ORTHOPEDICS AND TRAUMATOLOGY / CLINICAL RESEARCH
Unveiling the immune-related ceRNA network in osteoarthritis: key biomarkers and therapeutic targets
More details
Hide details
1
Department of Orthopedic, Huashan Hospital Affiliated to Fudan University, Shanghai, China
Submission date: 2024-06-14
Final revision date: 2024-09-09
Acceptance date: 2024-10-24
Online publication date: 2024-11-02
Corresponding author
Xin Ma
Huashan Hospital Affiliated
to Fudan University
No. 12 Urumqi Middle Road
Jing ‘an District
Shanghai 200040, China
KEYWORDS
TOPICS
ABSTRACT
Introduction:
The aim of this study was to explore the immune-related competitive endogenous RNA (ceRNA) network in osteoarthritis (OA), focusing on identifying differentially expressed long non-coding RNAs (lncRNAs), constructing a classification model, and examining the associations between these lncRNAs and immune cell subsets in OA.
Material and methods:
Microarray data from the Gene Expression Omnibus (GEO) database were used to identify differentially expressed genes (DEGs) in synovial tissue of OA patients. A classification model was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression with selected lncRNAs. Computational methods such as CIBERSORT were employed to quantify immune cell infiltration patterns, and weighted gene co-expression network analysis (WGCNA) was conducted to delineate co-expression modules. Finally, a ceRNA network was constructed to elucidate the regulatory interactions among lncRNAs, miRNAs, and mRNAs.
Results:
We identified 5927 DEGs, among which 47 were differentially expressed long non-coding RNAs (DELs). Seven DELs (DGCR11, FAM215A, HCG9, PART1, FAM106A, NOP14-AS1, PRORY) formed the basis of a classification model with an area under the receiver operating characteristic (ROC) curve of 1. We also examined the infiltration patterns of immune cells in OA tissues and found significant differences compared to healthy controls, indicating a strong immunological component in OA pathogenesis. WGCNA identified a turquoise module showing a strong correlation with OA traits.
Conclusions:
The study highlights the importance of ceRNA networks in understanding the complex pathogenesis of OA and offers a comprehensive framework for future research into potential diagnostic biomarkers and therapeutic targets.
REFERENCES (43)
1.
Barnett R. Osteoarthritis. Lancet 2018; 391: 1985.
2.
Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet 2015; 386: 376-87.
3.
Loeser RF, Collins JA, Diekman BO. Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12: 412-20.
4.
Sacitharan PK. Ageing and Osteoarthritis. Subcell Biochem 2019; 91: 123-59.
5.
O’Brien MS, McDougall JJ. Age and frailty as risk factors for the development of osteoarthritis. Mech Ageing Dev 2019; 180: 21-8.
6.
Quicke JG, Conaghan PG, Corp N, et al. Osteoarthritis year in review 2021: epidemiology and therapy. Osteoarthritis Cartil 2022; 30: 196-206.
7.
Felson DT, Lawrence RC, Dieppe PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133: 635-46.
8.
Vincent TL. Mechanoflammation in osteoarthritis pathogenesis. Semin Arthritis Rheum 2019; 49 (3S): S36-8.
9.
Abramoff B, Caldera FE. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin North Am 2020; 104: 293-311.
10.
Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 2021; 325: 568-78.
11.
Fayet M, Hagen M. Pain characteristics and biomarkers in treatment approaches for osteoarthritis pain. Pain Manag 2021; 11: 59-73.
12.
Young DA, Barter MJ, Soul J. Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis Cartilage 2022; 30: 216-25.
13.
Mehana EE, Khafaga AF, El-Blehi SS. The role of matrix metalloproteinases in osteoarthritis pathogenesis: an updated review. Life Sci 2019; 234: 116786.
14.
Sondag GR, Haqqi TM. The role of microRNAs and their targets in osteoarthritis. Curr Rheumatol Rep 2016; 18: 56.
15.
Rigoglou S, Papavassiliou AG. The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 2013; 45: 2580-4.
16.
Boehme KA, Rolauffs B. Onset and progression of human osteoarthritis-can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM degradation, and inflammation in articular cartilage? Int J Mol Sci 2018; 19: 2282.
17.
Robinson WH, Lepus CM, Wang Q, et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12: 580-92.
18.
Yao Q, Wu X, Tao C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8: 56.
19.
Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell 2022; 82: 2252-66.
20.
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018; 172: 393-407.
21.
Kong H, Sun ML, Zhang XA, et al. Crosstalk among circRNA/lncRNA, miRNA, and mRNA in osteoarthritis. Front Cell Dev Biol 2021; 9: 774370.
22.
Yang J, Zhang M, Yang D, et al. m(6)A-mediated upregulation of AC008 promotes osteoarthritis progression through the miR-328-3p‒AQP1/ANKH axis. Exp Mol Med 2021; 53: 1723-34.
23.
Wang X, Li Z, Cui Y, et al. Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p. Front Cell Dev Biol 2021; 9: 644380.
24.
Wang Z, Chi X, Liu L, et al. Long noncoding RNA maternally expressed gene 3 knockdown alleviates lipopolysaccharide-induced inflammatory injury by up-regulation of miR-203 in ATDC5 cells. Biomed Pharmacother 2018; 100: 240-9.
25.
Liu Y, Lin L, Zou R, et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle 2018; 17: 2411-22.
26.
Fan X, Yuan J, Xie J, et al. Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun 2018; 500: 658-64.
27.
Chen Y, Lin Y, Bai Y, et al. A long noncoding RNA (lncRNA)-associated competing endogenous RNA (ceRNA) network identifies eight lncRNA biomarkers in patients with osteoarthritis of the knee. Med Sci Monit 2019; 25: 2058-65.
28.
Xiao K, Yang Y, Bian Y, et al. Identification of differentially expressed long noncoding RNAs in human knee osteoarthritis. J Cell Biochem 2019; 120: 4620-33.
29.
Gautier L, Cope L, Bolstad BM, et al. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307-15.
30.
Tay JK, Narasimhan B, Hastie T. Elastic net regularization paths for all generalized linear models. J Stat Softw 2023; 106: 1.
31.
Stacklies W, Redestig H, Scholz M, et al. pcaMethods: a bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007; 23: 1164-7.
32.
Chen B, Khodadoust MS, Liu CL, et al. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 2018; 1711: 243-59.
33.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008; 9: 559.
34.
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2021; 2: 100141.
35.
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-504.
36.
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21: 183-203.
37.
Sun K, Luo J, Guo J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review. Osteoarthritis Cartil 2020; 28: 400-9.
38.
Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell 2019; 177: 1682-99.
39.
Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet 2023; 24: 382-400.
40.
Tong L, Yu H, Huang X, et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res 2022; 10: 60.
41.
Sun C, Peng S, Lv Z, et al. Research of STEAP3 interaction with Rab7A and RACK1 to modulate the MAPK and JAK/STAT signaling in osteoarthritis. Int Immunopharmacol 2023; 124: 111034.
42.
Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol 2020; 16: 673-88.
43.
Cho Y, Jeong S, Kim H, et al. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med 2021; 53: 1689-96.