HEART FAILURE / BASIC RESEARCH
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
To elucidate the candidate biomarkers involved in the pathogenesis process of heart failure (HF) via analysis of differentially expressed genes (DEGs) of the dataset from the Gene Expression Omnibus (GEO).

Material and methods:
The GSE76701 gene expression profiles regarding the HF and control subjects were respectively analysed. Briefly, DEGs were firstly identified and subjected to Cytoscape plug-in ClueGO + CluePedia and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. A protein-protein interaction (PPI) network was then built to analyse the interaction between DEGs, followed by the construction of an interaction network by combining with hub genes with the targeted miRNA genes of DEGs to identify the key molecules of HF. In addition, potential drugs targeting key DEGs were sought using the drug-gene interaction database (DGIdb), and a drug-mRNA-miRNA interaction network was also constructed.

Results:
A total of 489 DEGs were verified between HF and control, which mainly enriched in type I interferon and leukocyte migration according to molecular function. Significantly increased levels of GAPDH, GALM1, MMP9, CCL5, and GNAL2 were found in the HF setting and were identified as the hub genes based on the PPI network. Furthermore, according to the drug-mRNA-miRNA network, FCGR2B, CCND1, and NF-κb, as well as corresponding miRNA-605-5p, miRNA-147a, and miRNA-671-5p were identified as the drug targets of HF.

Conclusions:
The hub genes GAPDH, GALM1, MMP9, CCL5, and GNAL2 were significantly increased in HF. miRNA-605-5p, miRNA-147a, and miRNA-671-5p were predicted as the drug target-interacted gene-miRNA of HF.

 
REFERENCES (52)
1.
Centre NCG. Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care: Partial Update. 2010.
 
2.
Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016; 18: 891-975.
 
3.
Vos T, Barber RM, Bell B, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 743-800.
 
4.
Bielecka-Dabrowa A, von Haehling S, Rysz J, Banach M. Novel drugs for heart rate control in heart failure. Heart Fail Rev 2018; 23: 517-25.
 
5.
Beiert T, Straesser S, Malotki R, Stöckigt F, Schrickel JW, Andrié RP. Increased mortality and ICD therapies in ischemic versus non-ischemic dilated cardiomyopathy patients with cardiac resynchronization having survived until first device replacement. Arch Med Sci 2019; 15: 845.
 
6.
Zeng H, Zheng R, Zhang S, et al. Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac Cancer 2016; 7: 232-7.
 
7.
Oka T, Akazawa H, Naito AT, Komuro I. Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 2014; 114: 565-71.
 
8.
Kemi OJ, Ceci M, Wisloff U, et al. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 2010; 214: 316-21.
 
9.
Friehs I, Barillas R, Vasilyev NV, Roy N, Mcgowan FX, del Nido PJ. Vascular endothelial growth factor prevents apoptosis and preserves contractile function in hypertrophied infant heart. Circulation 2006; 114: I290.
 
10.
Sun RR, Lu L, Liu M, et al. Biomarkers and heart disease. Eur Rev Med Pharmacol Sci 2014; 18: 2927-35.
 
11.
Michalska-Kasiczak M, Bielecka-Dabrowa A, von Haehling S, Anker SD, Rysz J, Banach M. Biomarkers, myocardial fibrosis and co-morbidities in heart failure with preserved ejection fraction: an overview. Arch Med Sci 2018; 14: 890.
 
12.
Kadri AN, Kaw R, Al-Khadra Y, et al. The role of B-type natriuretic peptide in diagnosing acute decompensated heart failure in chronic kidney disease patients. Arch Med Sci 2018; 14: 1003.
 
13.
Bielecka-Dabrowa A, Sakowicz A, Misztal M, et al. Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Inter J Cardiol 2016; 221: 1073-80.
 
14.
Bielecka-Dabrowa A, Sakowicz A, Pietrucha T, et al. The profile of selected single nucleotide polymorphisms in patients with hypertension and heart failure with preserved and mid-range ejection fraction. Sci Rep 2017; 7: 8974.
 
15.
Kumarswamy R, Thum T. Non-coding RNAs in cardiac remodeling and heart failure. Circ Res 2013; 113: 676-89.
 
16.
Kim EH, Galchev VI, Kim JY, et al. Differential protein expression and basal lamina remodeling in human heart failure. Proteomics Clin Appl 2016; 10: 585-96.
 
17.
Smyth GK. limma: Linear Models for Microarray Data. Bioinformatics & Computational Biology Solutions Using R & Bioconductor, Springer 2005: 397-420.
 
18.
Boateng HA. Mesh-free hierarchical clustering methods for fast evaluation of electrostatic interactions of point multipoles. J Chem Phys 2017; 147: 164104.
 
19.
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinfor 2002; 18: 207-8.
 
20.
Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res 2000; 27: 29-34.
 
21.
Consortium TGO, Ashburner M, Ball CA et al. Gene Ontology: tool for the unification of biology. Nature Genetics 2000; 25: 25-9.
 
22.
Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: proteinprotein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015; 43: D447.
 
23.
Tang Y, Li M, Wang J, Pan Y, Wu FX. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015; 127: 67-72.
 
24.
Xionglei He JZ. Why do hubs tend to be essential in protein networks? PLOS Genetics 2006; 2: e88.
 
25.
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4: 2.
 
26.
Mei Y, You Y, Xia J, Gong JP, Wang YB. Identifying differentially expressed microRNAs between cirrhotic and non-cirrhotic hepatocellular carcinoma and exploring their functions using bioinformatic analysis. Cell Physiol Biochem 2018; 48: 1443-56.
 
27.
Liu Y, Hua T, Chi S, Wang H. Identification of key pathways and genes in endometrial cancer using bioinformatics analyses. Oncol Lett 2019; 17: 897-906.
 
28.
Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nature Methods 2015; 12: 697.
 
29.
Cotto KC, Wagner AH, Feng YY, et al. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res 2018; 46: D1068-D1073.
 
30.
Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes 2012; 61: 1633-41.
 
31.
Yang KC, Yamada KA, Patel AY, et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 2014; 129: 1009-21.
 
32.
Hu X, Shen G, Lu X, Ding G, Shen L. Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis. Arch Med Sci 2019; 15: 484.
 
33.
Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Thers 2013; 139: 32-40.
 
34.
Moshal KS, Rodriguez WE, Sen U, Tyagi SC. Targeted deletion of MMP-9 attenuates myocardial contractile dysfunction in heart failure. Physiol Res 2008; 57: 379-84.
 
35.
Wagner DR, Delagardelle C, Ernens I, Rouy D, Vaillant M, Beissel J. Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J Card Fail 2006; 12: 66-72.
 
36.
Montecucco F, Braunersreuther V, Lenglet S, et al. CC chemokine CCL5 plays a central role impacting infarct size and post-infarction heart failure in mice. Eur Heart J 2012; 33: 1964.
 
37.
Wang C, Yang H, Gao C. Potential biomarkers for heart failure. J Cell Physiol 2019; 234: 9467-74.
 
38.
Seeland U, Selejan S, Engelhardt S, Mã-Ller P, Lohse MJ, Bã-Hm M. Interstitial remodeling in beta1-adrenergic receptor transgenic mice. Basic Res Card 2007; 102: 183-93.
 
39.
Vinet L, Rouet-Benzineb P, Marniquet X, et al. Chronic doxycycline exposure accelerates left ventricular hypertrophy and progression to heart failure in mice after thoracic aorta constriction. Am J Physiol Heart Circ Physiol 2008; 295: H352-60.
 
40.
Brattelid T, Winer LH, Levy FO. Reference gene alternatives to Gapdh in rodent and human heart failure gene expression studies. BMC Mol Biol 2010; 11: 1-10.
 
41.
Zhang T, Brown JH. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 2004; 63: 476-86.
 
42.
Liu Z, Liu X, Yu H, et al. Common variants in TRDN and CALM1 are associated with risk of sudden cardiac death in chronic heart failure patients in Chinese Han population. PLoS One 2015; 10: e0132459.
 
43.
Marsman RF, Barc JG, Beekman L, Bhuijan ZA, Wilde AAM, Bezzina CR. A mutation in CALM1 encoding calmodulin causes sudden cardiac death in childhood and adolescence. Eur Heart J 2013; 34: P2298-P2298.
 
44.
Vegter EL, Peter VDM, De Windt LJ, Pinto YM, Voors AA. MicroRNAs in heart failure: from biomarker to target for therapy. Eur J Heart Fail 2016; 18: 457-68.
 
45.
Melman YF, Shah R, Das S. MicroRNAs in heart failure: is the picture becoming less miRky? Circ Heart Fail 2014; 7: 203-14.
 
46.
Bagnall RD, Tsoutsman T, Shephard RE, Ritchie W, Semsarian C. Global MicroRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLOS One 2012; 7: e44744.
 
47.
Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res 2010; 106: 1035-39.
 
48.
Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease. Physiol Genomics 2007; 31: 367-73.
 
49.
Dirkx E, Da CMP, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta 2013; 1832: 2414-24.
 
50.
Ellis KL, Cameron VA, Troughton RW, Frampton CM, Ellmers LJ, Richards AM. Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 2013; 15: 1138-47.
 
51.
Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA 2009; 106: 15819-24.
 
52.
Wong LL, Armugam A, Sepramaniam S, et al. Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 2015; 17: 393-404.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top