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A b s t r a c t

Introduction: The purpose of our study was to explore the effects of edara-
vone on rats with traumatic brain injury (TBI) and investigate the underlying 
mechanism.
Material and methods: All rats were separated randomly into 3 groups as 
follows: sham group (n = 25), TBI group (n = 25), TBI + edaravone group  
(n = 25). Edaravone was administered intraperitoneally (i.p.) at a  dose of  
3 mg/kg at 30 min, 12 h, and 24 h after TBI. The neurological impairment 
and spatial cognitive function were assessed by the neurologic severity 
score (NSS) and Morris water maze (MWM), respectively. Western blot and 
reverse transcription polymerase chain reaction (RT-PCR) were used to de-
termine the expression levels of caspase-3, B-cell lymphoma-2 (Bcl-2), Bcl-2 
associated X protein (Bax), brain-derived neurotrophic factor (BDNF) and 
tyrosine kinase receptor B (TrkB). Transferase-mediated dUTP-biotin nick 
end labeling (TUNEL) assay as well as flow cytometry assay was used to 
determine the apoptosis rate of cells.
Results: Edaravone administration significantly attenuated neurological im-
pairment induced by TBI and promoted cognitive function outcome. The ex-
pression of BDNF and TrkB was elevated with treatment of edaravone, which 
was increased after TBI. The expression of apoptosis related proteins such 
as caspase-3 and Bax-2 was decreased while that of Bcl-2 was enhanced 
with edaravone administration following TBI. In addition, edaravone treat-
ment reduced TBI-induced cell apoptosis in the hippocampus.
Conclusions: Our study showed that administration with edaravone was 
able to inhibit neuronal apoptosis in the hippocampus in a  rat TBI model. 
The neuroprotective function of edaravone may relate to modulation of the 
BDNF/TrkB signaling pathway.
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Introduction

Traumatic brain injury (TBI) has become a major cause of death and 
disability worldwide in young individuals, and has received considerable 
concern in clinical practice [1]. Several studies have reported that TBI 
may even correlate with glioblastoma [2, 3]. In general, the injury of TBI 
can be divided into instantaneous primary mechanical damage and de-
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layed secondary damage [4]. Primary damage is 
the insult which happens at the moment of im-
pact including skull brain contusion, intracrani-
al hemorrhages, diffuse axonal injury and skull 
fractures [5]. The secondary damage which has 
been proved may lead to many complications if 
left untreated, begins at the moment of injury and 
proceeds for hours or even days [6]. The hippo-
campus as well as the cerebral cortex in the brain 
may be affected and result in memory and spa-
tial cognitive dysfunction after secondary damage 
following TBI [7]. Although several efforts such as 
control of brain edema, antibiotic treatment and 
surgical operation have been made, effective ther-
apeutic strategies associated with neuronal death 
still remain uncertain [1].

Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one)  
is a kind of antipyrine derivative, which has been 
approved as the only potent free radical scavenger 
to treat acute cerebral infarction in the clinic since 
2001 in Japan [8, 9]. Several studies have already 
indicated that edaravone was able to treat brain 
infarction, endothelial and oxidative damage as 
well as brain ischemia [10, 11]. Edaravone was 
also applied in other neuronal damage models 
including TBI and was discovered to attenuate ox-
idative stress levels and lesion size [12]. Further-
more, neuron apoptosis and neuronal degenera-
tion induced by free radicals were inhibited and 
cerebral dysfunction was ameliorated with edara-
vone administration after TBI [13].

Brain-derived neurotrophic factor (BDNF) is 
a member of the neurotrophic factor family, which 
plays an important role in recovery and plasticity 
[14, 15] not only in the central nervous system, but 
also throughout peripheral nervous systems [16]. 
The expression level of BDNF has been demon-
strated to be related to the decrease of neurons 
rose in a rat TBI model, which may have an impact 
on neuroprotective potential [17]. For the time be-
ing, some studies have found that the neuroprotec-
tive effects of edaravone following cerebral injury 
were correlated with the upregulation of BDNF [18, 
19]. In addition, a recent study demonstrated that 
activation of the BDNF/TrkB signaling pathway in-
hibited neuronal cell apoptosis to perform its neu-
roprotective effect [20]. As a  result, we speculate 
that edaravone may play its neuroprotective role 
through decreasing apoptotic neurocytes via the 
BDNF/TrkB signaling pathway. Nevertheless, al-
though several studies and experiments mentioned 
previously provided insight into the mechanism of 
the neuroprotective function of edaravone, the real 
mechanism is still unclear and needs further study.

In the present study, we performed experiments 
to establish a rat TBI model and investigated the 
influence of TBI and edaravone on neurobehavior 
as well as learning and memory ability. We eval-

uated the expression of BDNF, TrkB and apopto-
sis related protein caspase-3, B-cell lymphoma-2  
(Bcl-2), and Bcl-2 associated X protein (Bax), as 
well. We also probed apoptotic cells in the hip-
pocampus caused by TBI and the effect of edar-
avone on neuronal apoptosis. Our study revealed 
the functional mechanism of edaravone on TBI 
associated with the BDNF/TrkB signaling pathway, 
which may provide a new therapeutic strategy of 
TBI in the clinic.

Material and methods

Animals and maintenance

A total of 75 adult healthy male Sprague-Daw-
ley (SD) rats, weighing 200–240 g, were purchased 
from the Laboratory Animal Center of Kunming 
Medical University. All procedures in this experi-
ment were approved by the Institutional Medical 
Experimental Animal Care Committee of the Af-
filiated Yantai Yuhuangding Hospital of Qingdao 
University. Animals were housed under controlled 
light conditions with a  12 h day and night cy-
cle and supplied with food and water. Rats were 
placed in a  warm condition to keep their body 
temperature stable.

Traumatic brain injury model

Following 10% chloral hydrate anesthesia (3 ml/
kg), a midline longitudinal incision was performed 
to expose the skull between bregma and lambda 
suture lines. A steel disk (diameter 10 mm; thick-
ness 3 mm) was adhered to the skull using dental 
acrylic. Animals were moved onto a foam blanket 
underneath a weight-drop device where a weight 
of 450 g fell freely through a  vertical tube from 
1.5 m onto the steel disk. Animals in the sham- 
operated group underwent the same surgical pro-
cedure as the TBI group without a weight-drop im-
pact at the same time. Rats were then placed on 
heat pads at 37°C for 2–4 h to maintain normal 
body temperature during the recovery period.

Groups and drug administration

All rats were randomly separated into three 
groups as follows: sham group (n = 25), TBI group 
(n = 25), TBI + edaravone group (n = 25). Edar-
avone (Mitsubishi Pharma Corporation, Tokyo, 
Japan, dissolved in 0.9% saline solution) was in-
jected intraperitoneally (i.p.) at a dose of 3 mg/kg  
at 30 min, 12 h, and 24 h after the TBI insult. Both 
sham and TBI groups received equal volumes of 
0.9% saline by intraperitoneal injection at the 
same time. Each sub-group was composed of five 
rats and all researchers were blind and the animal 
codes were not revealed until the end of the his-
tological and behavioral analyses.
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Neurobehavioral evaluation

The severity of neurological deficit was as-
sessed by the Neurological Severity Score (NSS) 
system by observers unaware of the treatment. 
Neurobehavioral function is an 18-point scale 
based on the presence of motoric, sensory, reflex, 
and balance (0, normal score; 18, maximal deficit 
score). The recovery of neurologic function was 
observed and the scores of all rats were recorded 
at 1, 4, 7, 14 and 21 days after treatment.

Morris water maze test

Variants of the MWM paradigm were used in or-
der to evaluate spatial learning and memory of rats. 
The test was conducted at 5–8 days after injury, and 
each rat was tested for five trials per day for 4 con-
secutive days. The time required (escape latency) to 
find the hidden platform with a  limit of 60 s was 
recorded by a video camera suspended above the 
maze together with a video tracking system (HVS 
Imaging, Hampton, UK). After that, the average es-
cape time of a total of five trials was analyzed. On 
day 9 of the test, spent percentage of time in the 
target quadrant and swim speeds of the animals 
were investigated after the platform was removed.

Sample harvest

Ten days after injury, the rats were intraperi-
toneally anesthetized with 3.6% chloral hydrate 
(1 ml/100 g) and thoracotomy toward the direc-
tion of the cannula was performed to expose the 
heart. 400 ml of normal saline was infused and 
then fixed with 4% paraformaldehyde 500 ml. 
The brains were quickly removed and post-fixed 
with 4% paraformaldehyde. Then, the brains were 
dehydrated in 15%, 30% sucrose diluted with 4% 
paraformaldehyde. The injured hippocampus used 
for real-time polymerase chain reaction (RT-PCR) 
and western blot was only infused with normal 
saline and stored at –80°C.

Western blot

Total proteins were extracted from the hip-
pocampus tissues, and protein concentration 

was assessed by the bicinchoninic acid (BCA) re-
agent (Thermo Fisher, Waltham, MA, USA) meth-
od. Equal amounts of protein were subjected to 
SDS-polyacrylamide gel electrophoresis. Separat-
ed proteins were transferred from the gel onto 
PVDF membranes (Bio-Rad, Hercules, CA, USA) 
by a  transfer apparatus. The membrane was 
blocked with 5% fat-free dry milk for 2 h at room 
temperature. Subsequently, blots were incubated 
overnight at 4°C with indicated primary antibod-
ies, including rabbit anti-caspase-3 (Sigma, St. 
Louis, MO, USA, 1 : 1000), rabbit anti-Bax (Sig-
ma, 1 : 1000), rabbit anti-Bcl-2 (Sigma, 1 : 500) 
and rabbit anti-β-actin (Sigma, 1 : 1000). The 
membranes were then incubated with horse-
radish peroxidase (HRP)-conjugated anti-rabbit 
IgG (Sigma, 1 : 5000) for 2 h at 37°C. Finally, im-
munoreactive bands of the protein expression 
level were normalized to the intensity of the 
corresponding bands for β-actin. Densitometric 
analysis of the results was performed with Im-
age J 1.41 software (National Institutes of Health, 
Bethesda, MD, USA).

Real-time polymerase chain reaction 

Total RNA was extracted from the injured cortex 
with Trizol Reagent (Invitrogen, Carlsbad, CA, USA) 
prior to cDNA synthesis. Reverse transcription 
to cDNA was executed according to the instruc-
tions of Revert Aid First Strand cDNA Synthesis Kit 
(Thermo Fisher). Detailed sequence information 
was as listed in Table I. PCR amplification was per-
formed in a DNA thermal cycler (ABI 7300, Thermo 
Fisher) and conducted with the following standard 
protocol: one cycle of 94°C for 5 min; 35 cycles of 
94°C for 1 min; annealing for 1 min and 7°C for  
1 min. Relative gene expression was computed by 
the 2–DDCt method.

Transferase-mediated dUTP-biotin nick end 
labeling assay

Transferase-mediated dUTP-biotin nick end 
labeling (TUNEL) staining was executed with 
a TUNEL staining kit following the manufacturer’s 
protocol (Roche Inc., Basel, Switzerland). Sections 
of rat hippocampus were cultured with TUNEL re-
action mixture containing TdT enzyme as well as 
fluorescein isothiocyanate (FITC) labeled dUTP in 
a dark and humid room for 1 h at 37°C, followed 
by a final wash for 15 min and visualized using 
a  converter peroxidase (POD) with 4’,6-diamidi-
no-2-phenylindole (DAPI). The number of TUNEL 
positive cells for five fields in the bilateral hippo-
campus of each section was counted under an 
Olympus BX43 fluorescence microscope (Olym-
pus, Tokyo, Japan). An average for the five slices 
per brain was taken.

Table I. Primers designed for RT-PCR

Gene Sequence

BDNF-F 5′-AGCAAACGTCCACGGACAAG-3′

BDNF-R 5′-CACAGGAAGTGTCTATCCTTAT-3′

TrkB-F 5′-TGGGACGTTGGGAATTTGGTT-3′

TrkB-R 5′-CAGCCGTGGTACTCCGTGTG-3′

GAPDH-F 5′-CAATGGCACAGTCAAGGCTG-3′

GAPDH-R 5′-CTTTTGGCACCACCCTTCAG-3′
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Flow cytometry assay

The flow cytometry assay was performed with 
the Annexin V-EGFP apoptosis detection kit (Be-
yotime, Jiangsu, China). Cells were collected in 
Eppendorf (EP) tubes after cutting, grinding and 
suspending. Then the cells were washed with 
phosphate buffered solution (PBS) and resus-
pended in 500 μl of binding buffer. After that,  
5 μl of Annexin V-FITC and propidium iodide (PI) 
solutions were added to the cells, which were in-
cubated subsequently for 15 min on ice. Final-
ly, the apoptosis rate was analyzed by coulter 
FC500 flow cytometry (Beckman Coulter, Miami, 
FL, USA).

Statistical analysis

All data were analyzed with GraphPad Prism 
6.0 software (San Diego, CA, USA) and by one-way 
analysis of variance (ANOVA) statistically. All val-
ues were expressed as mean ± standard deviation 
(SD). Probability less than 5% (p < 0.05) was con-
sidered as statistically significant.

Results

Edaravone improved neurobehavior in rats 
following TBI

The NSS score was assessed at 1, 4, 7, 14 and 
21 days following cerebral injury. At each time 
point detected in the experiment, the NSS score in 
the TBI group was significantly higher than that in 
the sham group (p < 0.05). In the group with eda-
ravone administration, the NSS score was signifi-
cantly decreased at 7, 14, 21 days compared with 
the TBI group (p < 0.05, Figure 1). The promotion 
in neurobehavior showed that edaravone exerted 
a neuroprotective effect.

Edaravone improved the spatial memory 
and learning ability

After 20 trials over a  period of 4 days, ani-
mals in the TBI group exhibited significant spatial 
memory deficits compared with the sham group 
(p < 0.05). Furthermore, the edaravone adminis-
tration group performed obviously better than the 
TBI group in a  few parameters, commonly used 
to evaluate the ability of hippocampal-dependent 
spatial memory and learning (p < 0.05), such as 
escape latency (Figures 2 A, B) and time spent in 
the target quadrant (Figure 2 C). However, there 
were few differences in swim speed among these 
groups (p > 0.05, Figure 2 D), indicating that the 
observed differences of escape latency were not 
a consequence of an inability to execute the swim 
task. The results suggested that edaravone pro-
moted spatial memory and cognitive ability out-
come following TBI.

Edaravone increased BDNF and TrkB level 
in TBI rat brain

Through RT-PCR, the BDNF and TrkB levels were 
low in the sham group and significantly increased 
at 48 h after TBI (p < 0.05), and BDNF and TrkB 
levels were significantly higher in the TBI + eda-
ravone group compared with the TBI group (p < 
0.05, Figures 3 A, B). In addition, western blot in-
dicated the same result of the expression of BDNF 
as RT-PCR (Figures 3 C, D), which suggested that 
edaravone treatment upregulated BDNF and TrkB 
levels after TBI.

Edaravone inhibited neuronal apoptosis 
following TBI

Through TUNEL staining assay, a  significant 
increase in TUNEL positive cells at 48 h in the 
rat hippocampus of the TBI group was observed 
compared with the sham group (p < 0.05). Edar-
avone treatment notably reduced the amount of 
TUNEL positive cells compared to the TBI group  
(p < 0.05, Figures 4 A, B), which represented 
a lower apoptosis rate. According to the results of 
western blotting with caspase-3, Bcl-2, and Bax 
in the hippocampus of rats at 48 h (Figure 4 C), 
treatment with edaravone significantly reduced 
the protein expression of caspase-3 (p < 0.05). 
Compared with the sham rats, the protein expres-
sion of Bcl-2 decreased, whereas Bax increased 
in TBI rats (p < 0.05). Treatment with edaravone 
remarkably upregulated the protein expression 
of Bcl-2 and decreased the protein expression of 
Bax (p < 0.05, Figure 4 D). Flow cytometry assay 
was performed to evaluate the apoptosis rate. 

	 1	 4	 7	 14	 21

Day
 Sham        TBI        TBI + edaravone

Figure 1. Effect of edaravone on neurobehavior. 
The Neurological Severity Score (NSS) of rats was 
significantly increased in the traumatic brain injury 
(TBI) group. Administration of edaravone signifi-
cantly improved motor function at 7–21 days, as 
reflected by a decrease in NSS

*p < 0.05, compared with sham group; #p < 0.05, compared 
with TBI group.
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The cell apoptosis rate in the hippocampus was 
significantly increased after TBI (p < 0.05), while 
edaravone administration inhibited cell apoptosis 
dramatically in the rat TBI model (p < 0.05, Figures 
4 E, F). These results strongly suggested that eda-
ravone attenuates neuronal apoptosis in the rat 
TBI model.

Discussion

In the present study, we found that neurological 
functional outcome such as memory and spatial 
cognition was promoted significantly with edara-
vone treatment following TBI insult. The expression 

of BDNF and TrkB was enhanced following edar-
avone administration in a rat TBI model. In addi-
tion, the neuronal apoptosis rate declined and the 
expression of apoptosis related protein caspase-3 
and Bax was decreased, while that of Bcl-2 was 
upregulated with edaravone treatment in the hip-
pocampus. The results of our study revealed that 
edaravone attenuates neuronal apoptosis via acti-
vation of the BDNF/TrkB signaling pathway.

Traumatic brain injury has already become a pub-
lic health concern all over the world. Patients with 
TBI suffer from neuropsychiatric and physiological 
impairments including depression, memory and 
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Figure 2. Effect of edaravone on learning and 
memory ability. A – Swimming trajectories of each 
group on day 8. B – The escape latency increased 
remarkably at 5, 6, 7, and 8 days following TBI.  
C – On day 9, sham and TBI + edaravone groups 
spent a  greater percentage of time in the target 
quadrant compared with TBI group. D – There were 
no significant differences in swim speeds among 
groups

*p < 0.05, compared with sham group; #p < 0.05, 
compared with TBI group.
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cognitive dysfunction [21]. Edaravone is regarded 
as a typical free radical scavenger which is used as 
a neuroprotective agent against acute cerebral inju-
ry in the clinic [22]. Ohta et al. found that edaravone 
protected against cognitive impairments after TBI 
via attenuation of oxidative stress and axonal inju-
ry [23]. In another study, Lee et al. suggested that 
the neuroprotective effect of edaravone also came 
into effect in vitro [24]. Furthermore, Jiang et al.  
investigated the effect of edaravone compared 
with ginsenoside Rb1 and found that the therapeu-
tic effect of ginsenoside Rb1 might be mediated by 
decreasing inflammation and promoting nerve cell 
growth, while that of edaravone is correlated with 
its antioxidant function [25]. Similarly, our study 
reported that edaravone administration improved 
neurobehavior, memory and spatial cognition out-
come following TBI.

BDNF is a  representative neurotrophic factor 
in the brain, playing a neuroprotective role after 
cerebral injury, and has been proved to be vital to 
brain injury [26, 27]. For instance, Satoshi et al. 
found that the neuroprotective effects of edara-
vone in brain ischemia were correlated with the 

upregulation of BDNF expression, which may ac-
tivate the downstream signaling pathway [18]. 
Similarly, Yuan et al. found that the upregulation 
of BDNF with edaravone administration protect-
ed against retinal damage caused by diabetes, as 
well [28]. Our study came to the same conclusion 
that edaravone was able to enhance the expres-
sion level of BDNF and TrkB, as well, which sug-
gested that the neuroprotective function of eda-
ravone came into effect through the induction of 
BDNF production.

Apoptosis is crucial for tissue homeostasis and 
embryogenesis, and its deregulation leads to au-
toimmune disorders, immunodeficiency, or cancer 
[29, 30]. Neuronal apoptosis is a main contributor 
to not only primary brain damage, but also sec-
ondary brain damage after TBI insult, which deter-
mines the outcome of TBI patients [31]. Kim et al. 
reported that the increase of neurotrophic factors 
including BDNF via mesenchymal stem cells led to 
the decline of the number of apoptotic nerve cells 
following TBI [1, 4–28, 31–34]. Wu et al. found 
that 7,8-dihydroxyflavone (DHF), a  TrkB receptor 
agonist, inhibited neuronal apoptosis via PI3K/
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Akt signaling [20]. At the same time, Alder et al. 
reached a similar conclusion and found that p75 
had the opposite effect to TrkB [33]. In addition, 
our study confirmed that a high level of BDNF re-
lated to low neuronal apoptosis after TBI was still 
valid in a murine TBI model [34]. All these cited pa-
pers support our viewpoint that edaravone atten-
uates neuronal apoptosis following TBI through 
the BDNF/TrkB signaling pathway.

Our study indicated that the neuroprotective 
effect of edaravone was targeted at the BDNF/
TrkB signaling pathway, which may provide a new 
clinical therapeutic strategy of TBI. Nevertheless, 
there were still some limitations in the study 
which ought to be taken into consideration. For 
instance, only one dose of edaravone was used 
in this experiment and only apoptotic cells in the 
hippocampus were investigated. As a  result, the 
effect of edaravone on TBI in different doses and 
time windows as well as apoptotic nerve cells in 
the cerebral cortex requires further study.

In conclusion, the results of our study provided 
experimental evidence for the application of edar-
avone in the treatment of TBI. The neuroprotective 
effects of edaravone such as attenuating neuronal 
apoptosis were related to activation of the BDNF/
TrkB signaling pathway.
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