Intestinal ischemia–reperfusion injury (I/R) can occur during pediatric intussusception, and any delay in diagnosis or treatment can lead to loss of intestinal viability that requires bowel resection. The aim of the present study was to investigate whether transfer ribonucleic acid (tRNA)–derived fragments (tRFs) can serve as candidate biomarkers for pediatric intussusception.

Material and methods:
Using high-throughput sequencing technology, we identified differentially expressed tRFs, and ultimately selected three tRFs to establish a signature as a predictive biomarker of pediatric intussusception. Selection of these three upregulated genes was verified using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We conducted receiver operator characteristic (ROC) curve analysis to evaluate the predictive accuracy of the selected genes for pediatric intussusception.

We detected 732 tRFs and tRNA-derived stress-induced RNA (tiRNAs), 1705 micro-RNAs (miRNAs), 52 differentially expressed miRNAs, and 34 differentially expressed tRFs and tiRNAs between patients and controls. Compared with controls, we found 33 upregulated miRNAs, 24 upregulated tRFs and tiRNAs, 19 downregulated miRNAs, and 10 downregulated tRFs and tiRNAs in children with intussusception. Using qPCR, the expression trends of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were consistent with the sequencing results. AUCs of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were 0.984, 0.970 and 0.837, respectively.

Circulating tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 expression might be a novel potential biomarker for diagnosis of pediatric intussusception.