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Exendin-4 enhances expression of Neurod1  
and Glut2 in insulin-producing cells derived from 
mouse embryonic stem cells
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A b s t r a c t

Introduction: Stem cells involved cell replacement therapies for type 1 dia-
betes mellitus is promising, yet time-consuming and inefficient. Exendin-4 
is a  glucagon-like peptide-1 (GLP-1) receptor agonist which has been re-
ported to possess anti-apoptotic effects, thereby increasing β-cell mass and 
improving β-cell function. The present study aimed to investigate whether 
exendin-4 would enhance the differentiation of embryonic stem cells into 
insulin-secreting cells and improve the pancreatic differentiation strategy.
Material and methods: R1 embryonic stem cells were treated with different 
concentrations of exendin-4 and divided into three groups. In the high dos-
age group (group H), exendin-4 was added at the dosage of 10 nmol/l. In the 
low dosage group (group L), exendin-4 was added at the dosage of 0.1 nmol/l.  
Group C was a control. Expression of genes related to the β-cell phenotype 
and immunofluorescence staining of insulin and C-peptide were detected.
Results: Compared with groups L and C, group H had the highest mRNA 
expression levels of Isl1, Pdx1, Ngn3, and Insulin1 (p < 0.05). Neurod1 and 
Glut2 only emerged at the final stage of differentiation in group H. Immu-
nofluorescence analysis revealed that exendin-4 upregulated the protein 
expression of insulin and C-peptide.
Conclusions: Exendin-4 remarkably facilitated Neurod1 and Glut2 gene tran-
scription, and was able to induce differentiation of embryonic stem cells 
into endocrine and insulin-producing cells.
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Introduction

Embryonic stem (ES) cells are a potential source for regenerative med-
icine, including cell replacement therapy of diabetes. Over the past few 
years, several strategies of in vitro generation of insulin-producing cells 
from ES cells have been accomplished to mimic β-cell organogenesis. 
These β-like cells expressed pancreatic β-cell-specific markers, secreted 
insulin in response to glucose, and normalized the hyperglycemic phe-
notype of streptozotocin (STZ)-induced diabetic mice [1–6]. However, the 
differentiation strategies above require further optimization for the full 
maturation of insulin-producing cells.

It is widely accepted that multiple pancreatic transcription factors 
are involved in pancreas development and β-cell differentiation. Among 
these transcription factors, pancreatic duodenal homeobox 1 (Pdx1) is 
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known both to be required for the development 
of all kinds of pancreatic cell types and to be 
a  vital regulator of gene expression in mature 
β cells. Pdx1 plays an essential role in pancre-
as development [7–9], β-cell differentiation [10, 
11], regeneration [12, 13], and maintenance of 
function of islet-like clusters [14–18]. Thus, ac-
tivation of Pdx1 is considered to be a prerequi-
site for pancreatic differentiation in vitro, and it 
should activate a cascade of transcription factors 
and important β-cell gene expression including 
neurogenin 3 (Ngn3), neurogenic differentiation 
1 (Neurod1), and glucose transporter 2 (Glut2) 
within the competent endoderm. Lineage track-
ing studies show that Ngn3 is expressed in the 
endocrine progenitor cells [19]. In addition, tar-
geted disruption in mice suggests that transcrip-
tion factors, including Pdx1, Ngn3, and Neurod1, 
should be expressed in a correct temporal order 
for proper lineage specification [20, 21].

Unlike the meglitinide analogues [22], metformin 
[23], and other oral antidiabetic drugs, exendin-4 
(Ex-4) is a synthetic stable glucagon-like peptide-1 
(GLP-1) analogue that binds and activates the glu-
cagon-like peptide-1 receptor (GLP-1R) to stimulate 
glucose-dependent insulin release, and therefore is 
currently used for the treatment of type 2 diabetes 
mellitus [24, 25]. By interacting with Pdx1, GLP-1 
agonists are thought to play an important role in 
improving β-cell morphology and function [26].

Here, we modified Blyszczuk’s published pro-
tocol by adding different concentrations of Ex-4  
(0.1 nmol/l and 10 nmol/l) to induce differentia-
tion of β cells from mouse ES cells. We found that 
high dosage of Ex-4 resulted in higher insulin1 
and C-peptide expression. We also investigated 
the transcript levels of the important signaling 
factors during differentiation to understand the 
function of Ex-4 in the formation of insulin-pro-
ducing cells.

Material and methods

Maintenance of ES cells

The mouse R1 ES cell line was purchased from 
American Type Culture Collection (http://www.

atcc.org/). Undifferentiated R1 ES cells were cul-
tured on a feeder layer of mitotically inactivated 
mouse embryonic fibroblasts with medium con-
taining high-glucose Dulbecco’s modified Eagle’s 
medium (DMEM, Hyclone), 15% fetal bovine se-
rum (FBS, Hyclone), 1% non-essential amino acids 
(Invitrogen), 1000 U/ml mouse recombinant leu-
kemia inhibitory factor (LIF, Millipore), 0.1 mmol/l 
2-mercaptoethanol (Invitrogen), 2 mmol/l L-gluta-
mine (Invitrogen), 100 U/ml penicillin and 0.1 mg/
ml streptomycin (Invitrogen). Alkaline phospha-
tase (AP) staining was performed to evaluate the 
undifferentiated and pluripotent states of ES cells. 
Cells were observed and photographed under 
a phase contrast microscope (Zeiss, LSM700).

In vitro differentiation protocol

The differentiation of R1 ES cells to the pancre-
atic lineage was performed based on Blyszczuk’s 
protocol [4] with slight modifications. The differ-
entiation process was carried out in three stages, 
as shown in Figure 1. 

Stage 1: ES medium was changed daily. After 
80% confluence on the third day, ES cells were 
placed in gelatin-coated culture dishes for two 
rounds to remove feeder cells. Then 2 × 106 ES cells 
were transferred to a 100-mm bacterial Petri dish 
in medium lacking supplemental LIF (Differentia-
tion medium I, DM I). Resultant embryoid bodies 
(EBs) remained on the 100-mm dish for 6 days. 

Stage 2: EBs suspensions were transferred to 
a 60-mm tissue-culture plate and allowed to ad-
here in DM I for 5 days. 

Stage 3: After 5 days, the cells were trypsinized 
and transferred to a plate coated with poly-L-orni-
thine (PLO) and laminin. For further differentiation 
and maturation, cells were cultured for 20 days in 
serum-free Differentiation medium II (DM II) con-
taining DMEM/F-12 (1 : 1) (Hyclone), 10 mmol/l 
nicotinamide (Sigma), N2 media supplement (In-
vitrogen), and ITS media supplement (Sigma) as 
a control group (group C). At this stage, the pro-
tocol diverged into 2 groups. In the high dosage 
group (group H) and low dosage group (group L), 
Ex-4 was added at the dosage of 10 nmol/l and 

	 D0	 D6	 D11	 D14	 D21	 D31 
			   Ex-4 d 0	 Ex-4 d 3	 Ex-4 d 10	 Ex-4 d 20

R1 ES Stage 1 Stage 2 Stage 3

Formation of EB Spontaneous differentiation Induction of pancreatic differentiation

Bacterial Petri dish

Blyszczuk’s DM I

Gelatin-coated plate

Blyszczuk’s DM I

PLO-laminin-coated plate

C group: Blyszczuk’s DM II
L group: Blyszczuk’s DM II + 0.1 nM Ex-4
H group: Blyszczuk’s DM II + 10 nM Ex-4

Figure 1. Scheme of the differentiation protocol
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0.1 nmol/l, respectively. The medium was changed 
every other day after the cell bodies had attached 
to the culture dish.

Reverse transcription-polymerase chain 
reaction

Total RNA was isolated from undifferentiated 
R1 ES cells and differentiated R1 ES cells at various 
stages using an RNeasy mini kit (Qiagen, 74104). 
Reverse transcription-polymerase chain reaction 
(RT-PCR) was performed according to the manu-
facturer’s instructions. cDNAs were synthesized 
using a High Capacity cDNA Reverse Transcription 
kit (ABI, 4368814). The PCR reactions subjected 
to 28 and 32 cycles of amplification were per-
formed as follows: 35 s at 94°C for denaturation, 
30 s at individual annealing temperatures for an-
nealing, 30 s at 72°C for elongation. PCR products 
were separated using 1.5% agarose gels by elec-
trophoresis and stained with ethidium bromide.  
The quantities of RNA were estimated according 
to the intensity of the bands of the PCR products 
as compared with the intensity of the band cor-
responding to Gapdh. RT-PCR results were con-
firmed in three independent experiments. Primer 
sequences, annealing temperatures and product 
sizes are summarized in Table I. RT-PCR results 
were analyzed by ImageJ analyzer system (http://
imagej.nih.gov/ij/).

Immunocytochemistry

Cell samples were washed three times in PBS 
and then fixed in 4% paraformaldehyde (PFA) at 4°C 
for 10 min, permeabilized in 0.5% Triton X-100 for  

15 min at room temperature, and blocked with 1% 
bovine serum albumin (Sigma, A9418) in PBS at 
room temperature for 1 h. The cells were incubat-
ed with monoclonal anti-insulin antibody (Sigma, 
FC82291, 1 : 200) or monoclonal anti-C-peptide anti-
body (Sigma, WH00007343M1, 1 : 200) overnight at 
4°C followed by Alexa Fluor 488 donkey anti-mouse 
IgG (Invitrogen, A21202, 1 : 500) incubation at room 
temperature for 1 h. After the nuclei were stained 
with Hoechst 33342, the cells were captured under 
a fluorescent microscope (Zeiss, LSM700). 

Statistical analysis

All experiments were performed in triplicate 
and the data represent mean ± SD. Statistical 
comparisons between different groups were test-
ed by one-way ANOVA. All data were analyzed us-
ing SPSS Statistics 19.0. A p-value < 0.05 (two-sid-
ed) is considered as statistically significant.

Results

Analysis of pluripotency marker expression 
in R1 ES cells

It was clear that feeder-present R1 ES cells 
formed clones with a clear boundary and showed 
vivid red signals after AP staining, suggesting the 
undifferentiated and pluripotent state of R1 ES 
cells (Figures 2 A, B).

Morphology of differentiated R1 ES cells 
and insulin-producing cells

Undifferentiated feeder-free R1 ES cells were 
cultured in hanging drops and in suspension for 

Table I. Sequences of primers, annealing temperatures and product sizes

Gene Primer sequence Annealing temperature 
[°C]

Product size 
[bp]

Isl1 Forward : 5’ GTTTGTACGGGATCAAATGC 3’ 56 503 

Reverse : 5’ ATGCTGCGTTTCTTGTCCTT 3’

Pdx1 Forward : 5’ CCACCCCAGTTTACAAGCTC 3’ 56 315

Reverse : 5’ ACGGGTCCTCTTGTTTTCCT 3’

Ngn3 Forward : 5’ TGGCGCCTCATCCCTTGGATG 3’ 54 245 

Reverse : 5’ TCTTCGCTGTTTGCTGAGTG 3’

Insulin1 Forward : 5’ TAGTGACCAGCTATAATCAGAGAC 3’ 56 288 

Reverse : 5’ CGCCAAGGTCTGAAGGTC 3’

Neurod1 Forward : 5’ CTTGAAGCCATGAATGCAGA 3’ 56 388 

Reverse : 5’ GCGTCTGTACGAAGGAGACC 3’

Glut2 Forward : 5’ TTCGGCTATGACATCGGTGTG 3’ 56 556 

Reverse : 5’ AGCTGAGGCCAGCAATCTGAC 3’

Gapdh Forward : 5’ TGAAGGTCGGTGTGAACGGAT 3’ 54 470 

Reverse : 5’ CAGGGGGGCTAAGCAGTTGGT 3’

Isl1 – ISL1 transcription factor, Pdx1 – pancreatic and duodenal homeobox gene 1, Ngn3 – neurogenin 3, Neurod1 – neurogenic 
differentiation 1, Glut2 – glucose transporter 2, Gapdh – glyceraldehyde-3-phosphate dehydrogenase.
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5 d to form EBs (Figure 2 C). Then the EBs grew 
larger and formed into cystic EBs. 6d EBs were 
plated onto gelatin-coated 60 mm plates to spon-
taneously differentiate into multilineage progen-
itors. In stage 2, a  mixed population of epitheli-
al-like and spindle-shaped cells formed around 
the EBs. EB outgrowths were dissociated and 
re-seeded onto poly-L-ornithine–laminin-coated 
culture plates in DM II. The continued cultivation 

resulted in the formation of insulin-producing cell 
clusters (Figures 2 D–F).

RT-PCR analysis of expression of genes 
related to the β-cell phenotype

To analyze the stepwise transitions of R1 ES 
cells during this protocol, total RNA was isolated 
from differentiated cells treated with Ex-4 in each 

Figure 2. Morphology of RI ES cells, insulin-producing cells derived from different differentiation protocols. A – Mor-
phology of R1 ES cells. B – Alkaline phosphatase (AP) staining of R1 ES cells. C – In vitro formation of simple EBs 
on day 6 of stage 1. D–F – Insulin-producing cells derived from different differentiation protocols. D – low dosage 
group, E – high dosage group, F – control group. Scale bars = 25 μm
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condition for 0 days (Ex-d 0), 3 days (Ex-d 3), 10 
days (Ex-d 10) and 20 days (Ex-d 20). RT-PCR for 
specific genes involved in pancreas development 
was performed at various stages throughout dif-
ferentiation (Figures 3 A, B). RNA samples from 
mouse fetal pancreas were used as a positive con-
trol and undifferentiated R1 ES cells were used as 
a negative control in all the RT-PCR experiments. 
According to the calibrations and statistical analy-
sis, there was no notable difference among Gapdh 
product bands for all samples. Endocrine markers 
such as Isl1 and Pdx1 were expressed early in stage 
3 of differentiation (Figure 3 A). The endocrine 
progenitor marker gene Ngn3 was also detected 
at D21 of differentiation, indicating attainment of 
pancreatic endocrine progenitor stage of the dif-
ferentiation process (Figure 3 B). Isl1, Pdx1, Ngn3, 
and Insulin1 relative mRNA expression levels were 
strikingly higher in group H compared with groups 
L and C, as shown in Figure 3 D (p < 0.05). Fur-

thermore, Neurod1 and the glucose transporter 
molecule Glut2 only emerged at the final stage 
of differentiation in group H, suggesting that R1 
ES cells cultured at a higher concentration of Ex-4 
were more easily induced to insulin-secreting  
β cells (Figure 3 C).

Immunofluorescence staining of insulin  
and C-peptide

Immunofluorescence analysis of important 
β-cell markers was performed to characterize the 
final stage of R1 ES cell-derived pancreatic differ-
entiation. As shown in Figure 4, a few incompact 
cell colonies with positive signals for insulin and 
C-peptide were observed in group C. However, 
more compact cell colonies from groups L and H 
showed higher expression of insulin and C-pep-
tide (Figures 4 A, B). At the end of the differenti-
ation procedure, Insulin1 was indeed detected in 
these cells, consistent with the result of immuno-

Figure 3. Gene expression profiles of endocrine and late stage pancreas markers in stage 3 cells. Gene expression 
was assessed at D14 (A), D21 (B), and D31 (C) of differentiation progress. D – Relative mRNA expression of specific 
genes involved in pancreas development. RT-PCR was performed in triplicate and the data represent mean ± SD

L – low dosage group, H – high dosage group, C – control group. aP < 0.05 compared to control group, bp < 0.05 compared to low 
dosage group.
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fluorescence staining of insulin. As C-peptide is 
the precursor of mature insulin, it suggested that 
cells from Ex-4 differentiation groups gained more 
de novo insulin synthesis (Figure 4 B) [27].

Discussion

In this research, we modified Blyszczuk’s differ-
entiation strategy by adding different concentra-
tions of Ex-4 to study and optimize the differen-
tiation of R1 ES cells into insulin-producing cells. 
Using immunofluorescence to test expression of 
insulin and C-peptide, a proof of de novo insulin 
synthesis, we observed that group H exhibited 
a substantially higher signal for staining of insulin 
and C-peptide than insulin-producing cells gen-
erated by groups L and C. Thus, the high dosage 
Ex-4 protocol helped differentiated R1 ES cells to 
gain a mature pancreatic β-cell phenotype. Insu-
lin-producing cells derived from groups H, L and C 
were then subjected to RT-PCR analysis to detect 
whether they expressed pancreatic hormones and 
transcription factors including Isl1, Pdx1, Ngn3,  
Insulin1, Neurod1 and Glut2. We demonstrated 
that expression of endocrine marker genes Isl1, 
Pdx1 and Ngn3 was higher in group H-generat-
ed cells compared to group C. Additionally, coex-
pression of Insulin1, Neurod1 and Glut2 was only 
detectable in group H at the final stage of differ-
entiation. These data together demonstrated that 
the high dosage Ex-4 protocol formed insulin-pro-
ducing cells with a more complete pancreatic en-
docrine molecular signature than that of the other 
two groups. Apparently, high dosage of Ex-4 trig-
gered selective up-regulation of pancreatic β-cell-
specific genes, which ultimately led to the lineage 
commitment towards β cells.

It can be hypothesized that ectopic expression 
of Pdx1 enhances the generation of insulin-pro-
ducing cells, thereby providing large numbers of 
functional surrogate β cells for the treatment of 
diabetes [28, 29]. Exogenous Pdx1 expression 
that was precisely regulated by the Tet-off sys-
tem induced the expression of several pancreatic 
specific genes, such as Insulin 2, Pax4, Pax6, and 
Ngn3, but not the expression of endocrine pancre-
atic markers Insulin1, glucagon or Glut2 [30]. The 
biphasic activation of the Pdx1VP16 transgene in 
mouse and human ES cells has been demonstrat-
ed to promote their differentiation towards the 
endocrine lineage but to be inhibitory for exocrine 
development [29]. Recent reports have shown that 
overexpression of both Pdx1 and Ngn3 motivate 
many gene expression cascades that mimic em-
bryonic pancreatic development in an appropriate 
temporal sequence [31]. Although recent studies 
have achieved high levels of insulin secretion by 
diverse established protocols, we believe that 
overexpression of Pdx1 or Ngn3 individually in ES 

cells may not be sufficient to robustly generate 
insulin-producing cells. It has been demonstrated 
that Ex-4 upregulates the expression of Pdx1 and 
Ngn3 during β-cell regeneration in STZ-treated 
mice [32]. Our results suggest that high dosage 
of Ex-4 may improve the expression of Pdx1 and 
Ngn3 in vitro differentiation of R1 ES cells to insu-
lin-producing cells.

Neurod1 is essential for the achievement and 
maintenance of β cell maturation and function 
[33, 34]. Stable expression of Neurod1 in ES cells 
strongly increased the expression of endocrine 
transcription factors such as Pdx1, Nkx6.1, Isl1 and 
Glut2, inevitably resulting in the formation of insu-
lin-producing clusters [35]. The highest expression 
of Neurod1 in group H was probably due to the up-
regulated expression of Ngn3 stimulated by Ex-4 in 
our protocol. Our result is in agreement with previ-
ous research indicating that Neurod1 is expressed 
in a  subset of Ngn3+ endocrine progenitor cells 
[36]. Also, Neurod1 acts downstream of Ngn3 and 
performs the endocrine differentiation program 
initiated by Ngn3 and participates in maintaining 
the function of mature islet cells [31, 36]. Taken 
together, these data suggest that high dosage of 
Ex-4 facilitates differentiation of R1 ES cells into in-
sulin-producing cells with the help of the following 
expression of Neurod1 forced by Ngn3.

GLP-1 stimulates the proliferation of insulin-pro-
ducing β-cells and inhibits their apoptosis [37, 38]. 
The SLC2A2 gene product GLUT2 is a  glucose 
transporter expressed in the plasma membrane 
of pancreatic β cells, hepatocytes, intestine, and 
kidney [39]. Transdifferentiation of human pancre-
atic ductal cells with activin A (ActA) and Ex-4 in 
high-glucose media resulted in similar expression 
levels of insulin, PDX1 and GLUT2 compared with 
normal islets, suggesting that Ex-4 may improve 
the insulin secretion function of insulin-producing 
cells by the activation of GLUT2 [40]. Consistent 
with the latter report that Ex-4 stimulated GLUT2 
gene transcription in the INS-1 pancreatic β cell 
line via the CaMKK/CaMKIV pathway, a significant 
increase of Glut2 mRNA transcription induced 
by Ex-4 was observed in our modified differen-
tiation protocol [41]. Thus, the results that Ex-4 
stimulated the expression of Glut2 may lead to 
mature and glucose-responsive insulin-producing 
cells derived from ES cells.

In conclusion, we added Ex-4 at different dos-
ages to explore the role Ex-4 played during the 
differentiation of R1 ES cells towards the ma-
ture β-cell phenotype. The results indicate that 
10 nmol/l Ex-4 may increase the expression of 
important transcription factors, such as Pdx1, 
Ngn3, Neurod1 and Glut2, suggesting that Ex-4 is 
beneficial for β-cell differentiation from ES cells. 
Although there is currently no ideal therapy for 
the treatment of diabetes, it is possible to find 
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Figure 4. Immunostaining of insulin and C-peptide. Day 31 R1 ES cell-derived insulin-producing cells were immu-
nostained with antibodies against insulin (A) and C-peptide (B). A – Positive signals for insulin were easily observed 
in groups C, L and H. B – C-peptide positive staining was observed only in groups H and L. Nuclei were stained with 
DAPI (4’,6-diamidine-2’-phenylindole dihydrochloride). Scale bars = 25 μm

	 Insulin	 DAPI	 Merge

	 C-peptide	 DAPI	 Merge

L 
gr

ou
p

L 
gr

ou
p

H
 g

ro
up

H
 g

ro
up

C 
gr

ou
p

C 
gr

ou
p

A

B



Qiaoshi Zhao, Yuzhi Yang, Jing Hu, Zhiyan Shan, Yanshuang Wu, Lei Lei

206� Arch Med Sci 1, February / 2016

a  better stem cell-based differentiation strategy 
that may ultimately provide a cure for diabetes via 
pancreatic β-cell replacement.
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