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A b s t r a c t

IInnttrroodduuccttiioonn::  The retinoic acid (RA) signaling pathway plays important roles in
neural development. All-trans retinoic acid (ATRA) activates the RA signal by
regulating RAR-β in mesenchymal stem cell (MSC)-derived neuron cells. Here,
we try to investigate whether RAR-β over-expression can affect neuronal dif-
ferentiation of MSCs. 
MMaatteerriiaall  aanndd  mmeetthhooddss::  The RAR-β gene was constructed into adenovirus Ad-RAR-β
by using the AdEasy system. The MSCs were infected with Ad-RAR-β. Real time-
polymerase chain reaction (RT-PCR), Western blot and immunofluorescence were
performed to detect the expression and localization of RAR-β. The MSCs were trea-
ted with 1 µmol/l ATRA and modified neuronal induction medium (MNM). Soma
size and axon length of induced neurons were measured. Neural specific markers
were detected by RT-PCR, western blot and immunofluorescence to evaluate neu-
ronal differentiation.
RReessuullttss::  The 1300 bp fragment of RAR-β gene was confirmed to be correctly
cloned in the adenovirus vector. Cloudiness amplification of Ad-RAR-β was
observed in HEK293 cells during package. After 48 h of Ad-RAR-β infection, about
70% of MSCs were RFP-positive. RAR-β expression was increased by about
1988-fold and located in the nucleus. RAR-β over-expression did not affect neu-
ronal differentiation efficiency; however, soma size of induced neuron cells
enlarged from 716.25 ±95.96 µm2 to 1160.12 ±352.65 µm2 and axon length from
64.17 ±11.88 µm to 83.98 ±13.69 µm. Neural markers other than nestin – NSE,
MAP-2, Tau, and Tuj1 – were increased by 4- to 11-fold in RAR-β over-expressed
neuron cells with ATRA/MNM induction compared with the Ad-null control group. 
CCoonncclluussiioonnss::  Our results have demonstrated that adenovirus-mediated RAR-β
over-expression could facilitate neuron cell types of MSCs in vitro, indicating
that the RAR-β-activated RA signal might be a vital factor in neuronal differen-
tiation.

KKeeyy  wwoorrddss::  mesenchymal stem cells, all-trans retinoic acid, retinoic acid receptor β,
neuronal differentiation.

Introduction

Perinatal hypoxic-ischemic encephalopathy (HIE) is an important disease
of brain injury without a good treatment [1]. Neural stem cell transplan-
tation in a brain damage animal model has shown its potential therapeutic
applications in neuronal disease [2, 3]. Mesenchymal stem cells (MSCs)
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are adult stem cells with characteristics of easy iso-
lation, self-renewal, multi-potential and low immu-
nogenicity, which have been widely used in tissue
engineering to regenerate different cells/tissues
and repair damaged tissues [4, 5]. Many reports
have indicated that MSCs can differentiate into neu-
ron cells under appropriate cellular conditions in
vitro and recover learning ability and spatial mem-
ory after being transplanted into hypoxic-ischemic
brain damage (HIBD) rats [6, 7]. However, compared
to the high differentiation efficacy of neuron cells
derived from MSCs in vitro, differentiation efficacy
of MSCs in vivo and its role of functional replace-
ment were relatively lower [6, 8]. Therefore, it is def-
initely required to explore a more reliable method
to induce specific neuron cell types.
The retinoic acid signaling pathway can regulate

gene expression and modulate a wide variety of
biological processes including cell proliferation, dif-
ferentiation, apoptosis and immuno-regulation [9].
We have reported that vitamin A level in vivo may
affect the differentiation into mature and functional
neuron cells from MSCs [7]. All-trans retinoic acid
(ATRA), an active form of vitamin A, broadly partic-
ipates in embryonic nervous system development
and nerve cell differentiation [10]. In our previous
study, ATRA treatment activated the RA signaling
pathway by up-regulating retinoic acid receptor β
(RAR-β) expression and subsequently promoted
neuronal differentiation of MSCs [11]. Thus, we hy-
pothesize that over-expression of RAR-βmight acti-
vate RA signaling and further improve ATRA-induced
neuronal differentiation of MSCs. Here, we induced
RAR-β over-expression by using an adenovirus vec-
tor and investigated the effects of RAR-β on neu-
ronal differentiation of rat MSCs.

Material and methods 

IIssoollaattiioonn  ooff  rraatt  mmeesseenncchhyymmaall  sstteemm  cceellllss  

The animal study and all experiments were appro-
ved by the Ethical Committees of the Institute of
Zoology and the Children’s Hospital of Chongqing
Medical University. Four-week old Sprague-Dawley
rats were obtained from the Experimental Animal
Centre of Chongqing Medical University. As in the
previously reported method [12], rats were sacrificed
by decapitation, then the tibias and femurs were iso-
lated with clearance of connective and soft tissues.
MSCs were harvested by flushing bone marrow and
grown in Dulbecco’s Modified Eagle Medium/Nu-
trient Mixture F12 (DMEM/F12, Hyclone, USA) sup-
plemented with 10% fetal bovine serum (FBS, Hyclone,
USA), 100 units/ml penicillin, and 100 µg/ml strep-
tomycin at 37°C in 5% CO2. Cells were passaged at
a confluency of 90%. Three to 5 passages of MSCs
were used for in vitro experiments.

CCoonnssttrruuccttiioonn  ooff  rreeccoommbbiinnaanntt  aaddeennoovviirruuss  
vveeccttoorr  ccoonnttaaiinniinngg  rraatt  RRAARR--ββ ggeennee

Total RNA was isolated from PC12 cells and tran-
scribed into cDNA. The coding region of rat RAR-βwas
specifically amplified from the cDNA template of PC12
cells. The adenovirus was constructed using the
AdEasy system [13]. Briefly, the PCR product was
digested by two endonucleases BamH I and HinD III.
The product was directional cloned into the pAdTrace-
TOX vector to construct the pAdTrace-RAR-β plasmid.
The correct recombinant pAdTrace-RAR-β was li n-
earized by Pme I, following co-transformation with
the backbone vector pAdEasy-1 in Escherichia coli
BJ5183 to obtain the recombinant adenovirus vector
pAd-RAR-β. After being linearized by Pac I, the homo l-
ogous recombinant pAd-RAR-β was liposome (Lipo-
fectamineTM 2000, Invitrogen, USA) transfected into
the HEK293 cell line to package the recombinant ade-
novirus vector containing the RAR-β gene (Ad-RAR-β).
High titer adenovirus was obtained by repeated infec-
tion in HEK293 cells. 

AAddeennoovviirruuss--mmeeddiiaatteedd  oovveerr--eexxpprreessssiioonn  
ooff  RRAARR--ββ iinn  mmeesseenncchhyymmaall  sstteemm  cceellllss

The MSCs were seeded in 6-well culture plates at
a confluence of 50-60%, and then adenovirus at mul-
tiplicity of infection (MOI) of 100 was added to the
medium. After 48 h of infection, red fluorescent
protein (RFP) was observed under a microscope
(TE2000-S, Nikon, Japan). Cells (1 × 106) were collec -
ted and suspended in 1 ml of 1% BSA PBS buffer.
The ratio of RFP-positive to total cells was acquired
by flow cytometry using a FACSCantoTM II system
and Cell Quest Pro software (BD Biosciences). The
RT-PCR, western blot and immunofluorescence were
performed to detect the expression of RAR-β. An
empty adenovirus (Ad-null) was used as an aden-
o virus control.

AATTRRAA--iinndduucceedd  nneeuurroonnaall  ddiiffffeerreennttiiaattiioonn

The MSCs were cultured in DMEM/F12 medium for
24 h. Then DMEM/F12 medium containing 1 µmol/l
ATRA (Sigma, USA, resolved in 100% ethanol at 
10 mmol/ml storage concentration) was used to
incubate with MSCs for 24 h. Afterward, DMEM/F12
medium was removed, cells were washed with 
D-Hank’s solution twice and induced with modified
neuronal induction media (MNM) which was com-
posed of DMEM/F12/100 units/ml penicillin, and
100 µg/ml streptomycin/1.6% DMSO/160 µmol/l
BHA/20 mmol/l KCl/1.6 mmol/l valproic acid/8 µmol/l
forskolin/0.8 µmol/l hydrocortisone/4 µg/ml insulin
(all from Sigma, USA). Experimental MSCs were
treated with ATRA/MNM induction, Ad-null infec-
tion and ATRA/MNM induction, Ad-RAR-β infection
and ATRA/MNM induction, respectively. In two ade-
novirus groups, MSCs were infected by adenovirus
for 48 h before neuronal induction. The MSCs with-
out any treatment were used as a negative control.

Adenovirus-mediated RAR-β over-expression enhances ATRA-induced neuronal differentiation of rat mesenchymal stem cells
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QQuuaannttiittaattiivvee  aannaallyyssiiss  ooff  nneeuurroonnaall  ddiiffffeerreennttiiaattiioonn

Treated MSCs were stained for neuron related
markers, nestin, neuron-specific enolase (NSE) and
Tau. Images of ten non-overlapping fields of view
were captured under a microscope (TE2000-S, Nikon,
Japan). Positive stained cells with protruding soma,
axons and dendrites were counted as induced neu-
ron cells to calculate induction efficacy. The ImageJ
program was used to measure the soma size and
axon length. Three independent experiments were
performed and two replicates were set in each ex -
periment.

RRNNAA  iissoollaattiioonn  aanndd  RRTT--PPCCRR  aannaallyyssiiss

As previously described [14], extraction of total
RNA was carried out using an RNA extraction kit
(Genemega Inc, USA) according to the manufacturer’s
instructions. Then, 10 µg of total RNA was reverse
transcribed into cDNA with random primer and
Superscript II reverse transcriptase (TAKARA, Japan).
The PCR templates were prepared with 5- to 10-fold
dilution of the first strand cDNA products. The genes
of interest were amplified with PCR primers 
(18-20 mers) which were designed using the Primer
3.0 program (Table I). The Bio-Rad protocol for real-
time PCR amplification was performed as follows:
94°C × 20’’, 58°C × 20’’, 70°C × 20’’ and reading
plate for 40 cycles. Primary data of Ct value were
taken to calculate fold change by normalizing each
cDNA to GAPDH.

WWeesstteerrnn  bblloott  aannaallyyssiiss

Western blot analysis and quantification were
performed as previously described [14]. Briefly, trea-
ted MSCs from T25 culture flasks were collected
and lysed with RAPI buffer containing PMSF. Appro-
ximately 20 µg of total proteins per lane were loa-
ded onto an 8-10% SDS/PAGE gel (Beyotime, China).
Electrophoretic separation was performed at an
applied voltage of 120 V for 1.5-4 h in SDS running
buffer. Then, proteins were transferred to an Immo-
bilon-P membrane (Millipore, Billerica, USA). After
blocking with 5% fat-free skimmed milk in Tris-
buffered saline buffer containing 0.05% Tween-20
at room temperature for 1 h, the membrane was incu-

bated with anti-NSE (Abcam, USA), anti-neuron-
specific class III β-tubulin (Tuj1) (Abcam, USA) or
anti-β-actin (Santa Cruz Biotechnology, USA) pri-
mary antibody at 4°C overnight respectively, follo -
wed by incubation with an appropriate secondary
antibody conjugated with horseradish peroxidase
(Santa Cruz Biotechnology, USA) at room tempera-
ture for 1 h. The presence of the proteins was de -
tected and quantified by using Luminata Crescendo
Western HRP Substrate (Millipore, Billerica, USA)
with the Syngene GBox Image Station.

IImmmmuunnoofflluuoorreesscceennccee  ssttaaiinniinngg

Immunofluorescence staining was carried out
using previous methods [14]. First, treated MSCs
were fixed with methanol at –20°C for 15 min and
blocked with 5% bovine serum albumin at room
temperature for 1 h, followed by incubation with NSE,
nestin or Tau primary antibody (all from Abcam,
USA) at 4°C overnight. After washing twice, DyLight
488 conjugated secondary antibody (Jackson Immu -
noResearch Laboratories, Inc, USA) was added to
incubate cells at room temperature for 30 min. DAPI
(Sigma, USA) was used to stain nuclei. The pres-
ence of the proteins was examined under a reverse
fluo rescence microscope (TE2000-S, Nikon, Japan).
Untreated MSCs stained by non-specific IgG were
used as negative controls. 

SSttaattiissttiiccaall  aannaallyyssiiss

All data were analyzed using the SPSS 15.0 soft-
ware package and presented as mean ± standard
deviation (SD). A two-tailed Student’s t-test assum-
ing equal variances was performed to measure sig-
nificant differences between two samples. A p < 0.05
was considered statistically significant.

Results

CCoonnssttrruuccttiioonn  ooff  rreeccoommbbiinnaanntt  aaddeennoovviirruuss  
vveeccttoorr  ccoonnttaaiinniinngg  rraatt  RRAARR--ββ ggeennee

An approximately 1300 bp fragment of the full-
length RAR-β gene was PCR amplified from the
recombinant adenoviral plasmid pAd-RAR-β, and 
a specific 4500 bp fragment was digested by Pac I

VVaarriiaabbllee FFoorrwwaarrdd RReevveerrssee

RAR-β GACGGATCCACCACCATGGGCATG  CACAAGCTTTCACTGCAGCAGC 
full length TTTGACTGTATGGATGTTC GGGGACTGGCTCAC

RAR-β AAAGCCCACCAGGAAACC CTTGGCGAACTCCACGAT

GAPDH TGGATGGTCCCTCTGGAA GTGAGCTTCCCGTTCAGC 

nestin GGGCAAGTGGAACGTAGA TCCCACCGCTGTTGATTT 

NSE CTGTTTGCTGCTCAAGGTC TCCCACTACGAGGTCTGC

MAP-2 GTATCAGGAGACAGGGAGGAG GGGGTAGTAGGTGTTGAGGTG

Tau AAAGGTGGCAGTGGTTCG GGCTGGTGCTTCAGGTTC

TTaabbllee  II..  RT-PCR Primers (5’-3’)
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restriction enzyme from the pAd-RAR-β plasmid and
compared with pAdEasy-1 bone vector (Figure 1 A).
The target genes were confirmed to be correctly
cloned in the adenovirus vector by gene sequencing
and matched to the RAR-β sequence in GenBank. The
pAdTrace-TOX vector contains an RFP code region dri-
ven by the CMV promoter. Thus, we can check RFP to
measure the transfection and infection efficiency. At
24 h post Pac I linearized pAd-RAR-β plasmid trans-
fection, more than 10% of HEK293 cells were RFP pos-
itive. Amplification of Ad-RAR-β exhibited cloudiness
in the HEK293 cell line at day 10 during package 
(Fig ure 1 B). This result demonstrated that the recom-
binant adenovirus vector containing the rat RAR-β
gene was successfully constructed.

AAdd--RRAARR--ββ oovveerr--eexxpprreesssseedd  RRAARR--ββ iinn  MMSSCCss

Ad-RAR-βwas added to infect MSCs. After 48 h of
infection, 71.61% of RFP-positive MSCs were observed.

Meanwhile, 69.63% of RFP-positive MSCs with Ad-
null infection were taken as the control. From real-
time PCR and western blot results, we found that
MSCs hardly expressed endogenous RAR-β, Ad-null
infection did not affect the expression of RAR-β, and
Ad-RAR-β adenovirus could significantly induce high
expression of RAR-β (Figures 2 A, B). The immuno-
fluorescence picture showed the nuclear localization
of exogenous RAR-β over-expression (Figure 2 C).
Therefore, Ad-RAR-β could effectively infect MSCs and
increase the mRNA and protein expression of RAR-β.

RRAARR--ββ oovveerr--eexxpprreessssiioonn  iimmpprroovveedd  AATTRRAA--iinndduucceedd
nneeuurroonnaall  ddiiffffeerreennttiiaattiioonn  ooff  MMSSCCss

As we previous described, ATRA treatment could
improve neuronal differentiation and only stimulate
expression of the RAR-β [11]. As a neuron-specific
receptor, RAR-β is necessarily required in neuron
development and is widespread in different neuron
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22002277  bbpp
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11330000  bbpp
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FFiigguurree  11..  Construction and identification of adenovirus Ad-RAR-β. AA – Identification of recombinant pAd-RAR-β plasmid by
PCR amplification and enzyme digestion. 1 – λ-HinD�III DNA marker, 2 – full length of RAR-β PCR amplified from pAd-RAR-β,
3 – pAd-RAR-β digested by Pac I enzyme, 4 – pAdEasy-1 bone vector digested by Pac I enzyme as negative control. 
BB – Package of Ad-RAR-β in HEK293 cells. After digestion by Pac I enzyme and purification, pAd-RAR-β was liposome
transfected into HEK293 cells. a – pAd-RAR-β transfected HEK293 cells at 1d. b – Cloudiness amplification of adenovirus
Ad-RAR-β was observed in HEK293 cells at 10d pAd-RAR-β transfection. CC – Infected efficacy of adenovirus Ad-RAR-β in
MSCs. a – Uninfected MSCs, b – Ad-null infected MSCs, c – Ad-RAR-β infected MSCs (Scale bar = 200 µm)
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VVaarriiaabbllee AATTRRAA  ++  MMNNMM AAdd--RRFFPP  ++  AATTRRAA  ++  MMNNMM AAdd--RRAARR--ββ ++  AATTRRAA  ++  MMNNMM

Neural differentiation efficiency [%] 83.35 ±5.05 79.20 ±8.62 82.41 ±11.03

Soma size [µm2] 739.65 ±41.11 716.25 ±95.96 1160.12 ±352.65*

Axonal length [µm] 81.6 ±9.72 64.17 ±11.88 83.98 ±13.69*

TTaabbllee  IIII..  RAR-β over-expression improved neuronal differentiation of MSCs

tissues [15]. However, RAR-β is barely detected in
MSCs. Next, we sought to determine whether over-
expression of RAR-β in MSCs could activate the ATRA-
induced signal pathway and facilitate neuronal dif-
ferentiation in MNM induction. As shown in Table II
and Figure 3 A, 24 h after ATRA/MNM induction,
about 88% of MSCs became retracted and refraction-
enhanced, exhibiting long axons or dendrites which
were counted as induced neuronal cells. There was
no significant difference of neuronal induction effi-
cacy among the three treated groups. The soma sizes
of ATRA/MNM, Ad-null/ATRA/MNM and Ad-RAR-β/
ATRA/MNM treated cells were 739.65 ±41.11 µm2,
716.25 ±95.96 µm2 and 1160.12 ±352.65 µm2, respec-
tively. Axon length is another index to evaluate neu-
ron cells. Ad-null did not affect soma size of induced
cells, but axon length of Ad-null/ATRA/MNM treated
cells was shorter than that of ATRA/MNM treated
cells. With Ad-RAR-β-mediated RAR-β over-expres-
sion, induced cells exhibited longer axons (83.98

±13.69 µm) compared with 64.17 ±11.88 µm of axons
in Ad-null groups. Next, we detected neuronal spe-
cific markers to measure neuronal cells induced
from MSCs. Real-time PCR and western blot showed
that MSCs hardly expressed neuronal related mar-
kers, nestin, NSE, MAP-2, Tau and Tuj1, which were
significantly increased in ATRA/MNM-induced cells.
No difference was seen between ATRA/MNM and Ad-
null/ATRA/MNM groups. RAR-β over-expression result-
ed in 4 to 11-fold higher expression of NSE, MAP-2,
Tau and Tuj1, but not nestin (Figure 3 B). The above
results were also confirmed by immunofluorescence
staining. The expression of NSE and Tau proteins was
detected in cytoplasm (Figure 3 C). The green fluo-
rescence of nestin was at similar intensity among the
three induction groups. NSE and Tau protein had
increased expression with Ad-RAR-β treatment
(Figure 3 D). Taken together, we demonstrated that
adenovirus-mediated RAR-β transfection could im-
prove neuronal differentiation of MSCs.
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FFiigguurree  22..  Adenovirus Ad-RAR-β infection mediates over-expression of RAR-β in rat MSCs. The MSCs were infected with
adenovirus Ad-RAR-β for 48 h, and untreated MSCs and Ad-null infected MSCs were used as controls. AA – Total RNA
of cells in different treated group was extracted and reverse transcribed into cDNA template. Expression of RAR-β was
analyzed with GAPDH normalization. Real-time PCR results were confirmed in at least three batches of independent
experiments (n = 3, *p < 0.05 vs. Ad-null/ ATRA/MNM group). BB – Cells were lysed and subjected to SDS-PAGE and
western blotting using RAR-β antibody. Equal loading of the samples was confirmed by β-actin expression. CC – Local-
ization and expression of RAR-β was detected by immunofluorescence staining. Cells were fixed and probed with pri-
mary antibodies against RAR-β, followed by staining with DyLight 488 labeled secondary antibodies and staining of
nuclei with DAPI. Scale bar = 200 µm

Neuronal differentiation efficacy, soma size and axon length of induced neuron cells treated with ATRA/MNM, Ad-null/ATRA/MNM, and Ad-RAR-β/
ATRA/MNM, respectively (n = 10, *p < 0.05 vs. Ad-null/ATRA/MNM group) 
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Discussion

The ATRA plays very important roles in early brain
development [16, 17]. It has been demonstrated that
ATRA can induce directed neuronal differentiation
of embryonic stem cells (ESCs) or neuroblastoma
cells [18, 19]. The ATRA can promote neural lineage
derived from ESCs by crosstalking with the ERK and
Wnt pathways [20]. We previously revealed that pre-
activation of RA signaling by ATRA improved the effi-
ciency of neuronal differentiation from MSCs, and
also promoted maturation and function of derived
neuron cells [11].
As a ligand of the RA signaling pathway, ATRA is

translocated to the retinoic acid receptors (RARs)
through cellular retinoic acid binding proteins (CRABP)
to regulate target genes [21]. There are three sub-
types of RARs, RAR-α, RAR-β, and RAR-γ, activated

in a cell type- and tissue-specific manner [22, 23].
Zechel [24] reported differential requirement of RAR
isotypes during the initial stages of neural differ-
entiation of PCC7 cells. Endogenous expression of
RAR-α and RAR-γ is detectable in MSCs, but RAR-β
rarely exhibits it. Combination of ATRA pretreatment
with MNM induction is a mature method to induce
neuronal differentiation of MSCs. However, only
RAR-β was selectively upregulated by 24 h ATRA
pretreatment and had a higher increased expres-
sion in induced neuron cells compared with RAR-α
and RAR-γ, indicating ATRA activation and neuronal
differentiation mediated through RAR-β in MSCs [11].
RAR-β might be an important factor to activate the
RA signaling pathway in developing neuronal diffe-
rentiation of MSCs in vitro. So, we hypothesize that,
if MSCs have a relatively high expression of RAR-β, it
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FFiigguurree  33.. Ad-RAR-β mediated RAR-β over-expression improves neuronal differentiation of rat MSCs. Cells were divided
into 4 groups. Cells in control group were untreated, cells in ATRA/MNM induction group were induced with 1 µmol/l
ATRA for 24 h, followed by MNM incubation for another 24 h. Before neuronal induction, cells in Ad-null/ATRA/MNM
induction group and Ad-RAR-β/ATRA/MNM induction group were infected by adenovirus Ad-null and Ad-RAR-β for 
48 h, respectively. AA – Cell morphology, a – Control, b – ATRA/MNM treatment, c – Ad-null/ATRA/MNM treatment, 
d – Ad-RAR-β/ATRA/MNM treatment. BB – Expression of nestin, NSE, MAP-2, and Tau was analyzed with GAPDH nor-
malization (n = 3, *p < 0.05, Ad-RAR-β/ATRA/MNM vs. Ad-null/ATRA/MNM). Real-time PCR results were confirmed in
at least three batches of independent experiments. CC – Rat MSCs were treated with ATRA for 24 h and collected at
the indicated time points with MNM culture, then lysed and subjected to SDS-PAGE and western blot using NSE and
Tuj1 antibody. Equal loading of the samples was confirmed by β-actin expression. DD – Immunofluorescence staining
of neural specific markers. Cells were fixed and probed with antibodies against nestin, NSE, and Tuj1 followed by stai-
ning with DyLight 488 labeled secondary antibodies and staining of nuclei with DAPI. Scale bar = 200 µm
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might be easier to induce MSCs to differentiate into
neuron cells by ATRA and MNM induction.
Here, we tried to over-express exogenous RAR-β

and determine its role in neuronal induction of
MSCs. Because of stem cell derivation, a general
eukaryotic expression vector is hardly transfected
into MSCs by lipofection or calcium phosphate co-
precipitation [25]. In this study, we successfully con-
structed an adenovirus vector carrying the RAR-β
gene by using the replication-defective AdEasy ade-
novirus system. Ad-RAR-β was confirmed to infect
MSCs with efficacy of more than 60%, and signifi-
cantly enhance mRNA and protein expression level
of RAR-β. RAR-β is classified as a nuclear receptor
to regulate the transcription of adjacent genes [26].
Immunofluorescence results indicated nuclear local-
ization of RAR-β in MSCs, suggesting that Ad-RAR-β
can induce a biologically active RAR-β form.
It has been reported that ATRA dose-dependently

affects target gene expression [27]. We previously
detected the effect of different concentrations of ATRA
on neuronal differentiation of MSCs and found that
1 µmol/l of ATRA pretreatment may induce neuron
cells with the longest axon and soma diameter, and
the highest expression of neuronal specific markers.
Actually, ATRA at 10 µmol/l was also as good as, if not
better than, ATRA at 1 µmol/l in the role of neuronal
induction. However, the high cell death rate under
this circumstance was a major problem; the reason
might be the cytotoxicity of ATRA at high concen-
trations [28]. So, we considered that when RAR-β
is over-expressed in MSCs, 1 µmol/l of ATRA might
be easier to activate the RA signaling pathway so
that it plays a more effective role. Though induc-
tion efficiency was not distinct, soma size and axon
length were improved in induced neuron cells with
Ad-RAR-β infection. Ad-null control was set up in
following experiments since adenovirus might affect
axon length of induced neuron cells. Most of the
neuronal specific markers had increased expression
with RAR-β over-expression. Nevertheless, we did
not find a change of nestin between ATRA/MNM
and Ad-RAR-β/ATRA/MNM groups. Nestin is an inter-
mediate filament protein which is specifically ex-
pressed in neuroepithelial stem cells, and can also
transiently appear in other progenitor cells [29]. Nes-
tin only expresses in neural epithelium at an early
stage of embryonic development, and stops expres-
sion after birth [30, 31]. During the ATRA/MNM-
induced neuronal differentiation process, the expres-
sion of nestin increased within the first 18 h and
decreased quickly. The Ad-RAR-β/ATRA/MNM-induced
neuron cells crossed the peak of nestin expression,
and only a low level of nestin expression was found
in the mature neuron cells.
In conclusion, we demonstrated that adenovirus-

mediated RAR-β over-expression in MSCs could
improve ATRA-induced neuronal differentiation of
MSCs in following MNM induction, providing us with

a promising method for neuronal differentiation in
vitro. As a neural specific receptor, RAR-β is also 
a critical candidate molecule for RA signal activation.
Further studies on RAR-β should contribute to the
biochemical mechanism of the RA signaling pathway
in neuronal development and differentiation. 
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AAppppeennddiixx
Illustration of construction 
of recombinant adenovirus 
vector containing rat RAR-β gene
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