NEUROLOGY / EXPERIMENTAL RESEARCH
How to translate neuro-cognitive and behavioural outcome data in animals exposed to paracetamol to the human perinatal setting?
More details
Hide details
1
Department of Development and Regeneration, KU Leuven, Leuven, Belgium
2
Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
3
Department of Hospital Pharmacy, Erasmus MC, Rotterdam, The Netherlands
4
Department of Pediatrics, Pharmacology and Physiology, Children’s National Medical Center, Washington DC, 20010, USA
5
Intensive Care, Erasmus Medical Center-Sophia Children’s Hospital, Rotterdam, The Netherlands
6
Department of Pediatric Pharmacology, University Children’s Hospital Basel, Basel, Switzerland
Submission date: 2020-01-05
Final revision date: 2020-04-19
Acceptance date: 2020-05-05
Online publication date: 2020-11-15
Publication date: 2024-08-04
Arch Med Sci 2024;20(4):1294-1306
KEYWORDS
TOPICS
ABSTRACT
Introduction:
There are epidemiological – not necessary causal – observations that link perinatal paracetamol (acetaminophen) exposure to impaired neuro-cognition and behaviour, but animal models may assist to better understand the mechanisms.
Material and methods:
To provide an overview on preclinical data and mechanisms explored, we conducted a structured literature search on animal models and neuro-cognition and behavioural outcome following perinatal paracetamol exposure.
Results:
This search resulted in 20 papers (rat (n = 9), zebrafish larvae (n = 6), mice (n = 5)), published between 2009 and 2020. Eight discussed pregnancy/fetal paracetamol exposure, 6 juvenile, 6 studies combined pregnancy and juvenile exposure. Quality assessment (SYRCLE’s bias risk) showed a heterogeneous pattern with blinding issues. Most papers (n = 16) described paracetamol exposure without indication, except for an induced fever and repetitive needle pricking (rat), brain injury (mice), and a zebrafish nociception model. Reported outcomes related to biochemistry (mono-amines, amino acids, protein expression), anatomy (teratogen, morphology, nuclear size) or behaviour (spatial memory, motor, social behaviour and exploration, sexual behaviour). On mechanisms, the cumulative data support an interesting ‘cannabinoid’ hypothesis to link paracetamol to neuro-cognitive and behavioural outcome. Besides limited species diversity, there is relevant within-species paracetamol dosing variability (dose, duration) with undocumented exposure.
Conclusions:
Models should further integrate clinical indications, as non-exposure is the obvious safest setting in the absence of an indication. Besides pain and fever and related to the cannabinoid hypothesis, this should include perinatal brain injury, as there is animal experimental evidence that cannabinoids are neuroprotective in newborn brain injury or asphyxia, further supported by evidence from non-perinatal models of paracetamol-related neuroprotective effects.
REFERENCES (61)
1.
Allegaert K, van den Anker JN. Perinatal and neonatal use of paracetamol for pain relief. Semin Fetal Neonatal Med 2017; 22: 308-13.
2.
Pacifici GM, Allegaert K. Clinical pharmacology of paracetamol in neonates: a review. Curr Ther Res Clin Exp 2014; 77: 24-30.
3.
Anderson BJ. Paracetamol (acetaminophen): mechanisms of action. Paediatr Anaesth 2008; 18: 915-21.
4.
Ceulemans M, Lupattelli A, Nordeng H, Odalovic M, Twigg M, Foulon V. Women’s beliefs about medicines and adherence to pharmacotherapy in pregnancy: opportunities for community pharmacists. Curr Pharm Des 2019; 25: 469-82.
5.
Mian P, van den Anker JN, van Calsteren K, et al. Physiologically based pharmacokinetic modeling to characterize acetaminophen pharmacokinetics and N-Acetyl-p-Benzoquinone imine (NAPQI) formation in non-pregnant and pregnant women. Clin Pharmacokinet 2020; 59: 97-110.
6.
Cuzzolin L, Antonucci R, Fanos V. Paracetamol (acetaminophen) efficacy and safety in the newborn. Curr Drug Metab 2013; 14: 178-85.
7.
Allegaert K, Simons S, van den Anker J. Research on medication use in the neonatal intensive care unit. Expert Rev Clin Pharmacol 2019; 12: 343-53.
8.
Hopchet L, Kulo A, Rayyan M, et al. Does intravenous paracetamol administration affect body temperature in neonates? Arch Dis Child 2011; 96: 301-4.
9.
Carbajal R, Eriksson M, Courtois E, et al. Sedation and analgesia practices in neonatal intensive care units (EUROPAIN): results from a prospective cohort study. Lancet Respir Med 2015; 3: 796-812.
10.
Allegaert K, Anderson B, Simons S, van Overmeire B. Paracetamol to induce ductus arteriosus closure: is it valid? Arch Dis Child 2013; 98: 462-6.
11.
Dathe K, Frank J, Padberg S, et al. Negligible risk of prenatal ductus arteriosus closure or fetal renal impairment after third-trimester paracetamol use: evaluation of the German Embryotox cohort. BJOG 2019; 126: 1560-7.
12.
Allegaert K, Mian P, Lapillonne A, van den Anker JN. Maternal paracetamol intake and fetal ductus arteriosus constriction or closure: a case series analysis. Br J Clin Pharmacol 2019; 85: 245-51.
13.
Langhendries JP, Allegaert K, van den Anker JN, Veyckemans F, Smets F. Possible effects of repeated exposure to ibuprofen and acetaminophen on the intestinal immune response in young infants. Med Hypotheses 2016; 87: 90-6.
14.
Eyers S, Weatherall M, Jefferies S, Beasley R. Paracetamol in pregnancy and the risk of wheezing in offspring: a systematic review and meta-analysis. Clin Exp Allergy 2011; 41: 482-9.
15.
Fisher BG, Thankamony A, Hughes IA, Ong KK, Dunger DB, Acerini CL. Prenatal paracetamol exposure is associated with shorter anogenital distance in male infants. Hum Reprod 2016; 31: 2642-50.
16.
Kilcoyne KR, Mitchell RT. Assessing the impact of in-utero exposures: potential effects of paracetamol on male reproductive development. Arch Dis Child 2017; 102: 1169-75.
17.
Bauer AZ, Kriebel D, Herbert MR, Bornehag CG, Swan SH. Prenatal paracetamol exposure and child neurodevelopment: a review. Horm Behav 2018; 101: 125-47.
18.
Masarwa R, Levine H, Gorelik E, Reif S, Perlman A, Matok I. Prenatal exposure to acetaminophen and risk for attention deficit hyperactivity disorder and autistic spectrum disorder: a systematic review, meta-analysis, and meta-regression analysis of cohort studies. Am J Epidemiol 2018; 187: 1817-27.
19.
Damkier P, Scialli AR, Lusskin SI. Acetaminophen in pregnancy and adverse childhood neurodevelopment. JAMA Pediatr 2017; 171: 396.
20.
Gustavson K, Ask H, Ystrom E, et al. Maternal fever during pregnancy and offspring attention deficit hyperactivity disorder. Sci Rep 2019; 9: 9519.
22.
Juujärvi S, Kallankari H, Pätsi P, et al. Follow-up study of the early, randomised paracetamol trial to preterm infants, found on adverse reactions at the two-years corrected age. Acta Paediatr 2019; 108: 452-58.
23.
Oncel MY, Eras Z, Uras N, Canpolat FE, Erdeve O, Oguz SS. Neurodevelopmental outcomes of preterm infants treated with oral paracetamol versus ibuprofen for patent ductus arteriosus. Am J Perinatol 2017; 34: 1185-9.
24.
Bhutta AT, Rovnaghi C, Simpson PM, Gossett JM, Scalzo FM, Anand KJ. Interactions of inflammatory pain and morphine in infant rats: long-term behavioral effects. Physiol Behav 2001; 73: 51-8.
25.
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43.
26.
Blecharz-Klin K, Joniec-Maciejak I, Jawna K, et al. Effect of prenatal and early life paracetamol exposure on the level of neurotransmitters in rats – focus on the spinal cord. Int J Dev Neurosci 2015; 47: 13-9.
27.
Blecharz-Klin K, Joniec-Maciejak I, Jawna K, et al. Developmental exposure to paracetamol causes biochemical alterations in medulla oblongata. Environ Toxicol Pharmacol 2015; 40: 369-74.
28.
Blecharz-Klin K, Joniec-Maciejak I, Jawna-Zboińska K, et al. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development. Pharmacol Rep 2016; 68: 1159-64.
29.
Blecharz-Klin K, Piechal A, Jawna-Zboińska K, et al. Paracetamol – effect of early exposure on neurotransmission, spatial memory and motor performance in rats. Behav Brain Res 2017; 323: 162-71.
30.
Blecharz-Klin K, Wawer A, Jawna-Zboińska K, et al. Early paracetamol exposure decreases brain-derived neurotrophic factor (BDNF) in striatum and affects social behaviour and exploration in rats. Pharmacol Biochem Behav 2018; 168: 25-32.
31.
Blecharz-Klin K, Wawer A, Pyrzanowska J, et al. Hypothalamus – response to early paracetamol exposure in male rat offspring. Int J Dev Neurosci 2019; 76: 1-5.
32.
David A, Pancharatna K. Effects of acetaminophen (paracetamol) in the embryonic development of zebrafish, Danio rerio. J Appl Toxicol 2009; 29: 597-602.
33.
Ellis LD, Berrue F, Morash M, Achenbach JC, Hill J, McDougall JJ. Comparison of cannabinoids with known analgesics using a novel high throughput zebrafish larval model of nociception. Behav Brain Res 2018; 337: 151-9.
34.
Escapa C, Coimbra RN, Neupartch T, Torres T, Santos MM, Otero M. Acetaminophen removal form water by microalgae and effluent toxicity assessment by the zebrafish embryo bioassay. Water 2019; 11: 1929.
35.
Hay-Schmidt A, Finkielman OTE, Jensen BAH, et al. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behavior. Reproduction 2017; 154: 145-52.
36.
Klein RM, Rigobello C, Vidigal CB, et al. Gestational exposure to paracetamol in rats induces neurofunctional alterations in the progeny. Neurotoxicol Teratol 2020; 77: 106838.
37.
Leroux P, Hennebert C, Catteau J, et al. Neuroprotective effects vary across nonsteroidal antiinflammatory drugs in a mouse model of developing excitotoxic brain injury. Neuroscience 2010; 167: 716-23.
38.
Nogueira AF, Pinto G, Correia B, Nunes B. Embryonic development, locomotor behavior, biochemical, and epigenetic effects of the pharmaceutical drugs paracetamol and ciprofloxacin in larvae and embryos of Danio rerio when exposed to environmental realistic levels of both drugs. Environ Toxicol 2019; 34: 1177-90.
39.
Philippot G, Gordh T, Frediksson A, Viberg H. Adult neurobehavioral alterations in male and female mice following developmental exposure to paracetamol (acetaminophen): characterization of a critical period. J Appl Toxicol 2017; 37: 1174-81.
40.
Philippot G, Hallgren S, Gordh T, Fredriksson A, Fredriksson R, Viberg H. A cannabinoid receptor type 1 (CB1R) agonist enhances the developmental neurotoxicity of acetaminophen (paracetamol). Toxicol Sci 2018; 166: 203-12.
41.
Reuter I, Knaup S, Romanos M, Lesch KP, Drepper C, Lillesaar C. Developmental exposure to acetaminophen does not induce hyperactivity in zebrafish larvae. J Neural Transm (Vienna) 2016; 123: 841-8.
42.
Saeedan AS, Singh I, Ansari MN, et al. Effect of early natal supplementation of paracetamol on attenuation of exotoxin/endotoxin induced pyrexia and precipitation of autistic like features in albino rats. Inflammopharmacology 2018; 26: 951-61.
43.
Van den Hoogen NJ, Tibboel D, Honig WM, Hermes D, Patijn J, Joosten EA. Neonatal paracetamol treatment reduces long-term nociceptive behaviour after neonatal procedural pain in rats. Eur J Pain 2016; 20: 1309-18.
44.
Viberg H, Eriksson P, Gordh T, Fredriksson A. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice. Toxicol Sci 2014; 138: 139-47.
45.
Xia L, Zheng L, Zhou JL. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). Chemosphere 2017; 182: 416-25.
46.
Flint RB, Roofthooft DW, van Rongen A, et al. Exposure to acetaminophen and all its metabolites upon 10, 15, and 20 mg/kg intravenous acetaminophen in very-preterm infants. Pediatr Res 2017; 82: 678-84.
47.
Philippot G, Nyberg F, Gordh T, Fredriksson A, Viberg H. Short-term exposure and long-term consequences of neonatal exposure to Δ(9)-tetrahydrocannabinol (THC) and ibuprofen in mice. Behav Brain Res 2016; 307: 137-44.
48.
Philippot G, Forsberg E, Tahan C, Viberg H, Fredriksson R. A single δ9-tetrahydrocannabinol (THC) dose during brain development affects markers of neurotrophy, oxidative stress, and apoptosis. Front Pharmacol 2019; 10: 1156.
49.
Scheyer AF, Melis M, Trezza V, Manzoni OJJ. Consequences of perinatal cannabis exposure. Trends Neurosci 2019; 42: 871-84.
50.
Harding DR, Humphries SE, Whitelaw A, Marlow N, Montgomery HE. Cognitive outcome and cyclo-oxygenase-2 gene (-765 G/C) variation in the preterm infant. Arch Dis Child Fetal Neonatal Ed 2007; 92: F108-12.
51.
Van der Veeken L, Grönlund S, Gerdtsson E, et al. Long-term neurological effects of neonatal caffeine treatment in a rabbit model of preterm birth. Pediatr Res 2020; 87: 1011-8.
52.
van der Merwe J, van der Veeken L, Ferraris S, et al. Early neuropathological and neurobehavioral consequences of preterm birth in a rabbit model. Sci Rep 2019; 9: 3506.
53.
Peterson RG. Consequences associated with nonnarcotic analgesics in the fetus and newborn. Fed Proc 1985; 44: 2309-13.
54.
Whitelaw A, Thoresen M. Antenatal steroids and the developing brain. Arch Dis Child Fetal Neonatal Ed 2000; 83: F154-7.
55.
Koo E, Oshodi T, Meschter C, Ebrahimnejad A, Dong G. Neurotoxic effects of dexmedetomidine in fetal cynomolgus monkey brains. J Toxicol Sci 2014; 39: 251-62.
56.
Tamai S, Iguchi T, Niino N, et al. A monkey model of acetaminophen-induced hepatotoxicity: phenotypic similarity to human. J Toxicol Sci 2017; 42: 73-84.
57.
Baliga SS, Jaques-Robinson KM, Hadzimichalies NM, Golfetti R, Merrill GF. Acetaminophen reduced mitochondrial dysfunction during early cerebral postischemic reperfusion in rats. Brain Res 2010; 1319: 142-54.
58.
Briyal S, Gulati A. Endothelin-A receptor antagonist BQ123 potentiates acetaminophen induced hypothermia and reduces infarction following focal cerebral ischemia in rats. Eur J Pharmacol 2010; 644: 73-9.
59.
Hassell KJ, Ezzati M, Alonso-ALconada D, Hausenloy DJ, Robertson NJ. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 2015; 100: F541-52.
60.
Grama A, Aldea C, Burac L, et al. Acute liver failure secondary to toxic exposure in children. Arch Med Sci 2022; 18: 84-91.
61.
Cao H, Li H, Zhu X, et al. Three non-invasive ventilation strategies for preterm infants with respiratory distress syndrome: a propensity score analysis. Arch Med Sci 2020; 16: 1319-26.