

CAC as a potential biomarker of biological aging. Epigenetic aging markers and dental 

deterioration parameters were not significantly linked to CAC. Future studies should explore 

additional aging-related traits and refine the genetic instruments for epigenetic aging and dental 

health to further elucidate their roles in vascular aging. 
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Table I. Mendelian Randomization between TL and CAC (stringent analysis) 

Exposure Method nSNP β SE P 

TL 

IVW 74 -0.46 0.01 <0.001 

MR-Egger 74 -0.17 0.17 0.03 

WME 74 -0.45 0.15 0.004 

 

Abbreviations: β, MR estimate; IVW, inverse-variance weighted method; nSNP, number of single-nucleotide polymorphisms;  

P, p-value; SE, standard error; TL, telomere length; WME, the weighted median method 
 

 

 

Table II. Sensitivity analyses of the Mendelian Randomization on TL and CAC (stringent analysis) 

Exposure 
Cohrane’s Q  

IVW 

Cohrane’s Q  

MR Egger 
MR Egger MR-PRESSO 

TL 

value P value P intercept P outliers Global P test 

76.41 0.37 72.54 0.46 -0.011 
0.05

4 
- 0.36 

 

Abbreviations: IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; P, p-value;  
TL, telomere length 

 

Table III. Mendelian Randomization between TL and CAC (three-sample) 

Exposure Method nSNP β SE P 

TL 

IVW 13 -0.43 0.15 0.006 

MR-Egger 13 -0.50 0.37 0.21 

WME 13 -0.34 0.19 0.07 

 

Abbreviations: β, MR estimate; IVW, inverse-variance weighted method; nSNP, number of single-nucleotide polymorphisms;  

P, p-value; SE, standard error; TL, telomere length; WME, the weighted median method 
 

Table IV. Sensitivity analyses of the Mendelian Randomization on TL and CAC (three-sample) 

Exposure 
Cohrane’s Q  

IVW 

Cohrane’s Q 

MR Egger 
MR Egger MR-PRESSO 

TL 

value P value P intercept P outliers Global P test 

15.91 0.20 15.84 0.15 0.005 0.83 - 0.22 

 

Abbreviations: IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum and Outlier; P, p-value;  
TL, telomere length 
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Table V. Mendelian Randomization between IEAA, PhenoAge, and CAC  

Exposure Method nSNP β SE P 

IEAA 

IVW 20 -0.01 0.03 0.64 

MR-Egger 20 0.08 0.07 0.25 

WME 20 0.002 0.03 0.94 

PhenoAge 

IVW 10 0.02 0.02 0.43 

MR-Egger 10 0.005 0.05 0.92 

WME 10 0.03 0.03 0.36 

 

Abbreviations: β, MR estimate; EAF, effect allele frequency; IVW, inverse-variance weighted method; nSNP, number of single-

nucleotide polymorphisms; P, p-value; PhenoAge, Phenotypic Age; SE, standard error; WME, the weighted median method 

 

 

 

 

Table VI. Sensitivity analyses of the Mendelian Randomization on IEAA, PhenoAge and CAC 

Exposure 

Cohrane’s Q 

IVW 

Cohrane’s Q  

MR Egger 
MR Egger MR-PRESSO 

value P value P intercept P outliers Global P test 

IEAA 32.56 0.03 29.04 0.05  -0.03 0.16 - 0.02 

PhenoAge 6.75 0.66 6.68 0.57 0.005 0.80 - 0.70 

 

Abbreviations: EAF, effect allele frequency; IVW, inverse-variance weighted method; MR-PRESSO, MR Pleiotropy RESidual Sum 
and Outlier; P, p-value; PhenoAge, Phenotypic Age 

 

Prep
rin

t



Figure 1. Study workflow
 Abbreviations: CAC, coronary artery calcification; GWAS, genome-wide association study;
IVW, inverse-variance weighted; LD, linkage disequilibrium; MR, Mendelian Randomization;
MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; SNPs, single-
nucleotide polymorphisms; TL, telomere length; WME, weighted median estimator
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Figure 2. Associations between SNPs correlated to TL and CAC (stringent analysis)

Each genetic variant included in the analysis is represented as a point + 95% CI. Location on
the horizontal axis represents the correlation between the variant and exposure; location on
the vertical axis represents the correlation between the variant and the outcome. Lines
represent estimates of different MR methods.
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism
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Figure 3. Leave-one-out analysis for TL and CAC (stringent analysis)
Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of
genetic associations between exposure and outcome. Each dot and confidence interval
represents an inverse-variance weighted mean obtained when a variant listed on the left side
is removed from the analysis.
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Figure 4. Associations between SNPs correlated to TL and CAC (three-sample)
Each genetic variant included in the analysis is represented as a point + 95% CI. Location on
the horizontal axis represents the correlation between the variant and exposure; location on
the vertical axis represents the correlation between the variant and the outcome. Lines
represent estimates of different MR methods.
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism
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Figure 5. Leave-one-out analysis for TL and CAC (three-sample)
Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of
genetic associations between exposure and outcome. Each dot and confidence interval
represents an inverse-variance weighted mean obtained when a variant listed on the left side
is removed from the analysis.
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Figure 6. Associations between SNPs correlated to IEAA and CAC
Each genetic variant included in the analysis is represented as a point + 95% CI. Location on
the horizontal axis represents the correlation between the variant and exposure; location on
the vertical axis represents the correlation between the variant and the outcome. Lines
represent estimates of different MR methods.
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism
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Figure 7. Leave-one-out analysis for IEAA and CAC
Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of
genetic associations between exposure and outcome. Each dot and confidence interval
represents an inverse-variance weighted mean obtained when a variant listed on the left side
is removed from the analysis.
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Figure 8. Associations between SNPs correlated to PhenoAge and CAC
Each genetic variant included in the analysis is represented as a point + 95% CI. Location on
the horizontal axis represents the correlation between the variant and exposure; location on
the vertical axis represents the correlation between the variant and the outcome. Lines
represent estimates of different MR methods.
Abbreviation: MR, Mendelian Randomization; SNP, Single Nucleotide Polymorphism
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Figure 9. Leave-one-out analysis for PhenoAge and CAC
Horizontal axis—inverse-variance weighted-mean estimate with 95% confidence intervals of
genetic associations between exposure and outcome. Each dot and confidence interval
represents an inverse-variance weighted mean obtained when a variant listed on the left side
is removed from the analysis.
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