LIPID DISORDERS / CLINICAL RESEARCH
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Biallelic pathogenic variants in the LPL gene are associated with familial lipoprotein lipase (LPL) deficiency. Homozygotes exhibit very severe hypertriglyceridemia (HTG) already in childhood, with phenotypic features such as pancreatitis, abdominal pain and xanthomata. Recent studies showed that HTG levels varied greatly between monoallelic LPL pathogenic/likely pathogenic variant carriers. The aim of our study was to investigate whether heterozygotes for pathogenic variants in the LPL gene in the Polish population may have clinical symptoms and, if so, to what extent.

Material and methods:
Genetic data were derived from a Polish cohort of 5623 whole exome sequenced patients. In 52 cases the indication for WES genetic testing was “hypertriglyceridemia ‘’ and for 5571 there was another clinical indication, mainly autism spectrum disorder, dysmorphia and neurodegenerative diseases.

Results:
We present 22 heterozygous and 2 homozygous/compound heterozygous individuals for the pathogenic/likely pathogenic LPL variant and describe HTG levels, phenotypic manifestations and age of onset in the context of molecular findings where available. We report for the first time heterozygous LPL individuals with very severe HTG (TG ≥ 22.6 mmol/l; > 2000 mg/dl) and additional symptoms such as pancreatitis and recurrent abdominal pain.

Conclusions:
We argue that although the individuals carrying the single LPL pathogenic/likely pathogenic variant display the whole disease spectrum, the severe phenotype of heterozygotes with dominantly inherited LPL-related HTG may also exist.
REFERENCES (32)
1.
Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J 2020; 41: 99-109.
 
2.
Simha V. Management of hypertriglyceridemia. BMJ 2020; 371: m3109.
 
3.
Al-Waili K, Al-Rasadi K, Al-Bulushi M, et al. The genetic spectrum of familial hypertriglyceridemia in Oman. Front Genet 2022; 13: 886182.
 
4.
Shah AS, Wilson DP. Genetic Disorders Causing Hypertriglyceridemia in Children and Adolescents. [Updated 2023 Feb 22]. In: Feingold KR, Anawalt B, Blackman MR, et al. (eds.). Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000-. Available from: https://www.ncbi.nlm.nih.gov/b....
 
5.
Futema M, Ramaswami U, Tichy L, et al. Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis 2021; 319: 108-17.
 
6.
Di Taranto MD, Giacobbe C, Buonaiuto A, et al. A real-world experience of clinical, biochemical and genetic assessment of patients with homozygous familial hypercholesterolemia. J Clin Med 2020; 9: 219.
 
7.
Bañares VG, Corral P, Medeiros AM, et al. Preliminary spectrum of genetic variants in familial hypercholesterolemia in Argentina. J Clin Lipidol 2017; 11: 524-31.
 
8.
Burnett JR, Hooper AJ, Hegele RA. Familial lipoprotein lipase deficiency. 1999 Oct 12 [Updated 2017 Jun 22]. In: Adam MP, Feldman J, Mirzaa GM, et al. (eds.). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/b....
 
9.
Burnett JR, Hooper AJ. Common and rare gene variants affecting plasma LDL cholesterol. Clin Biochem Rev 2008; 29: 11-26.
 
10.
Dunø M, Colding-Jørgensen E, Grunnet M, et al. Difference in allelic expression of the CLCN1 gene and the possible influence on the myotonia congenita phenotype. Eur J Hum Genet 2004; 12: 738-43.
 
11.
Angelini C. Calpainopathy. In: GeneReviews®. Adam MP, Feldman J, Mirzaa GM, et al. (eds.). Seattle (WA): University of Washington, Seattle; May 10, 2005.
 
12.
Wilson DE, Emi M, Iverius PH, et al. Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. J Clin Invest 1990; 86: 735-50.
 
13.
Perera SD, Wang J, McIntyre AD, Dron JS, Hegele RA. The longitudinal triglyceride phenotype in heterozygotes with LPL pathogenic variants. J Clin Lipidol 2023; 17: 87-93.
 
14.
Marusic T, Sustar U, Sadiq F, et al. Genetic and clinical characteristics of patients with homozygous and compound heterozygous familial hypercholesterolemia from three different populations: case series. Front Genet 2020; 11: 572176.
 
15.
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754-60.
 
16.
Tischler G, Leonard S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code for Biology and Medicine. 2014; 9: 13. https://gitlab.com/german.tisc....
 
17.
McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297-303.
 
18.
Poplin R, Ruano-Rubio V, DePristo MA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv 201178; doi: https://doi.org/10.1101/201178.
 
19.
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. arXiv https://doi.org/10.48550/arXiv....
 
20.
McLaren W, Gil L, Hunt SE, et al. The Ensembl variant effect predictor. Genome Biol 2016; 17: 122.
 
21.
Richards S, Aziz N, Bale S, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405-24.
 
22.
1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015; 526: 68-74.
 
23.
Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2024; 625: 92-100.
 
24.
Jaganathan K, Kyriazopoulou Panagiotopoulou S, et al. Predicting splicing from primary sequence with deep learning. Cell 2019; 176: 535-48.e24.
 
25.
Regmi M, Rehman A. Familial Hyperchylomicronemia Syndrome. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/b....
 
26.
Nordestgaard BG, Abildgaard S, Wittrup HH, et al. Heterozygous lipoprotein lipase deficiency: frequency in the general population, effect on plasma lipid levels, and risk of ischemic heart disease. Circulation 1997; 96: 1737-44.
 
27.
Zhang G, Hu Y, Yang Q, et al. Frameshift coding sequence variants in the LPL gene: identification of two novel events and exploration of the genotype-phenotype relationship for variants reported to date. Lipids Health Dis 2023; 22: 128.
 
28.
Dron JS, Wang J, McIntyre AD, et al. Partial LPL deletions: rare copy-number variants contributing towards severe hypertriglyceridemia. J Lipid Res 2019; 60: 1953-8.
 
29.
Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR. A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc Natl Acad Sci USA 1989; 86: 948-52.
 
30.
Dron JS, Wang J, McIntyre AD, Cao H, Hegele RA. The polygenic nature of mild-to-moderate hypertriglyceridemia. J Clin Lipidol 2020; 14: 28-34.
 
31.
Dron JS, Wang J, Cao H, et al. Severe hypertriglyceridemia is primarily polygenic. J Clin Lipidol 2019; 13: 80-8.
 
32.
Carrasquilla GD, Christiansen MR, Kilpeläinen TO. The genetic basis of hypertriglyceridemia. Curr Atheroscler Rep 2021; 23: 39.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top