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A b s t r a c t

A number of studies have shown that chronic kidney disease (CKD) is associ-
ated with increased risk for cardiovascular disease (CVD). Chronic kidney dis-
ease is characterized by significant disturbances in lipoprotein metabolism, 
including differences in quantitative and qualitative content of high-density 
lipoprotein (HDL) particles. Recent studies have revealed that serum HDL 
cholesterol levels do not predict CVD in CKD patients; thus CKD-induced 
modifications in high-density lipoprotein (HDL) may be responsible for the 
increase in CV risk in CKD patients. Various methods are available to sep-
arate several subclasses of HDL and confirm their atheroprotective proper-
ties. However, under pathological conditions associated with inflammation 
and oxidation, HDL can progressively lose normal biological activities and 
be converted into dysfunctional HDL. In this review, we highlight the current 
state of knowledge on subfractions of HDL and HDL dysfunction in CKD. 
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Introduction

Chronic kidney disease (CKD) affects approximately 16% of the gen-
eral population, and this figure is projected to rise [1]. Chronic kidney 
disease is accompanied by very high cardiovascular mortality due to ac-
celerated atherosclerosis [2]. In addition, declining kidney function has 
been identified as a strong cardiovascular (CV) risk factor [3, 4]. Cardio-
vascular damage starts early in the development of renal disease, and 
even mild kidney dysfunction may be an independent predictor for car-
diovascular disease (CVD) or stroke [5, 6]. Moreover, some studies have 
demonstrated that in CKD patients left ventricular diastolic dysfunction 
occurs frequently and is associated with coronary artery disease and 
higher mortality [7]. Chronic kidney disease is an inflammatory state 
characterized by quantitative and qualitative alterations of the plasma 
lipids. It involves all lipoprotein classes and shows considerable varia-
tions depending on the stage of CKD. The causes of disturbances in lipo- 
protein metabolism are complex and depend on the rate of decline of 
the glomerular filtration rate (GFR) [8]. The lipid profile of CKD patients 
is typified by lower serum concentration of high-density lipoproteins  
(HDL), higher serum concentrations of triglycerides (TG), apolipoprotein B  
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(apoB), lipoprotein(a) [Lp(a)], remnant intermedi-
ate density lipoproteins (IDL) and very-low-density 
lipoproteins (VLDL), and an elevated proportion of 
oxidized low-density lipoproteins (oxLDL) [9, 10]. 
The low-density lipoprotein (LDL) cholesterol lev-
el is not usually raised, and it may even be de-
creased. This heterogeneity in patients with CKD 
results from differences in quantitative and quali-
tative content of lipids, apolipoproteins (apos), lip-
id transfer proteins and enzymes, which directly 
affect their biological activity and metabolism [11]. 
High serum LDL cholesterol levels are associated 
with CV risk in the general population as well as in 
the CKD population. It is well known that statins 
exert a beneficial effect on the kidney. Lipid-lower-
ing agents are associated with cardiovascular and 
anti-proteinuric benefits in CKD patients [12–15]. 
Recent studies have shown that serum HDL cho-
lesterol levels do not predict CVD in CKD patients; 
thus CKD-induced modifications in HDL may sup-
port the increase in CV risk in CKD patients.

High-density lipoprotein subfractions

High-density lipoproteins (HDL) are spherical  
micelles, with a density of 1.063–1.210 g/ml and 
a small diameter (7.5–10 nm). All the components 
of HDL are convertible; thus traditional methods 
such as X-ray crystallography or nuclear magnet-
ic resonance imaging are useless in identification 
[16]. The functional heterogeneity of HDL makes 
their comprehensive characterization quite chal-
lenging for investigators, who are searching for 
more practical and helpful laboratory methods 
[17]. High-density lipoproteins particles are com-
posed of cholesteryl esters and triglycerides, 
which fill the hydrophobic core, and apolipopro-
teins, phospholipids and unesterified cholesterol 
forming the outer layer [18]. The main apolipopro-
teins associated with HDL are apolipoprotein A-I  
(apoA-I) and apolipoprotein A-II (apoA-II), sup-
ported by minor apolipoproteins (apoE, apoC-I, 
apoC-II, apoC-III, apoC-IV, apoC-V). High-density 
lipoproteins particles are heterogeneous lipopro-
teins carrying a  large variety of enzymes, globu-
lins, microRNAs, complement components and 
acute phase reactants [19]. The enzymes respon-
sible for an antioxidant effect are paraoxonase-1 
(PON1), platelet-activating factor acetyl hydrolase  
(PAF-AH), glutathione selenoperoxidase (GSPx), 
phospholipid transfer protein (PLTP) and leci-
thin-cholesterol acyltransferase (LCAT) [20, 21].

High-density lipoproteins are extremely com-
plex and have been classified according to size, 
density, electrophoretic mobility and apo com-
position. Different subfractions of HDL particles 
can be distinguished using various techniques. 
By density gradient ultracentrifugation, the ear-
liest laboratory method, two main subfractions, 

HDL2 (larger and less dense) and HDL3 (small-
er and more dense), can be separated [22]. It is 
still controversial which of the two has great-
er anti-atherogenic potency. Maeda et al. [23] 
found that subjects with a  higher concentration 
of HDL2 were less likely to develop atherosclero-
sis. Also Kasko et al. [24] observed an increase 
of the small HDL3 subclass in individuals with 
newly diagnosed lower extremity artery disease 
(LEAD) without diabetes mellitus and without hy-
polipidemic therapy, which suggests that HDL3 is 
a potentially proatherogenic subclass. Conversely, 
the analysis of the Framingham Offspring Study 
(FOS) revealed that HDL-3 was protective and as-
sociated with decreased CV risk, while there was 
no significant association between HDL2 and CV 
risk. Using gradient gel electrophoresis, HDL par-
ticles can be further divided into HDL2b, HDL2a, 
HDL3a, HDL3b and HDL3c subclasses [25] (HDL2b 
has the largest diameter and HDL3c the smallest). 
In addition, HDLs have been classified according 
to both electrophoretic mobility and size using 
two-dimensional gel electrophoresis, which allows 
more than 10 subspecies to be distinguished [26]. 
2D electrophoresis, the most informative method, 
separates lipid-poor pre-β-HDL and cholesterol 
ester-containing α-HDL. Moreover, pre-β1-HDL 
(very small, rich in apo-1), pre-β2-HDL, pre-β3-HDL 
(large), α4-HDL (very small, discoid, containing 
apoA-I, phospholipids and free cholesterol), small 
spherical α3-HDL (containing apoA-I, apoA-II, 
phospholipids, free cholesterol, cholesteryl ester 
and triglyceride, medium size), spherical α2-HDL, 
which contains the same constituents as α3-HDL, 
and large, spherical α1-HDL, with the same com-
ponents as α3- and α2-HDL except the absence of 
apoA-II and pre-α (pre-α1, pre-α2 and pre-α3, with 
similar size as α-particles, but without apoA-II)  
can be identified [27]. Asztalos et al. [28] report-
ed a significant association between lower serum 
concentrations of α1 and α2 and higher α3-HDL 
level and elevated risk for new CVD events.

The division of HDL into separate lipoprotein par-
ticles can be achieved using anti-apolipoprotein im-
munoaffinity chromatography. Immunoseparation  
divides HDLs into a fraction containing only apoA-I 
(LpAI) and a fraction containing both apolipoproteins 
(LpAI:AII), which are the two most abundant HDL 
particles. High density lipoproteins containing only 
apoE (LpE) and apoA-II (LpE:AII) are minor lipoprotein 
particles but also important [29, 30].

Another electrophoretic approach to study HDL 
heterogeneity is the LipoPrint system (Quantimet-
rix), which uses a non-denaturing polyacrylamide 
gel to separate subfractions from pre-stained se-
rum or plasma lipids. The method is approved by 
the Food and Drug Administration (FDA) as a diag-
nostic technique for lipoprotein subfraction inves-
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tigation in the USA [31]. High density lipoproteins 
subclasses are divided into ten bands (HDL1-10), 
which form three groups: large (HDL1-3), interme-
diate (HDL4-7) and small (HDL8-10) particles. Ora-
vec et al. [32] proposed that small HDL subfrac-
tions (HDL8-10) might have impaired functionality 
and that there is a  correlation between higher 
concentrations of the small HDL subpopulation 
and atherogenic lipid profile. 

In addition, a novel, gas-phase differential elec-
trophoretic macromolecular mobility based meth-
od – ion mobility – has been designed to separate 
HDL2b from smaller HDL. This method revealed 
that large HDL2b subspecies inversely correlate 
with coronary artery disease (CAD) in the pro-
spective Malmo Diet and Cancer Study [33]. The 
classification and quantitation of HDL particles 
may also be performed using nuclear magnetic 
resonance (NMR) spectroscopy [34]. Due to the 
specific physical structure and natural magnetic 
distinctness of HDLs, NMR spectroscopy does not 
require physical fractionation. Although the NMR 
method currently accounts for 26 different-size 
HDL subfractions, the measurement precision is 
limited, and only three HDLs are reported (large, 
medium and small) [35].

Because of various physical methods used in 
measurement of lipoproteins, an integrated no-
menclature has recently been proposed: very 
large, large, medium, small and very small HDL 
particles, including discoid pre-β-HDL [35].

Dysfunctional high-density lipoprotein

Clinical and experimental evidence suggests 
that the association between individual HDL sub-
classes and coronary heart disease risk is com-
plex. For years, many authors have suggested that 
larger HDL particles are more atheroprotective, 
but recent studies have demonstrated conflicting 
data [27]. The situation is also complicated in pa-
tients with CKD or end-stage renal disease (ESRD). 
In the study of Alabakovska et al. [36], in patients 
with ESRD, HDL2b (very large) particles were re-
duced and HDL3c (very small) particles were much 
more prevalent. On the other hand, Soto-Miranda 
et al. [37] observed a shift in HDL size distribution 
towards large particles in patients with protein-
uria. Recent studies have shown that levels of the 
HDL3 subfraction decreased along with increas-
ing CKD severity [38]. Diverse laboratory methods 
confirmed different HDL subfractions as being 
anti-atherogenic or associated with decreased CV 
risk. Nevertheless, HDL particles are not always 
vasoprotective, and pathological conditions such 
as inflammation, oxidative stress or diabetes can 
impair their functionality [39–41]. The vasopro-
tective properties of HDL have been exerted by 
reverse cholesterol transport (RCT). High density 

lipoproteins shuttles excess cholesterol and phos-
pholipids from peripheral cells and macrophages 
to the liver, where they are excreted by the bil-
iary route [42]. Chronic kidney disease reduces 
expression of ABCA1 (ATP-binding cassette trans-
porter), which promotes the efflux of cholesterol 
from macrophages to apoA-1. The major protein in 
HDL, apoA-1, is decreased in patients with kidney 
disease because of diminished gene expression in 
the liver and deficiency of one of the constituent 
enzymes of HDL – lecithin cholesterol acetyltrans-
ferase (LCAT) [43]. The LCAT plays a  major role 
in the formation of HDL by esterification of free 
cholesterol on the surface of HDL and its seques-
tration in the core of the molecule. Thus, LCAT 
deficiency, due to CKD-mediated down-regulation 
in the liver, hinders the uptake and maturation of 
HDL [44]. The study by Yamamoto et al. indicat-
ed that patients with CKD demonstrate abnormal 
HDL capacity to mediate cholesterol efflux, and it 
was significantly decreased compared with HDL 
from healthy subjects [45]. Moreover, Holzer et al. 
[46] observed that the efflux capacity of HDL in 
patients with ESRD was reduced compared with 
HDL from controls without renal disease. Patients 
with stages 3–4 CKD showed a  progressive re-
duction in cholesterol efflux capacity of HDL [47]. 
There are numerous observations demonstrating 
anti-inflammatory, antithrombotic and antioxi-
dant activities of HDL particles [48]. High-density 
lipoproteins from healthy subjects stops LDL oxi-
dation and inhibits the expression of vascular cell 
adhesion protein 1 (VCAM-1), intercellular adhe-
sion molecule (ICAM-1) and E-selectin in endothe-
lial cells, which are responsible for infiltration of 
vascular walls by monocytes and macrophages, 
leading to atherosclerosis [49, 50]. However, anti- 
inflammatory activity may also be affected by 
systemic conditions, and under pathological con-
ditions, such as inflammation or oxidative stress, 
HDL is referred to as dysfunctional HDL [51]. Af-
ter post-transitional changes, which impair the 
anti-atherogenic function, dysfunctional HDL can 
even promote the production of inflammatory cy-
tokines. Weichhart et al. [52] reported that HDL 
from healthy subjects inhibited the output of in-
flammatory cytokines (IL-10, IL-12, TNF-α), while 
HDL from ESRD patients promoted the production 
of inflammatory cytokines.

Due to the activities of HDL-associated en-
zymes (lipoprotein-associated phospholipase A2 
(Lp-PLA2), LCAT, paraoxonase (PON), platelet-ac-
tivating factor acetylhydrolase (PAF-AH), glutathi-
one peroxidase (GPX) and apoprotein components 
(apoprotein A-I  and A-II), HDL plays an antioxi-
dant role, including prevention of LDL oxidation 
[53–55]. Many studies have indicated that apoA-I 
(most among all apos) mediates antioxidant activ-
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ities by removing oxidized phospholipids from LDL 
and from endothelium [56]. Systemic oxidative 
stress, which is very common in CKD patients, has 
been shown to reduce antioxidant and anti-in-
flammatory effects of HDL and even to convert 
it into a pro-oxidant and pro-inflammatory agent 
[57, 58]. During chronic inflammation, the con-
centration of leukocyte myeloperoxidase (MPO) is 
increased. Zheng et al. [59] reported that MPO al-
tered the function of HDL, especially apoA-I. Mora-
di et al. [60], who analyzed diminished antioxidant 
activity of HDL, noted reductions of apo-AI (41%), 
LCAT (60%), GPX (50%) and PON (30%) levels in 
ESRD patients compared to healthy subjects. 
These results were accompanied by a 127% reduc-
tion in HDL antioxidant activity. Even in moderate 
CKD, PON activity is diminished and correlates 
with non-fatal myocardial infarction, stroke and 
death [61]. Moreover, apoA-I oxidation decreased 
its interaction with ABCA1 and inhibited cholester-
ol efflux from macrophages [62]. Apparently, HDL 
exerts an antithrombotic effect through reducing 
platelet aggregation and thrombus formation. HDL 
was found to inhibit secretion of thromboxane A, 
which is mediated via scavenger receptor type B1 
and/or the apolipoprotein E receptor apoER2/LRP8 
[63]. In addition, HDL has a different mechanism 
contributing to antithrombotic effects. Due to the 
delivery of arachidonic acid to artery wall cells, 
which plays a  pivotal role in prostacyclin (PGI2) 
synthesis, HDL improves its antithrombotic value. 
Prostacyclin has been shown to regulate the re-
lease of growth factor and to inhibit platelet ac-
tivation [64]. High-density lipoproteins modified 
by an inflammatory response is unable to reduce 
thrombus formation. High-density lipoproteins is 
also known to stimulate fibrinolysis by reducing 
the production of plasminogen activator inhibi-
tor-1 (PAI-1), which then increases the synthesis 
of tissue plasminogen activator (tPA) and the out-
put of plasmin. High-density lipoproteins of CKD 
patients has shown impairment in profibrinolytic 
function [65]. Several studies have reported that 
HDL mediates endothelial cell proliferation, mi-
gration and adhesion molecule formation [66, 67]. 
Interestingly, these functions of HDL in CKD pa-
tients become profoundly depressed. Speer et al. 
[68] observed significantly decreased stimulation 
of endothelial cell proliferation and impaired abil-
ity to promote endothelial cell survival and repair 
in children and adults with CKD. 

To sum up, these studies clearly indicate that 
HDL particles can lose their normal biological ac-
tivities and acquire impaired properties as a result 
of perturbations in metabolism and composition. 
These alterations in HDL structure are character-
istic for CKD and other pathological conditions 
associated with inflammation, infection or oxida-

tive stress [69]. Chronic kidney disease, especially 
in advanced stages, affects the ability of HDL to 
accept free cholesterol and phospholipids from 
peripheral tissues, to control inflammation and 
oxidation, and to support the endothelium.

In conclusion, available data obtained using 
various laboratory techniques employed to de-
scribe plasma HDL support the heterogeneity of 
HDL particles. Further analysis of HDL particles’ 
composition may explain biological functions 
of HDL subclasses, including those with altered 
properties. Alterations in HDL subpopulations in 
CKD patients not only predict CV risk but also 
accelerate the development of atherosclerosis. 
Even though the findings of recent studies have 
widened our view of HDL subclasses, there is 
still a  lack of research performed on patients 
with CKD.

Most clinical studies concentrate on the quan-
tity of HDL, and not on the quality and function-
ality of its subpopulations. Available data confirm 
that HDLs of CKD patients become deprived of an-
ti-inflammatory, antioxidant and vasoprotective 
properties. However, it is still unknown whether 
size, density or functional alteration causes their 
dysfunctionality. Further clinical investigations are 
required to evaluate which subclasses are athero-
protective and which tend to become dysfunc-
tional in patients with CKD.
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