Basic research
Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells
Effect of an angiotensin II type 1 receptor blocker on caveolin-1 expression in prostate cancer cells
Submission date: 2011-09-22
Final revision date: 2012-01-09
Acceptance date: 2012-02-13
Online publication date: 2012-10-08
Publication date: 2013-08-31
Arch Med Sci 2013;9(4):739–744
KEYWORDS
caveolin-1angiotensin II type 1-receptorangiotensin IIcandesartanprostate cancerangiotensin II type 1 receptor
TOPICS
ABSTRACT
Introduction: Caveolin-1, the major structural protein of caveolae, interacts directly with the AT1 receptor. The biological functions of caveolin-1 in cancer are compound, multifaceted, and depend on cell type, tumour grade and cancer stage. The AT1-R-caveolin complex in caveolae may coordinate angiotensin II (Ang II) induced signalling. The aim of this study was to determine the effect of the angiotensin II receptor type 1 blocker candesartan on caveolin expression in human metastatic prostate adenocarcinoma cells PC-3.
Material and methods: WST-1 and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II and/or candesartan stimulation. Real-time RT–PCR and western blot were used to study the effect of Ang II and/or candesartan on the expression of Cav-1 and AT1-R in PC-3 cells
Results: We found that the expression of caveolin-1 mRNA in the PC-3 cells treated with CV was significantly decreased in comparison with the control (2.9 ±0.17, 4.7 ±0.6, p < 0.05), whereas a higher caveolin-1 mRNA expression was observed in those after Ang II treatment (6.0 ±0.43, 4.7 ±0.6, p < 0.05). Protein analysis indicate that the expression of caveolin-1 protein in the PC-3 cells treated with candesartan was significantly decreased when compared with the control (0.69 ±0.05, 1.6 ±0.12, p < 0.05), whereas higher caveolin-1 protein expression was observed after Ang II treatment (2.5 ±0.20, 1.6 ±0.12, p < 0.05).
Conclusions: These results provide new information on the action of candesartan and may improve the knowledge about AT1 receptor inhibitors, which can be potentially useful in prostate cancer therapy.
Material and methods: WST-1 and BrdU assays were used as indicators of cell viability and proliferation after angiotensin II and/or candesartan stimulation. Real-time RT–PCR and western blot were used to study the effect of Ang II and/or candesartan on the expression of Cav-1 and AT1-R in PC-3 cells
Results: We found that the expression of caveolin-1 mRNA in the PC-3 cells treated with CV was significantly decreased in comparison with the control (2.9 ±0.17, 4.7 ±0.6, p < 0.05), whereas a higher caveolin-1 mRNA expression was observed in those after Ang II treatment (6.0 ±0.43, 4.7 ±0.6, p < 0.05). Protein analysis indicate that the expression of caveolin-1 protein in the PC-3 cells treated with candesartan was significantly decreased when compared with the control (0.69 ±0.05, 1.6 ±0.12, p < 0.05), whereas higher caveolin-1 protein expression was observed after Ang II treatment (2.5 ±0.20, 1.6 ±0.12, p < 0.05).
Conclusions: These results provide new information on the action of candesartan and may improve the knowledge about AT1 receptor inhibitors, which can be potentially useful in prostate cancer therapy.
RELATED ARTICLE