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Mitochondria in migraine pathophysiology – does 
epigenetics play a role?
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A b s t r a c t

The approximately three times higher rate of migraine prevalence in women 
than men may result from the mitochondrial transmission of this disease. 
Studies with imaging techniques suggest disturbances in mitochondrial 
metabolism in specific regions of the brain in migraine patients. Migraine 
shares some clinical features with several mitochondrial diseases and many 
other disorders include migraine headaches. Epigenetic regulation of mi-
tochondrial DNA (mtDNA) is a  matter of debate and there are some con-
flicting results, especially on mtDNA methylation. Micro RNAs (miRNAs) and 
long-noncoding RNA (lncRNAs) have been detected in mitochondria. The 
regulation of the miRNA-lncRNA axis can be important for mitochondrial 
physiology and its impairment can result in a  disease phenotype. Further 
studies on the role of mitochondrial epigenetic modifications in migraine 
are needed, but they require new methods and approaches.  

Key words: mitochondrial DNA, DNA methylation, micro RNA, long non-
coding RNA.

Introduction

Migraine belongs to the commonest disorders worldwide and it sig-
nificantly lowers quality of life and work productivity, resulting in a high 
burden for patients, society and employers. Annual migraine-associated 
cost in the US is about USD 80 billion [1]. 

Migraine prevalence varies from continent to continent and from 
country to country, but in general it is relatively high as compared with 
many other chronic diseases. That prevalence depends on age and can 
be approximately three times higher in women than in men (Figure 1). 
Hover, the peak of migraine incidence is observed in adolescence. It is 
a complex disease affecting several regions of the brain, inducing vas-
cular dysfunction, cranial vasodilation and release of some neuromod-
ulators, such as dopamine [2]. Current migraine therapies are effective 
only in a proportion of patients and studies on new therapeutic targets 
are needed.

Recurrent episodes of headache are the hallmark of migraine and they 
are usually associated with an array of other symptoms, including nausea, 
vomiting, photo- and phonophobia, visual disturbances and others. Accord-
ing to the International Headache Society, two main clinical subtypes of mi-
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graine can be considered: migraine with aura (MA) 
and without aura (MO). Other rarer type of migraine 
are basilar-type migraine (BTM) and familial hemi-
plegic migraine (FHM). Aura occurs in about one 
third of all migraine patients and includes mainly 
visual symptoms, but also aphasia, dyschromatop-
sia, prosopagnosia, ideational apraxia, alien hand 
syndrome and proper name anomia [3].

The pathophysiology of migraine is not fully 
known and there were two opposite theories on 
the cause and nature of migraine attacks – the 
vascular and the neuronal theory, which were then 
combined into the neurovascular theory [4]. Sev-
eral other theories can be considered, including 
the hypothalamus theory, the serotonin theory, 
the depolarization theory and others. Migraine is 
a complex disease with the phenotype determined 
by the interaction between genetic, environmental 
and life-style factors. The pathogenesis of migraine 
is determined by phenomena occurring in the sen-
sory cortex of the brain and/or the brain stem [5]. 

It is commonly accepted, although not firmly 
evidenced, that migraine is a  threshold disease, 
released by a  brain-related trigger [6–9]. Such 
migraine trigger and the wave of depolarization 
induce the activation of neurons of the trigemi-
nal nerve, which release chemical substances in-
ducing the dilation of blood vessels and inflam-
mation, which directly cause migraine headache 

(Figure 2). Cortical spreading depression (CSD), 
a wave of neuronal hyperexcitability followed by 
suppression of neural activity, may be responsible 
for disturbances occurring in MA [10].

Early magnetic resonance imaging (MRI) studies 
revealed a low level of high energy phosphates in 
the brain of migraine patients, suggesting defects 
in brain energy metabolism in migraine [11]. These 
studies had several limitations. First of all they did 
not provide information on physiological dysfunc-
tions associated with observed effects. Currently, 
more detailed imaging studies on migraine mech-
anisms are conducted with positron emission to-
mography (PET) and functional MRI (fMRI) (see [12] 
for review). Studies with these techniques showed 
that repeated migraine attacks modified metab-
olism in specific regions of the brain involved in 
sensory and pain processing, including the bilater-
al insula, premotor and secondary somatosensory 
cortex (Figure 3). These studies reported ATP deple-
tion due to a deficient mitochondrial metabolism 
in brains of migraine patients [13]. These studies 
suggest a  significant role of mitochondria in the 
pathophysiology of migraine.

Mitochondria – an important player  
in migraine pathogenesis

Approximately three times higher frequency 
of migraine prevalence in females than males 

Figure 1. Worldwide migraine prevalence in 2016 according to WHO (both sexes, all ages). Inset – prevalence by 
age and sex (https://vizhub.healthdata.org/gbd-compare/)
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suggests either X-linked form of this disease, the 
mitochondrial transmission of another form of it, 
or both. However, if changes in mitochondria can 
contribute to the pathogenesis of migraine, not 
only mtDNA, but also the nuclear genes encoding 
mitochondrial components and regulating their 
functions may play a role. 

Mitochondrial dysfunction can be associated 
with increased neuronal excitability resulting in 
increased susceptibility to migraine [14]. Any mi-
tochondrial impairment in the brain likely leads 
to a deficit in mitochondrial energy, which in turn 
can be a migraine trigger. Some positive results on 
the influence of a high-fat and low-carbohydrate 
(ketogenic) diet on migraine and epilepsy course 
seem to support this assumption because such 
a  diet stimulates mitochondrial metabolism [15, 
16]. Further support is provided by the observa-
tion of the protective action of riboflavin and the 
Q10 coenzyme, both enhancing the function of 
the mitochondrial electron transport system (ETS, 
respiratory chain) against migraine [17–19].

A cross-sectional questionnaire-based study on 
85 patients with various mitochondrial diseases 
(MDs) resulted in a higher frequency of headaches 
in this group compared to individuals without clin-
ically detected mitochondrial impairments [20]. 
The highest prevalence of tension-type headache 
(TTH) was observed, but the prevalence of mi-
graine and probable migraine was only slightly 

lower. This study was supported by research show-
ing a higher prevalence of migraine in individuals 
with MDs than in the general population [21]. 
Stratification of migraine cases into MD types sug-
gested that migraine might not be a  phenotypic 
feature of a particular MD, but might instead be 
linked with a common susceptibility of the central 
nervous system to some factors, likely associated 
with defects in ETS accompanying that MD.

Riboflavin as well as MELAS and other 
mitochondrial diseases link migraine with 
mitochondria 

Riboflavin (vitamin B2) belongs to the B complex 
vitamins playing an important role as coenzymes 
in many flavoprotein enzyme reactions. It occurs 
in two active forms, flavin mononucleotide (FMN) 
and flavin adenine dinucleotide (FAD), which are 
important for vital mitochondrial processes, in-
cluding metabolism of amino acids, purines and 
fatty acids as well as the redox reaction [22]. Ribo-
flavin deficiency is a world-wide problem and it has 
been shown to improve the clinical picture of sev-
eral mitochondrial diseases, including complex I  
and II-associated myopathies [23–29]. 

As brain metabolism is disturbed in migraine 
and riboflavin ameliorates the functioning of ETS, 
its evaluation in clinical trials as a  prophylactic 
agent is justified [30]. Riboflavin prophylaxis was 
effective in migraine in adults, which may follow 
from the general neuroprotective effect of this 
compound [30–33]. Di Lorenzo et al. reported 
that migraine patients with non-H mtDNA hap-
logroup responded more frequently to riboflavin 
than patients with the H group [34]. On the other 
hand, the frequency of riboflavin non-responders 
was higher in the H group. There were no differ-

Figure 2. A migraine trigger (yellow thunder) acts 
on the nucleus (light blue oval) of the trigeminal 
nerve (dark blue) and activates it. Resulting waves 
of depolarization (black broken arrows) move along 
the nerve and reach the cortex, inducing cortical 
spreading depression (CSD). This results in an in-
flammation-like state and release of inflammatory 
neurotransmitters, which induce dilation of brain 
blood vessels (red), which in turn evokes migraine 
headache. This figure does not correspond to actu-
al anatomical relationships within the brain

Migraine headache

Figure 3. Repeated migraine attacks are associat-
ed with a metabolic modification of specific brain 
regions including premotor (blue) and secondary 
(brown) somatosensory cortex. Metabolic modifi-
cations in these regions result in impaired mito-
chondrial functions leading to depleted ATP pro-
duction

Migraine attacks

Metabolism
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ences between MA and MO patients in riboflavin 
responsiveness. These studies suggest that the 
efficacy of riboflavin therapy can depend on the 
patient genotype. 

Riboflavin decreased the frequency of head-
ache attacks and their duration in a randomized, 
controlled trial performed by Shoenen et al. [35]. 
These results were confirmed in another clinical 
trial performed by Rahimdel et al., who also ob-
served a  decrease in frequency of headache at-
tacks [36]. Several other clinical trials with ribo-
flavin singly or in combination with other agents 
both in adult and adolescent migraine patients 
brought positive results – more details are pre-
sented in an excellent review by Thompson and 
Saluja [30]. 

Riboflavin was also reported to ameliorate 
mitochondrial dysfunction and protect against 
oxidative stress [22]. This compound protected 
against hyperglycemia and DNA damage in dia-
betic mice [37]. As we mentioned, the action of 
riboflavin may depend on the genotype of the re-
cipient. Therefore, it is not very surprising that in 
some mitochondrial diseases which are associat-
ed with mutations, the efficacy of this drug can be 
low. However, riboflavin-based therapy is consid-
ered as effective or possibly effective at various 
levels of recommendation by several institutions, 
including the American Academy of Neurology 

and the American Headache Society (http://www.
aan.com/guidelines).

Mitochondrial myopathy, encephalopathy, lac-
tic acidosis, and stroke-like episodes (MELAS) is 
a  complex, progressive neurodegenerative disor-
der with a great variability in clinical picture caus-
ing difficulty with distinguishing it from vascular 
cerebral diseases, first of all cerebral infarctions 
[38]. Migraine shares some clinical characteristics 
with MELAS, including headaches with nausea and 
vomiting [21]. Another mitochondrial disease, my-
oclonic epilepsy with ragged-red fibers (MERRF),  
is also associated with episodes of hemicranial 
headaches. This provokes the question wheth-
er migraine can be a  monosymptomatic form 
of MELAS or MERRF. However, no association of 
mutations typical for MELAS with migraine was 
reported. Klopstock et al. did not observe any as-
sociation between MA and mutations (deletions 
and substitutions) common in MELAS and MERRF 
[39]. In a  subsequent study, Buzzi et al. did not 
observe any association between the m.3243A>G 
substitution in the tRNALeu gene and pure matri-
lineal multigenerational MA or MO [40]. In addi-
tion, neither patient enrolled in that study carried 
this mutation. No association of the m.3243A>G 
mutation with MO was observed [41]. In another 
study no association between nine point muta-
tions (substitutions) and migraine with prolonged 

Table I. Some clinical conditions associated with migraine [43]

Condition Disease

Genetic syndromes Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes 
(MELAS)

Cerebral autosomal dominant arteriopathy with subcortical infarcts and 
leukoencephalopathy (CADASIL)

Cerebral autosomal recessive arteriopathy with subcortical infarcts and 
leukoencephalopathy (CARASIL)

Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS) 

Fabry disease

Vascular acquired diseases Strokes: ischemic and hemorrhagic episodes

Transient ischemic attack (TIA) episodes

Mitochondrial diseases Chronic progressive external ophthalmoplegia (CPEO)

Myoclonic epilepsy with ragged red fibers (MERRF)

Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS)

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE)

Myoclonic epilepsy with ragged-red fibers (MERRF)

Kearns-Sayre syndrome

Leber hereditary optic neuropathy

Other diseases Pediatric cyclic vomiting syndrome

Epilepsy
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aura was observed [42]. Therefore, variability of 
mtDNA typical for MELAS is not reported to occur 
in migraine, and so these results do not support 
the thesis on migraine as a  monosymptomatic 
form of MELAS. However, these studies, although 
carefully designed, were performed on relatively 
small populations. Table I presents some diseases 
associated with migraine [43].

Energy deficiency is especially important in 
muscles and neural tissue, particularly when com-
bined with other stress, and contributes to many 
symptoms of mitochondrial myopathies [44]. Such 
myopathies associated with neurological distur-
bances are called mitochondrial encephalomyop-
athies. Several neurological symptoms occur also 
in migraine, including headaches, hearing impair-
ment and seizures [45]. Therefore, some mito-
chondrial encephalomyopathies and migraine can 
share similar pathways of pathogenesis and so it 
is reasonable to look for a genetic background of 
migraine in mtDNA [46]. Moreover, this association 
allows one to speculate on the connection be-
tween migraine and epigenetic changes, which are 
reported for migraine comorbid disorders [47, 48].

The human mitochondrial genome and its 
changes related to migraine

The human mitochondrial genome is a closed, 
double-stranded DNA (mtDNA) molecule of 
16,569 bp, containing 37 genes encoding 2 rRNAs, 
22 tRNAs and 13 polypeptides (Figure 4). All poly-
peptides encoded by mtDNA are subunits of ETS:  
7 subunits of complex I  (NADH: ubiquinone ox-
idoreductase), 1 subunit of complex III (ubiquinol:-
cytochrome c oxidoreductase), 3 subunits of com-

plex IV (cytochrome c oxidase) and 2 subunits of 
complex V (ATP synthase). The entire complex III 
and all remaining subunits of complexes I, II, IV 
and V – 79 subunits in total – are encoded by nu-
clear DNA. Two strands of mtDNA are called heavy 
(H) and light (L) due to their base composition. 
mtDNA, in contrast to its nuclear counterpart, is 
densely packed with genetic information – more 
than 90 percent of it contains coding sequenc-
es, genes are intron-less and the ATPase6 and  
ATPase8 genes overlap. A small non-coding mtDNA 
fragment is called the control region, as it contains 
almost all control elements of mtDNA metabolism. 
Due to the high variability of human mtDNA its 
variants are classified into haplotypes [49].

ETS is built from mitochondrial- and nuclear- 
encoded components and provides energy for 
the entire cell. However, even normally function-
ing ETS produces reactive oxygen species (ROS) 
and its malfunctioning increases ROS level. The 
importance and function of mitochondria should 
not be limited to energy production as this organ-
elle plays an important role in calcium homeo-
stasis and thermogenesis, the intrinsic pathway 
of apoptosis, signal transduction and other phe-
nomena [50].

In humans, mtDNA does not recombine and is 
perpetuated exclusively in the maternal lineage. 
Therefore, it is useful for tracking genetic alter-
ations through many generations. However, there 
are many mtDNA copies in a single cell, and not 
all of them need to be mutated to give a disease 
phenotype [51]. Therefore, mtDNA could also be 
exploited to track epigenetic changes sent from 
one generation to the next. However, epigenetic 

Figure 4. Human mitochondrium is a double membrane-bound organelle found in the cytoplasm. It usually con-
tains several copies of mtDNA, which is a closed double-stranded DNA having heavy (H) and light (L) strands. It has 
13 polypeptide encoding genes – Cytb, ND1-6, ND4l, ATPase 6 and 8, COI-III – whose products are components of 
the mitochondrial electron transport chain. Other genes of mtDNA are 2 rRNA and 22 tRNA genes. Promoters (P) 
for these genes (2 for heavy strand and 1 for light strand) are located in a single regulatory region, where also the 
origin for heavy strand replication occurs (OH)
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modifications to mtDNA have been far less ex-
ploited and are less well known than those to nu-
clear DNA.

mtDNA is characterized by greater sequence 
variation than its nuclear counterpart, but a  cell 
usually has many mitochondria, which can have 
different genotypes. Therefore, wildtype mtDNA  
can occur along with its mutated variants in a sin-
gle cell. This state is termed heteroplasmy in con-
trast to homoplasmy, which corresponds to the 
same sequence of a mtDNA locus in all mitochon-
dria. Therefore, when a disease-associated variant 
occurs in a  heteroplasmic form, its phenotypic 
consequences can be difficult to predict. In an ex-
treme case, a lethal mutation in some mitochon-
dria can be counterbalanced by the normal variant 
in remaining organelles. This creates a  complex 
relationship between genetic variants in mtDNA 
and diseases. At a cellular level, a point mutation 
is considered to be expressed phenotypically with 
the threshold 80–90%, but for a  larger deletion 
the threshold is lower – 50–60% [52]. At the tis-
sue level, the proportion of mutants can positively 
correlate with the severity of the disease [53].

As mentioned, a  strong connection between 
migraine and mitochondria was evidenced by 
the observation that migraine-affected individu-
als have impaired brain energy metabolism [54]. 
Mitochondria play a  vital role in energy produc-
tion, apoptosis regulation and production of ROS 
even in normal conditions [55]. These ROS are 
important in cell signaling, but their excess can 
lead to damage to cellular molecules [56]. The 
main source of ROS is oxidative phosphorylation 
(OXPHOS), producing ATP from ADP and inorganic 
phosphate (Pi), powered by the transfer of elec-
trons from NADH/FADH2 to O2 [57]. This transfer 
is executed by mitochondrial ETS containing four 
large multiprotein complexes, designated I–IV, lo-
cated in the inner mitochondrial membrane, each 
having several electron carriers. The fifth com-
plex, ATP synthase, accepts protons transported 
from the inner mitochondrial membrane, which 
fuel ATP productions. Additionally, inner mem-
brane-bound ubiquinone and cytochrome c, locat-
ed in the intermembrane space, play an important 
role in OXPHOS. 

Oxidative stress is considered as a  factor in 
migraine pathogenesis and is associated with an 
excess of ROS, which can damage DNA. Howev-
er, Geyik et al. found no difference in oxidative 
stress markers, total oxidant status (TAS) and 
oxidative stress index (OSI) between migraine 
patients and controls [58]. An increased level of 
8-hydroxy-2’-deoxyguanosine (8-oxoG) in plasma 
of migraine patients was observed in that study 
and this increase was more pronounced in MO 
than MA patients. 8-oxoG is a product of oxidative 
DNA damage, which may lead to mutation if not 

repaired or misrepaired, and it is considered as an 
oxidative stress marker in humans. In similar stud-
ies, Alp et al. observed that serum TAS levels were 
lower in patients with MO as compared to con-
trols and ROS levels in serum were higher in these 
patients [59]. Patients displayed higher values of 
OSI than controls, who, in turn, exhibited a higher 
levels of total SH groups, which were negatively 
correlated with headache duration. On the other 
hand, OSI was positively correlated with headache 
frequency. These studies have several limitations, 
including the small number of patients enrolled – 
less than 100 migraine cases in either study. More-
over, the studies were performed in a non-target 
tissue and the parameters for assessing oxidative 
stress were chosen rather arbitrarily and they do 
not decide about the occurrence and intensity of 
oxidative stress. Furthermore, a  higher level of 
8-oxoG can result from impairment in the DNA 
repair system or in general an impaired DNA dam-
age response. 8-oxoG is mainly removed by the 
base excision repair (BER) system and in humans 
the hOGG1 glycosylase cuts the N-glycosylic bond 
between 8-oxoG and the DNA sugar [60, 61]. How-
ever, the results presented in those papers are 
a weak rationale to causatively correlate migraine 
with oxidative stress and allocate the source of 
this stress to mitochondria. 

The brain is highly dependent on oxidative me-
tabolism of glucose and therefore it is sensitive 
to changes in the functioning of mitochondria, 
which is supported by the association of several 
neurodegenerative diseases with mitochondrial 
dysfunction [62–64]. 

Peroxisome proliferator-activated receptor-g co-
activator-1α (PGC-1α) is an important regulator of 
the expression of genes involved in mitochondrial 
biogenesis and cellular reaction to oxidative stress 
[65, 66]. Altered levels of mRNA of the PGC-1α  
gene along with a  decreased number of mtDNA 
copies were observed in trigeminal neurons in 
a rat model of migraine [67]. 

Variability of mitochondrial DNA in migraine

The mitochondrial genome has limited au-
tonomy as thousands of proteins which can be 
found in mitochondria are encoded in the nucleus. 
Therefore, the variability of nuclear genes involved 
in mitochondrial functioning may be important in 
migraine pathogenesis. The problem of genetic 
variability in migraine is connected with migraine 
hereditability. An identical twin study resulted in 
the conclusion of approximately 50% migraine he-
reditability [68].

A positive association between the m.4336A>G 
mutation, located on the tRNAGln, gene and sensori-
neural hearing loss and/or migraine was observed 
[69]. Wang et al. found an association between 
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the occurrence of childhood cyclic vomiting, often 
considered as a  migraine-like disease, and two 
rare heteroplasmic sequence variations contain-
ing 6 point and 2 length variants located in the 
mtDNA control region [70]. Two single nucleotide 
polymorphisms, m.16129G>A and m.16176C>T, in 
that region were associated with childhood cyclic 
vomiting. Moreover, these authors found that the 
homoplasmic variants located in the nt 16040-
16188 segment of the highly variable region 1 
(HV1) important in the regulation of mtDNA rep-
lication were associated with both cyclic vomiting 
syndrome and migraine without aura. In another 
study, Zaki et al. found an association between 
two mtDNA polymorphisms, m.16519C>T and 
m.3010G>A, and migraine headache and cyclic 
vomiting syndrome [71]. A  higher, about three 
times, prevalence of migraine in individuals with 
the m.3243A>G mutation was reported [72]. This 
prevalence was observed in both MO and MA as 
well as in men and women separately. No associa-
tion between the m.11084A>G polymorphism and 
migraine occurrence, whether MA or MO, in a Jap-
anese population was found [73]. No difference 
between occurrence of the m.11084A>G mutation 
in MA and MO patients was observed in a Danish 
population [74]. This mutation was detected nei-
ther in migraine patients, MA or MO, nor controls. 
It has functional significance as it replaces ade-
nine with guanine in the gene encoding the ND4 
subunit of ETS complex I, resulting in the substi-
tution of threonine with alanine. Interestingly, this 
mutation was reported to occur in a  substantial 
fraction (about 25%) of Japanese migraineurs and 
was absent in tension-type headache patients 
and individuals with no migraine [75].

Mitochondrial haplogroup U, represented by 
the 12308A>G polymorphism, can play a  role in 
migraine pathophysiology as this polymorphism 
was reported to associate with an increased risk 
of occipital stroke [76, 77]. Also other haplogroups 
in mtDNA can be directly or indirectly related to 
migraine. Marcuello et al. reported an association 
between the J haplogroup and efficacy of energy 
production by ETS [78]. As mentioned, migraine is 
associated with energy deficit, so that haplogroup 
and its polymorphisms of mtDNA may influence 
the susceptibility to migraine as well as to other 
diseases associated with energy deficit.

Generally, there are few studies on the associ-
ation between mtDNA variants and migraine oc-
currence and these studies are usually performed 
on relatively small populations. Therefore, they 
should be continued on larger cohorts. Moreover, 
studies on variants of nuclear genes encoding 
mitochondrial components and influencing mito-
chondrial function should be further developed, 
especially as they are free from several difficul-
ties in mtDNA research, including heteroplasmy 

requiring sequencing of the entire mitochondrial 
genome with a high coverage. Therefore, further 
studies on the role of mtDNA disturbances in mi-
graine are justified and needed.

Epigenetics of mtDNA and its potential  
in migraine

Epigenetics deals with mechanisms of the reg-
ulation of gene expression, which are not directly 
associated with changes in DNA sequences. Three 
major epigenetic mechanisms are related to DNA 
methylation, histone modifications and RNA reg-
ulation.

Two aspects of epigenetic regulation in mi-
graine pathophysiology can be considered. One is 
related to transient changes in epigenetic profile, 
which may result in changes in phenotype. The 
other is associated with such changes in the epi-
genetic pattern, which are perpetuated from one 
generation to the next and contribute to familial 
cases of the disease.

Epigenetic therapy, i.e. therapy targeting the 
epigenetic profile of specific genes, is considered 
in many human disorders, first of all cancer, in 
which several epigenetic modifiers are tested in 
phase I and II clinical trials [79]. Such therapy is 
also considered in migraine [80]. Valproate, a his-
tone deacetylate inhibitor, has been successfully 
tested in prophylaxis of several classes of mi-
graine [81–85]. However, its action cannot be un-
equivocally associated with an epigenetic mecha-
nism as valproate is an anticonvulsive drug with 
several modes of action [86–88]. Moreover, it is 
not known how valproate acts on mitochondria.

Passaro et al. found a direct correlation between 
epigenetic markers of the H3 histone associated 
with genes involved in neuronal plasticity and CSD 
in rat brain [86]. This study suggests a potential-
ly important role of epigenetic modifications in 
migraine pathogenesis, which was supported by 
subsequent studies [89–91]. Moreover, this im-
portance has been recently confirmed by Gerring  
et al., who have identified 62 independent regions 
in DNA isolated from peripheral blood of migraine 
patients, which were specifically methylated [89].

Many migraine comorbid mitochondrial diseas-
es are associated with changes in the epigenetic 
profile [46]. Therefore, it is justified to explore 
the role of epigenetic modifications to mtDNA 
in migraine pathogenesis. However, the issue of 
epigenetics in mitochondria is still a  matter of 
debate, with some controversial aspects [92]. As 
mtDNA is not associated with histones, its epi-
genetic modifications are limited in comparison 
with its nuclear counterpart, but mtDNA occurs in 
many copies and each of them could have a differ-
ent epigenetic profile. Therefore, DNA methylation 
and regulatory RNAs are major players in epigene-
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tic control of gene expression in mitochondria. In 
humans, DNA methylation of the CpG islands lo-
cated in the promoters of many genes is of a par-
ticular significance. It is induced by DNA meth-
yltransferases (DNMTs) 1/2 and 3A/B [93, 94]. 
However, it should be stressed that mtDNA does 
not contain CpG islands, such as those targeted 
by DNA methyltransferases in the nucleus, but 
dispersed CpG dinucleotides occur in the mito-
chondrial genome [95]. Mitochondrial DNA meth-
yltransferase 1 (mtDNMT1), an isoform of nuclear 
DNMT1, plays an important role in regulation of 
the expression of mitochondrial genes by modifi-
cation of the mtDNA methylation profile [88]. This 
enzyme was reported to bind mtDNA in the region 
of the D-loop containing all three promoters need-
ed for the transcription of mitochondrial genes, 
suggesting that mtDNMT1 can regulate gene ex-
pression. It was shown that DNMT1 interacted 
with CpG dinucleotides within mtDNA [96]. There 
is another DNA methyltransferase in the nucleus, 
DNMT3L, which, on binding with unmethylated ly-
sines in H3 histone, guides DNMT3A/3B to DNA 
[97]. As there is no H3 histone in mitochondria, 
the potential of this enzyme seems to be lower 
than remaining DNA methyltransferases. How-
ever, DNMT3L is involved in DNA methylation in 
the nucleus, so it can play a role in the expression 
of genes whose products are important for mito-
chondrial homeostasis.

Another DNA methyltransferase, DNMT3A, was 
localized in the mitochondria of neurons and its 
decreased activity was reported to be associated 
with an abnormal mtDNA methylation pattern in 
amyotrophic lateral sclerosis, a  progressive neu-
rological disease [98]. However, it should be tak-
en into account that in contrast to mtDNMT1,  
DNMT3A was not specifically targeted to mi-
tochondria, but was found in these organelles. 
The identification of DNA methyltransferases 
operating in mitochondria shed light on the epi-
genetic mechanisms in these organelles, but on 
the other hand, it has added to the complexity 
of this issue [99]. Other epigenetics-related pro-
teins detected in mitochondria are DNMT3B and 
two proteins involved in active demethylation, 
ten-eleven translocation (TET) 1 and 2 [100–103]. 
These methyltransferases are not only encoded in 
the nucleus, but are isoforms of nuclear proteins. 
Therefore, precise regulation of their expression 
and functions is required for cellular homeostasis 
and disease-related changes in their activity can 
result from an imbalanced nuclear-mitochondrial 
cross-talk [104]. However, some reports question 
the process of mtDNA cytosine methylation, indi-
cating limitations of techniques employed in ear-
lier studies [105].

The third aspect of epigenetics, RNA regulation, 
is first of all based on three kinds of non-coding 

(nc) regulatory RNAs: short ncRNA, including mi-
cro RNA (miRNA) of 22–23 bases in length (b) and 
piwi-interacting RNA (piRNA) of 26–31 b; medi-
um ncRNA of 50–200 b and long non-coding RNA  
(lncRNA) longer than 200 b [106].

Micro RNA regulation is important in the ner-
vous system [107, 108]. RNA interference compo-
nents, including miRNAs and Argonaute proteins, 
were localized to mitochondria, showing another 
aspect of the cross-talk between the nucleus and 
mitochondria through an array of miRNAs, which 
are called “mitomiRs” [108].

Long non-coding RNAs are another element of 
epigenetic regulation, and in the nuclear genome 
it is associated with several important aspects of 
the regulation of gene expression, including chro-
mosome X inactivation [109]. lncRNA regulation 
is important in many cancers, including brain tu-
mors [110, 111].

The mitochondrial transcriptome is quite 
complex and should not be limited to 37 mtDNA 
genes, as almost the whole mitochondrial genome 
is transcribed – 99.9% of H and 97.6% of the  
L strand were reported to undergo transcription 
[112]. Many antisense transcripts can be found 
within the mitochondrial transcriptome. More-
over, many RNAs encoded in the nucleus are pres-
ent in mitochondria and vice versa – several mi-
tochondria-borne RNAs were reported to operate 
in the nucleus, indicating the importance of the 
mitochondria-nucleus cross-talk [113]. Altogether, 
many both “short” and “long” regulatory RNAs, 
including miRNAs and lncRNAs, can be found in 
mitochondria, and they can play an important role 
in the regulation of gene expression. In general, 
two species, miRNA and lncRNA, seem to be mu-
tually regulated within the miRNA-lncRNA axis 
giving the functional balance between lncRNAs 
and miRNAs – the lncRNA-miRNA paradigm [114]. 
Departures from this paradigm can contribute to 
disturbances in energy production and can affect 
other processes in mitochondria important for the 
cell fate, which may result in disorders [115]. How-
ever, to our knowledge the role of lncRNA, either 
nuclear or mitochondrial, in migraine pathophysi-
ology has not been explored so far. An association 
between disturbances in lncRNA functioning and 
mitochondrial impairment was observed in Down 
syndrome [116].

The mitochondria-nucleus cross-talk can also 
be expressed by the changes in the nuclear epi-
genetic profile reflected in mitochondria function-
ing, which in turn results in the global changes to 
the whole organism, as in the case of mitochon-
drial lifespan extension dependent on stress [117]. 

Several loci associated with migraine in the hu-
man genome have been identified in genome-wide 
association studies (GWAS) [118, 119]. Some of 
them can be linked with epigenetic mechanisms 
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[120]. However, it should be underlined that no 
genes directly involved in establishing and main-
taining the epigenetic profile, such as DNA meth-
yltransferases or histone deacetylases, have been 
found in these studies. Moreover, GWAS studies 
did not provide results on the link between mtDNA  
variability and migraine.  

Conclusions and perspectives

Epigenetic mechanisms are an important ele-
ment of the control of gene expression. Transcrip-
tional regulation through RNA molecules is essen-
tial for many genes [121, 122]. On the other hand, 
the epigenetic profile undergoes changes induced 
by environmental conditions. Oxidative stress is 
linked with pathophysiology of many diseases, 
including migraine. However, in most cases it is 
not completely known whether the stress belongs 
to the reasons or consequences of a disease, or 
both. It is difficult to find a disorder not linked to 
oxidative stress in its pathogenesis. On the other 
hand, ROS are normally produced in mitochondria. 
Therefore, many oxidative stress-related disorders 
can be potentially linked with mitochondria. Con-
sequently, association of a  mitochondrial dys-
function with a clinically detectable disorder may 
result from a false positive correlation. Oxidative 
stress, resulting from impaired functioning of ETS, 
may lead to the accumulation of damage to cellu-
lar components and mitochondrial aging, cellular 
senescence and premature organismal aging. So 
far, no mtDNA damage in migraine has been re-
ported, but the extent of mtDNA damage in the 
brain of mammals was negatively correlated with 
maximal life span [22]. 

Abnormal expression of PGC-1α in neurons of 
a rat model of migraine provokes a question about 
the potential role of this protein in the pathogene-
sis of human migraine. Moreover, the involvement 
of PGC-1α in mitochondrial biogenesis prompts 
the search for the role of mitophagy, a key element 
in the regulation of mitochondrial number, in mi-
graine pathogenesis [123]. 

Migraine can be diagnosed as an isolated 
headache with autonomic symptoms or as a part 
of a syndrome associated with other complex dis-
eases, including mitochondrial disorders. There is 
no general agreement whether these two cate-
gories of migraine are different or not. Some re-
ports suggest that there are essential differences 
between these two forms of migraine not result-
ing from individual susceptibility to this disease. 
These differences are claimed to manifest first 
of all with a prolonged aura and stroke-like epi-
sodes in migraine associated with other diseases. 
However, Vollono et al. recently observed migraine 
without aura in about 80% of mitochondrial dis-
ease cases [43]. Therefore, it may be difficult to 

distinguish autonomous migraine from migraine 
associated with other diseases.

Several mitochondrial encephalomyopathies 
share neurological symptoms with migraine, which 
may follow from a  common mitochondrial ele-
ment in their pathogeneses. As no migraine-spe-
cific mutations in mtDNA have been identified yet, 
it is likely that this common element can be of 
epigenetic nature. The brain needs energy in the 
form of ATP, produced mainly in mitochondria, and 
disturbance in its supply can result in an increased 
sensitivity to migraine attack. 

Complex mitochondrial diseases cannot be re-
lated exclusively to mtDNA as they are associated 
with mitochondrial proteins encoded by nuclear 
genes. Therefore, a complex genomic analysis in-
cluding both mitochondrial and nuclear compo-
nents of the human genome should be performed 
in research on pathogenesis of these diseases. Mi-
tochondrial variation need to be studied in large 
family pedigree studies to find a  correlation be-
tween mtDNA mutation and migraine to eventu-
ally identify true causal variants. Moreover, these 
studies should also include variability in relevant 
nuclear genes. Currently, the MitoProteome Hu-
man Mitochondrial Protein Database lists 3,625 
proteins, including isoforms and splice variants, 
which can be allocated to mitochondria (http://
mitoproteome.org/). 

Riboflavin proved to be effective in migraine 
prophylaxis in several clinical trials. However, some 
issues concerning the methodology of these trials 
as well as basic questions on riboflavin pharma-
cokinetics and pharmacogenomics should be ad-
dressed. These concern first of all interpretation of 
results of trials with n placebo groups and determi-
nation of optimal doses of riboflavin as the mech-
anism of its absorption is not completely known.

In clinical practice, it is important to distinguish 
migraine from monosymptomatic forms of oth-
er diseases manifested by headaches, first of all 
MELAS, especially considering that migraine can 
share morbidity with some mitochondrial disor-
ders. 

Mitochondria add complexity to migraine 
pathogenesis. Therefore, new integrated ap-
proaches are needed to better understand mi-
graine pathophysiology and translate molecular 
research into clinical practice to improve diagnosis 
and therapy of this disease.

The question from the title of this paper re-
mains open. First of all, we must extend and deep-
en our knowledge on epigenetic regulation in mi-
tochondria. mtDNA has a specific structure, which 
can constitute a  barrier in the determination of 
mtDNA epigenetic pattern with methods estab-
lished for its nuclear counterpart, as was shown 
for cytosine methylation in the D-loop. Therefore, 
the initial enthusiasm associated with mtDNA 

http://mitoproteome.org/
http://mitoproteome.org/
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methylation should be revised [118]. This is es-
pecially important as the functional relevance of 
mtDNA methylation has been supported only by 
association studies and no reliable mechanistic 
research on this subject has been performed. 
Secondly, although accumulating body of evi-
dence suggests the involvement of mitochondria 
in migraine pathogenesis, the exact mechanism 
of this involvement is unknown. The potential 
role of mitochondrially enriched miRNAs (mito-
miRNAs) in migraine pathogenesis should be in-
vestigated.

GWAS provided information on many loci which 
can be linked to migraine, so epigenome-wide as-
sociation studies with several high-throughput 
analyses may bring more information on the role 
of epigenetics in migraine. However, the evalua-
tion of the significance of mitochondrial genome/
epigenome in migraine pathophysiology requires 
new methods and approaches.  
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