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A b s t r a c t

Introduction: This study investigated the relationships between differential-
ly co-expressed gene pairs or links (DCLs) and transcription factors (TFs) in 
the gene transcription regulatory network (GTRN) to clarify the molecular 
mechanisms underlying the pathogenesis of Parkinson’s disease (PD).
Material and methods: Microarray dataset GSE7621 from Gene Expression 
Omnibus (GEO) was used to identify differentially expressed genes (DEGs) 
and perform Gene Ontology (GO) enrichment analysis. Differentially co-ex-
pressed genes (DCGs) and DCLs were identified by the DCGL package in R soft- 
ware. DCLs that were potentially related to the regulation mechanisms, and 
corresponding TFs, were identified using the DR sort function in the DCGL 
V2.0 package. The GTRN was constructed with these DCLs-TFs, and visual-
ized with Cytoscape software.
Results: A total of 131 DEGs, including 77 up-regulated DEGs and 54 down- 
regulated DEGs, were identified, which were mainly enriched for plasma 
membrane, cell activities, and metabolism. We found that ICAM1-LTBP and 
CTHRC1-UTP3 might alter gene regulation relationships in PD. The GTRN was 
constructed with DCLs-TFs, including 348 nodes (118 TFs and 230 DCGs) and 
1045 DCLs. These TFs (AHR, SP1, PAX5, etc.) could regulate many target 
genes (e.g. ICAM1 and LTBP) in the GTRN of PD.
Conclusions: ICAM1 and LTBP may play a role in PD symptom development 
and pathology, and might be regulated by important TFs (AHR, SP1, PAX5, 
etc.) identified in the GTRN of PD. These findings may help elucidate the 
molecular mechanisms underlying PD and find a novel drug target for this 
disease.

Key words: Parkinson’ disease, transcription factors, gene transcription 
regulatory network, differentially co-expressed

Introduction 

Parkinson’ disease (PD) is the second most common neurodegener-
ative disease in the world, affecting about 1–2% of the population over 
60 years old [1, 2]. The classic symptom of PD is tremor [3]. PD was long 
considered to be caused by environmental factors [4]; however, recent-
ly, genetic factors have been the focus of most studies, revealing novel 
diagnostic biomarkers and therapeutic targets [5]. At present, there are 
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still no therapies for PD due to the unclear mech-
anism of this disease [6]. It is therefore necessary 
to study the molecular mechanisms of PD.

Generally, complex diseases, such as PD, result 
from a  combination of genetic factors and their 
interactions [7]. Moreover, a number of genes, or 
genetic mutations, have been found to be involved 
in PD pathogenesis, establishing a  basis for the 
mechanism of PD pathogenesis [8, 9]. Previous 
studies have revealed that a  specific a synuclein 
(aSyn) RNA transcript isoform with an extended 
3′untranslated region is associated with PD patho-
genesis [10]. Both over-expression of wild-type 
and an A53T mutant of human aSyn in C. elegans 
can lead to damage of dopamine neurons [11]. 
Loss of VPS35 enhances toxicity of aSyn in PD and 
relates to EIF4G1 [12]. Leucine-rich repeat kinase 2  
(LRRK2) mutations (c.6055G >A  (p.G2019S)) are 
the most frequent cause of PD, accounting for as 
many as 40% of cases in people of Arab descent 
[13], and 1–7% in those of European origin [14]. 
Homozygous c.192G>C (p.E64D) mutations in the 
DJ-1 (Parkinsonism associated deglycase, PARK7) 
gene are associated with early-onset PD in indi-
viduals of Turkish decent [15]. In spite of these 
genetic links, less than 10% of this disease is cur-
rently ascribed to a  single monogenic mutation, 
and much remains to be discovered with regards 
to its multifactorial nature, and the combination of 
genes and environmental factors involved [8].

Recent research has advanced knowledge of the 
biological processes involved in complex diseases. 
Many methods using gene co-expression networks 
have been used to elucidate relationships between 
differentially co-expressed genes pairs [16, 17]. Bio-
logical networks are a powerful tool that could help 
clarify the molecular mechanisms behind complex 
diseases, such as PD [18, 19]. This methodology has 
already been used to identify presenilin-associated 
rhomboid-like protein (PARL) as pathogenic in PD 
based on the known protein functions and protein 
interaction patterns [20]. Genes, and their encoded 
proteins, do not play their roles in isolation, but in 
coordination, and should be evaluated as a part of 
a greater network.

In this study, the gene expression profile of 
GSE7621 was downloaded from Gene Expression 
Omnibus (GEO). Then, the differentially expressed 
genes (DEGs) were identified in PD samples, and 
Gene Ontology (GO) enrichment analysis of DEGs 
was performed. Additionally, differentially co-ex-
pressed genes (DCGs) and differentially co-ex-
pressed gene pairs or links (DCLs) were identified 
using the DCGL package in R software. Finally, the 
gene transcription regulatory network (GTRN) in 
PD was constructed, including DCLs and transcrip-
tion factors (TFs) that were identified as potential-
ly altered in disease. This study will contribute to 

a  deeper understanding of the mechanisms un-
derlying PD and provide new information for fur-
ther study.

Material and methods

Microarray data for Parkinson’s disease

Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/), which is maintained at the Na-
tional Center for Biotechnology Information (NCBI), 
pools high-throughput gene expression data from 
the research community all over the world. The 
gene expression profile GSE7621 was download-
ed from GEO, and contained substantia nigra tis-
sue samples of postmortem brains from 9 healthy 
samples and 16 PD patients. These samples were 
prepared on an Affymetrix Human Genome U133 
Plus 2.0 Array (GPL570 [HG-U133_Plus_2]).

Data preprocessing and identification  
of DEGs

CEL files were preprocessed using the Robust 
Multi-array Average (RMA) algorithm from the Affy 
package for background adjustment, quantile nor-
malization, summarization, and logarithmic trans-
formation (http://www.bioconductor.org/packages/ 
release/bioc/html/affy.html). For each sample, the 
mean value of the probes was defined as the final 
expression value of the gene when the different 
probes were mapped to the same gene symbol.

T-tests were used to identify DEGs between 
the 9 control samples and the 16 PD samples with 
cut-off criteria of p < 0.05 and |log fold change 
(FC)| > 0.5.

GO enrichment analysis

GO analysis is common method for enrichment 
analysis of large-scale genomic or transcriptom-
ic data [21]. DAVID (the Database for Annotation, 
Visualization and Integration Discovery (http://
david.abcc.ncifcrf.gov/) is a  public, high-through-
put, functional annotation tool that creates an 
integrated data-mining environment for analyz-
ing gene lists [22]. To explore DEGs involved in PD 
pathogenesis, these DEGs were input into DAVID 
for GO term enrichment analysis with a threshold 
of p < 0.05.

Identification of DCGs and DCLs

After data preprocessing, the DCGL package 
(Differentially Co-expressed Gene Link) in R soft-
ware [23] was used to identify DCGs and DCLs 
with the cut-off criteria of p < 0.05 and a correla-
tion coefficient (absolute value) > 0.6, respective-
ly. The default values were used as parameters in 
the differential co-expression enrichment (DCe) 
function.
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Construction of the GTRN and identification 
of key TFs

DCLs that were related to potential differential 
regulation mechanisms were identified according 
to TF-target information. The DR sort function in 
the DCGL V2.0 package was used to analyze the 
relationship between DCLs found in our study 
and TF-target information from humans from 
the University of California, Santa Cruz (UCSC) 
database (http://genome.ucsc.edu/) [24]. Two 
types of DCL were found as potential differential 
regulators: one that coincided with TF-target re-
lations, and the other where both genes shared 
a  common TF. We constructed the GTRN with 
TFs and target genes. The networks were visu-
alized by Cytoscape Software (http://cytoscape.
org/) [25]. The number of target genes regulated 
by a certain TF was used to assign the degree of 
each TF in the GTRN.

Results

DEGs in PD samples

We examined 19,686 genes after the data were 
preprocessed using the RMA algorithm in the Affy 
package. Then, a  total of 131 DEGs, including 77 
up-regulated DEGs (e.g. RELN, AKR1C3, AKR1C2, etc.) 
and 54 down-regulated DEGs (e.g. ICAM1, CTHRC1, 
EDN1, etc.), were identified using the t-test.

Function of DEGs

To investigate the potential functions of DEGs in 
PD, the online biological classification software DA-
VID was used to annotate function-related DEGs. We 
obtained a total of 40 GO terms under the threshold 
of p < 0.05. There was enrichment of DEGs involved 
in cell migration, including ICAM1, CTHRC1, RELN, 
KIT, PPAP2B, KDR, and NR2F1, as well as those in-
volved in prostanoid metabolism, which included 
AKR1C3, AKR1C2, and EDN1 (Table I).

Table I. The Gene Ontology (GO) functions of differentially expressed genes (DEGs) 

Category GO ID GO name Gene  
number

P-value Gene

BP GO:0051674 Localization 
of cell

9 0.00079 ICAM1, CTHRC1, CTGF, DNAJA1, RELN, KIT, PPAP2B, 
KDR, NR2F1

BP GO:0048870 Cell motility 9 0.00079 ICAM1, CTHRC1, CTGF, DNAJA1, RELN, KIT, PPAP2B, 
KDR, NR2F1

BP GO:0016477 Cell migration 8 0.00198 ICAM1, CTHRC1, CTGF, RELN, KIT, PPAP2B, KDR, 
NR2F1

BP GO:0006690 Icosanoid 
metabolic 
process

4 0.00340 AKR1C3, GGT5, AKR1C2, EDN1

MF GO:0019838 Growth factor 
binding

5 0.00417 CTGF, LIFR, IGFBP3, CRIM1, KDR

BP GO:0033559 Unsaturated 
fatty acid 
metabolic 
process

4 0.00428 AKR1C3, GGT5, AKR1C2, EDN1

CC GO:0005886 Plasma 
membrane

35 0.00449 SLC5A3, TLR1, NOSTRIN, KIT, KCNA5, KCNJ2, RHOU, 
CDH5, BEST1, MALL, CTGF, OPALIN, DDX3Y, OLIG2, 

LEPROT, HHIP, IL13RA1, PPAP2B, CRIM1, ICAM1, 
CA11, LIFR, TSPAN15, CTNNA3, KDR, FZD6, GGT5, 
VWF, P2RX7, TAF12, CLIC4, CNTN3, GPR17, EMR2, 

GPR116

BP GO:0030334 Regulation of 
cell migration

6 0.00465 ICAM1, CLIC4, EDN1, KIT, IGFBP3, KDR

BP GO:0051789 Response 
to protein 
stimulus

5 0.00498 HSPH1, P2RX7, DNAJA1, DNAJB6, MANF

BP GO:0006692 Prostanoid 
metabolic 
process

3 0.00651 AKR1C3, AKR1C2, EDN1

This table shows the top 10 GO terms in order of P value from small to large. BP – biological process, MF – molecular function, CC – cellular 
component, ICAM1 – intercellular adhesion molecule 1, CTHRC1 – collagen triple helix repeat containing 1, CTGF – connective tissue 
growth factor, DNAJA1 – DnaJ heat shock protein family (Hsp40) member A1, RELN – reelin, KIT – KIT proto-oncogene receptor tyrosine 
kinase, PPAP2B – phosphatidic acid phosphatase type 2B, KDR – kinase insert domain receptor, NR2F1 – nuclear receptor subfamily 2, 
group F, member 1, AKR1C3 – aldo-keto reductase family 1 member C3, GGT5 – g-glutamyltransferase 5, AKR1C2 – aldo-keto reductase 
family 1 member C2, EDN1 – endothelin 1. 
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Construction of co-expression network

A total of 338 DCGs and 620 DCLs were iden-
tified, including ICAM1-LTBP and CTHRC1-UTP3. 
Additionally, the results showed that there was no 
coincidence with TF-target relations in these DCLs. 
However, 614 DCLs where both genes shared the 
same TF were found. We constructed co-expres-
sion networks with 230 DCGs and 614 DCLs, 
which are shown in Figure 1. The majority of DCLs 
were unassisted, as shown in Figure 2, but there 
were interactions in a small number. The changes 
seen in these DCLs may be involved in the devel-
opment of PD.

Analysis of the GTRN

The GTRN was constructed using relationships 
in gene regulation in potentially altered DCLs and 
common TFs. There were a total of 348 nodes and 
1045 DCLs in the network, including 118 TFs and 
230 regulated genes (Figure 2). In this network, 
several genes had a higher degree, such as AHR 
(degree = 56), SP1 (degree = 54), and PAX5 (de-
gree = 52) (Table II).

Discussion 

The PD is the second most common neurode-
generative disease among the elderly population 
worldwide [26]. Age, environment, and genetics 
are all considered to be risk factors for PD [27, 28]. 
At present, there is no effective therapy in PD.

Identification of DEGs has a  key role in de-
scribing the molecular mechanisms of different 
biological processes [29]. In this study, we used 
bioinformatics to propose possible biological roles 
of DEGs, and their protein products, in PD patho-
genesis by GO analysis. We found enrichment of 
genes involved in cell migration, such as ICAM1 
and CTHRC1, as well as genes involved in prosta-
noid metabolism, such as AKR1C3, AKR1C2, and 
EDN1. Additionally, the GTRN included 118 TFs 
and 230 DCGs, such as AHR, SP1, and PAX5.

ICAM1, also known as CD54, encodes a cell sur-
face glycoprotein that is typically expressed on en-
dothelial cells and immune cells. A previous study 
determined that ICAM1 increases expression of 
neprilysin, which can prevent, or treat, neurolog-
ical diseases, including PD [30]. aSyn stimulates 
human U-373 MG astrocytoma cells by up-reg-
ulating both interleukin-6 (IL-6) and ICAM1 [31], 
and has a  causative role in PD [32]. In addition, 
ICAM1-positive reactive astrocytes play a  role in 
substantia nigra inflammation in PD [33]. There-
fore, ICAM1 might play a key role in PD pathogen-
esis.

However, DEGs, and their protein products, 
function not only in isolation but also in coor-
dination [34]. Some studies have used network 
analysis to reveal previously unknown mech-
anisms of PD [35]. In the present study, a  total 
338 DCGs and 620 DCLs were identified in the 
differential co-expression network, such as the 
differential co-expression of ICAM1-LTBP and 

Figure 1. The co-expression network of Parkinson’ disease (PD). This network consists of 230 DCGs and 614 DCLs. 
DCLs, differentially regulated links; DCGs, differentially co-expressed genes (Supplementary Tables SI and SII)
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CTHRC1-UTP3. Latent-transforming growth fac-
tor b-binding protein (LTBP) has been shown to 
affect activation of transforming growth factor b 
(TGF-b) released from neurons [36]. TGF-b plays 
a role in injury repair at sites surrounding brain 
injury. Both TGF-b1 and TGF-b2 have been shown 
to be significantly increased in the ventricular 
cerebrospinal fluid of PD patients [37]. Thus, 

LTBPs may play a role in the neurodegenerative 
cascade leading to PD symptoms and pathology. 
Although the relationship between ICAM1 and 
LTBP has not yet been characterized, we identi-
fied a  clear interaction of this gene pair in PD. 
Additionally, the role of CTHRC1 and UTP3 in PD 
is also unclear, and should be further character-
ized experimentally.

Figure 2. The transcription regulation network of PD. There are in total 348 gene nodes (118 TFs and 230 target 
genes) and 1045 DCLs in this network. Purple nodes represent TFs. Pink nodes represent DEGs. TFs, transcription 
factors; DEGs, differentially expressed genes (Supplementary Table SIII)

Table II. The top 10 transcription factors (TFs) with larger degree in 

TF Degree TF Degree

AHR 56 MIA3 46

SP1 54 ARNT 46

PSG1 54 CREB1 42

DAND5 54 AP-2g 42

PAX5 52 PATZ1 34

AHR – aryl hydrocarbon receptor, SP1 –Sp1 transcription factor, PSG1 – pregnancy specific b-1-glycoprotein 1, DAND5 – DAN domain BMP 
antagonist family member 5, PAX5 – paired box 5. 
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Interestingly, genes encoding proteins involved 
in prostanoid metabolism were enriched in the 
study. Previous studies have suggested that thia-
mine is effective in improving the motor and neu-
romotor symptoms in PD [38, 39]. The properties 
of prostaglandin are similar to those of thiamine 
in many regards [40]. Thus, prostaglandin, as 
a signaling molecule, may play an important role 
in PD pathophysiology. In summary, the GO terms 
found to be enriched in the study could reflect 
the involvement of DEGs in PD. These DEGs and 
DCGs, such as ICAM1 and LTBP, may help eluci-
date and clarify pathways involved in PD patho-
genesis.

Additionally, we identified a number of TFs, such 
as AHR, SP1, PAX5, that regulate many target genes 
in the GTRN of PD, and could alter target gene reg-
ulation or affect the interaction of common tar-
get genes. Synphilin-1 (SP1) is predominantly ex-
pressed in neurons, and is a component of Lewy 
bodies found in brains of sporadic PD patients. 
Importantly, SP1 reduces mutant G2019S-LRRK2 
kinase activity and plays a  neuroprotective role 
in PD pathogenesis [41]. Therefore, SP1 is related 
to the pathogenesis of PD. In addition, PAX5 has 
been shown to be essential for initiating B cell 
lineage commitment, and plays an important role 
in neural development [42]. Single nucleotide poly-
morphisms (SNPs) located in non-coding DNA in-
volved in cell type differentiation, such as PAX5, 
were identified as risk factors for PD [43]. PAX5 
regulates the DCL ICAM1-LTBP noted in this study. 
The TFs identified in this study should be further 
investigated in the context of PD,

There are some limitations of our study. First, 
the number of samples, including control and PD, 
is small. Additionally, ethnic diversity was not tak-
en into account in our study. In the next study, 
more attention will be paid to minimizing these 
limitations. Although further experimental verifi-
cation is needed, our results help to illustrate the 
molecular mechanisms involved in PD and may 
help find a novel treatment target for PD.

In conclusion, we found that ICAM1 and LTBP 
may play a role in PD pathology, which may lead to 
a better understanding of the biological process-
es involved in PD. Additionally, the TFs identified 
in this study (AHR, SP1, PAX5, etc.) may regulate 
many of the target genes in PD, and may alter 
target gene regulation or affect the interaction of 
common target genes. 
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