Editor's Choice
LIPID DISORDERS / GUIDELINES/RECOMMENDATIONS
 
KEYWORDS
TOPICS
ABSTRACT
Lipid disorders are the most common (even 70%) and worst monitored cardiovascular risk factor (only 1/4 of patients in Poland and in CEE countries are on the low-density lipoprotein cholesterol (LDL-C) goal). To improve this, clear and simple diagnostic criteria should be introduced for all components of the lipid profile. These are the updated guidelines of the two main scientific societies in Poland in the area – the Polish Society of Laboratory Diagnostics (PSLD) and the Polish Lipid Association (PoLA), which, in comparison to those from 2020, introduce few important changes in recommendations (two main lipid targets, new recommendations on LDL-C measurements, calculations new goals for triglycerides, new recommendations on remnants and small dense LDL) that should help the practitioners to be early with the diagnosis of lipid disorders and in the effective monitoring (after therapy initiation), and in the consequence to avoid the first and recurrent cardiovascular events.
 
REFERENCES (81)
1.
Banach M, Jankowski P, Jóżwiak J, et al. PoLA/CFPiP/PCS Guidelines for the Management of Dyslipidaemias for family Physicians 2016. Arch Med Sci 2017; 13: 1-45.
 
2.
Langlois MR, Nordestgaard BG, Langsted A, et al.; the European Atherosclerosis Society (EAS) and the European federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clin Chem Lab Med 2020; 58: 496-517.
 
3.
Langlois MR, Chapman MJ, Cobbaert C, et al.; the European Atherosclerosis Society (EAS) and the European federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying Atherogenic Lipoproteins: Current and future Challenges in the Era of Personalized Medicine and Very Low Concentrations of LDL Cholesterol. A Consensus Statement from EAS and EFLM. Clin Chem 2018; 64: 1006-1033.
 
4.
Mach F, Baigent C, Catapano AL, et al.; The Task force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-88.
 
5.
Banach M, Burchardt P, Chlebus K, et al. PoLA/CFPiP/PCS/PSLD/PSD/PSH guidelines on diagnosis and therapy of lipid disorders in Poland 2021. Arch Med Sci 2021; 17: 1447-547.
 
6.
Solnica B, Sygitowicz G, Sitkiewicz D, et al. 2020 Guidelines of the Polish Society of Laboratory Diagnostics (PSLD) and the Polish Lipid Association (PoLA) on laboratory diagnostics of lipid metabolism disorders. Arch Med Sci 2020; 16: 237-52.
 
7.
Solnica B, Sygitowicz G, Sitkiewicz D, et al. Wytyczne Polskiego Towarzystwa Diagnostyki Laboratoryjnej i Polskiego Towarzystwa Lipidologicznego dotyczące diagnostyki laboratoryjnej zaburzeń gospodarki lipidowej. Diagn Labor 2019; 55: 239-56.
 
8.
Lambert JE, Parks EJ: Postprandial metabolism of meal trigliceryde in humans. Biochim Biophys Acta 2012; 1821: 721-6.
 
9.
Boren J, Matikainen N, Adiels M, Taskinen MR. Postprandial hipertriglicerydemia as a coronary risk factor. Clin Chim Acta 2014; 431: 131-42.
 
10.
Nordestgaard BG, Langsted A, Mora S, et al. European Atherosclerosis Society (EAS) and the European federation of Clinical Chemistry and Laboratory Medicine (EFLM) Consensus Panel. fasting is not routinely required for a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points—a joint consensus statement from the European Atherosclerosis Society and European federation of Clinical Chemistry and Laboratory Medicine. Clin Chem 2016; 62: 930-46.
 
11.
Maierean SM, Mikhailidis DP, Toth PP, et al. The potential role of statins in preeclampsia and dyslipidemia during gestation: a narrative review. Expert Opin Investig Drugs 2018; 27: 427-35.
 
12.
Bucolo G, David H. Quantitative determination of serum triglycerides by the use of enzymes. Clin Chem 1973; 19: 476-82.
 
13.
Myasoedova E, Crowson CS, Maradit Kremers H, et al. Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Ann Rheum Dis 2011; 70: 482-7.
 
14.
Colantonio LD, Bittner V, Reynolds K, et al. Association of serum lipids and coronary heart disease in contemporary observational studies. Circulation 2016; 133: 256-64.
 
15.
Drexel H, Tamargo J, Kaski JC, et al. Triglycerides revisited: is hypertriglyceridaemia a necessary therapeutic target in cardiovascular disease? Eur Heart J Cardiovasc Pharmacother 2023; 9: 570-82.
 
16.
Banach M, Surma S, Reiner Z, et al. Personalized management of dyslipidemias in patients with diabetes-it is time for a new approach (2022). Cardiovasc Diabetol 2022; 21: 263.
 
17.
Makover ME, Surma S, Banach M, Toth PP. Eliminating atherosclerotic cardiovascular disease residual risk. Eur Heart J 2023; 44: 4731-3.
 
18.
Dron JS, Hegele RA. Genetics of triglycerides and the risk of atherosclerosis. Curr Atheroscler Rep 2017; 19: 31.
 
19.
Boekholdt SM, Arsenault BJ, Mora S, et al. Association of LDL cholesterol, non-HDL cholesterol, and apolipoprotein B levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA 2012; 307: 1302-9.
 
20.
Park JK, Bafna S, Forrest IS, et al. Phenome-wide Mendelian randomization study of plasma triglyceride levels and 2600 disease traits. Elife 2023; 12: e80560.
 
21.
Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 1969; 6: 24-7.
 
22.
Siedel J, Schmuck R, Staepels J, et al. Long term stable, liquid ready-to-use monoreagent for the enzymatic assay of serum or plasma triglycerides (GPO-PAP-method). AACC Meeting Abstract 34. Clin Chem 1993; 39: 1127.
 
23.
Yang N, Wang M, Liu J, Liu J, Hao Y, Zhao D; Ccc-Acs Investigators. The level of remnant cholesterol and implications for lipid-lowering strategy in hospitalized patients with acute coronary syndrome in China: findings from the improving care for cardiovascular disease in China-Acute Coronary Syndrome Project. Metabolites 2022; 12: 898.
 
24.
Doi T, Langsted A, Nordestgaard BG. Elevated remnant cholesterol reclassifies risk of ischemic heart disease and myocardial infarction. J Am Coll Cardiol 2022; 79: 2383-97.
 
25.
Quispe R, Martin SS, Michos ED, et al. Remnant cholesterol predicts cardiovascular disease beyond LDL and ApoB: a primary prevention study. Eur Heart J 2021; 42: 4324-32.
 
26.
Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis 2018; 275: 265-72.
 
27.
Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42: 4791-806.
 
28.
Rynkiewicz A, Cybulska B, Banach M, et al. Management of familial heterozygous hypercholesterolemia: position paper of the Polish Lipid Expert Forum. J Clin Lipidol 2013; 7: 217-21.
 
29.
Marx N, Federici M, Schütt K, et al.; ESC Scientific Document Group. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J 2023; 44: 4043-140.
 
30.
Visseren FLJ, Mach F, Smulders YM, et al.; ESC National Cardiac Societies; ESC Scientific Document Group. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2021; 42: 3227-337.
 
31.
Li LH, Dutkiewicz EP, Huang YC, et al. Analitycal methods for cholesterol quantification. J Food Drug Ann 2019; 27: 375-86.
 
32.
Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in high-density lipoproteins separated by three different methods. Clin Chem 1977; 23: 882-4.
 
33.
Allain CC, Poon LS, Chan CS, et al. Enzymatic determination of total serum cholesterol. Clin Chem 1974; 20: 470-5.
 
34.
Ganjali S, Mahdipour E, Aghaee-Bakhtiari SH, et al. Compositional and functional properties of high-density lipoproteins in relation to coronary in-stent restenosis. Arch Med Sci 2021; 19: 57-72.
 
35.
Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, Davidson M, Rysz J, Banach M. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res 2012; 51: 314-24.
 
36.
Warnick GR, Nauck M, Rifai N. Evolution of methods for measurement of HDL-cholesterol: from ultracentrifugation to homogeneous assays. Clin Chem 2001; 47: 1579-96.
 
37.
Camont L, Chapman MJ, Kontush A. Pendal activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol Med 2011; 17: 596-605.
 
38.
Martin SS, Jones SR, Toth PP. High-density lipoprotein subfractions: current views and clinical practice applications. Trends Mol Med 2014; 26: 328-36.
 
39.
Kosmas CE, Martinez I, Sourlas A, et al. High-density lipoprotein (HDL) functionality and its relevance to atherosclerotic cardiovascular disease. Drugs Context 2018; 7: 212-25.
 
40.
Movvo R, Rader DJ. Laboratory assessment of HDL heterogeneity and function. Clin Chem 2008; 54: 788-801.
 
41.
Rosenson RS, Brewer HB, Chapman MJ, et al. HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events. Clin Chem 2011; 57: 392-410.
 
42.
Sean Davidson W. HDL-C vs HDL-P: how changing one letter could make a difference in understanding the role of high-density lipoprotein in disease. Clin Chem 2014; 60: e1-3.
 
43.
Kidawa M, Gluba-Brzózka A, Zielinska M, et al. Cholesterol subfraction analysis in patients with acute coronary syndrome. Curr Vasc Pharmacol 2019; 17: 365-75.
 
44.
Rizzo M, Otvos J, Nikolic D, et al. Subfractions and subpopulations of HDL: an update. Curr Med Chem 2014; 21: 2881-91.
 
45.
Sonmez A, Nikolic D, Dogru T, et al. Low- and high-density lipoprotein subclasses in subjects with nonalcoholic fatty liver disease. J Clin Lipidol 2015; 9: 576-82.
 
46.
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implication for diagnostics and therapy. Translat Res 2016; 173: 30-57.
 
47.
Otocka-Kmiecik A, Mikhailidis DP, Nicholls SJ, et al. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog Lipid Res 2012; 51: 314-24.
 
48.
Ganjali S, Momtazi-Borojeni AA, Banach M, et al. HDL functionality in familial hypercholesterolemia: effects of treatment modalities and pharmacological interventions. Drug Discov Today 2018; 23: 171-80.
 
49.
Ganjali S, Dallinga-Thie GM, Simental-Mendía LE, et al. HDL functionality in type 1 diabetes. Atherosclerosis 2017; 267: 99-109.
 
50.
Nicholls SJ, Zheng L, Hazen SL. formation of dysfunctional high-density lipoprotein by myeloperoxidase. Trends Cardiovasc Med 2005; 15: 212-9.
 
51.
Mackness B, Mackness M. Paraoxonase 1: biochemistry and contribution to atherosclerosis. Int Congress Ser 2004; 1262: 91-4.
 
52.
Soran H, Schofield JD, Durrington PN. Antioxidant properties of HDL. Front Pharmacol 2015; 6: 222.
 
53.
Gluba A, Pietrucha T, Banach M, et al. The role of polymorphisms within paraoxonases (192 Gln/Arg in PON1 and 311Ser/Cys in PON2) in the modulation of cardiovascular risk: a pilot study. Angiology 2010; 61: 157-65.
 
54.
Madsen CM, Varbo A, Nordestgaard BG. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: two prospective cohort studies. Eur Heart J 2017; 38: 2478-86.
 
55.
Penson P, Long DL, Howard G, et al. Associations between cardiovascular disease, cancer, and very low high-density lipoprotein cholesterol in the REasons for Geographical and Racial Differences in Stroke (REGARDS) study. Cardiovasc Res 2019; 115: 204-12.
 
56.
Ganjali S, Banach M, Pirro M, Fras Z, Sahebkar A. HDL and cancer – causality still needs to be confirmed? Update 2020. Semin Cancer Biol 2021; 73: 169-77.
 
57.
Banach M, Surma S, Toth PP; endorsed by the International Lipid Expert Panel (ILEP). 2023: the year in cardiovascular disease – the year of new and prospective lipid lowering therapies. Can we render dyslipidemia a rare disease by 2024? Arch Med Sci 2023; 19: 1602-15.
 
58.
Vrablik M, Seifert B, Parkhomenko A, et al. Lipid-lowering therapy use in primary and secondary care in Central and Eastern Europe: DA VINCI observational study. Atherosclerosis 2021; 334: 66-75.
 
59.
Martin SS, Blaha MJ, Elshazly MB, et al. Comparison of a novel method vs the Friedewald equation for estimating low-density lipoprotein cholesterol levels from the standard lipid profile. JAMA 2013; 310: 2061-8.
 
60.
Quispe R, Hendrani A, Elshazly MB, et al. Accuracy of low-density lipoprotein cholesterol estimation at very low levels. BMC Medicine 2017: 15: 83.
 
61.
Chaen H, Kinchiku S, Miyata M, et al. Validity of a novel method for estimation of low-density lipoprotein cholesterol levels in diabetic patients. J Atheroscler Thromb 2016; 3: 1355-64.
 
62.
Miller WG, Myers GL, Sakurabayashi I, et al. Seven direct methods for measuring HDL and LDL cholesterol compared with ultracentrifugation reference measurement procedures. Clin Chem 2010; 56: 977-86.
 
63.
Grant JK, Kaufman HW, Martin SS. Extensive evidence supports the martin–hopkins equation as the LDL-C calculation of choice. Clin Chem 2024; 70: 392-8.
 
64.
Sampson M, Wolska A, Meeusen JW, Otvos J, Remaley AT. The Sampson-NIH equation is the preferred calculation method for LDL-C. Clin Chem 2024; 70: 399-402.
 
65.
NCD Risk factor Collaboration. National trends in total cholesterol obscure heterogeneous changes in HDL and non-HDL cholesterol and total-to-HDL cholesterol ratio: a pooled analysis of 458 population-based studies in Asian and Western countries. Int J Epidemiol 2020; 49: 173-92.
 
66.
Sygitowicz G, Filipiak KJ, Sitkiewicz D. Czy nie-HDL cholesterol lepiej niż cholesterol frakcji LDL odzwierciedla ryzyko sercowo-naczyniowe? Folia Cardiol 2018; 13: 435-41.
 
67.
Dobrowolski P, Prejbisz A, Kuryłowicz A, et al. Metabolic syndrome – a new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch Med Sci 2022; 18: 1133-56.
 
68.
Bansal E, Kaur N. Does Friedewald formula underestimate the risk of ischemic heart disease? Indian J Clin Biochem 2014; 29: 496-500.
 
69.
Dominiczak MH, Caslake MJ. Apolipoproteins: metabolic role and clinical biochemistry applications. Ann Clin Biochem 2011; 48: 498-515.
 
70.
Solnica B, Sniderman AD, Wyszomirski A, et al. Concordance/discordance between serum apolipoprotein B, low density lipoprotein cholesterol and non-high density lipoprotein cholesterol in NATPOL 2011 participants – an epidemiological perspective. Int J Cardiol 2023; 390: 131150.
 
71.
Sampson M, Wolska A, Warnick R, et al. A new equation based on the standard lipid panel for calculating small dense low-density lipoprotein-cholesterol and its use as a risk-enhancer test. Clin Chem 2021; 67: 987-97.
 
72.
Marcovina SM, Albers JJ. Lipoprotein (a) measurements for clinical application. J Lipid Res 2016; 57: 526-37.
 
73.
Banach M, Penson PE. Statins and Lp(a): do not make perfect the enemy of excellent. Eur Heart J 2020; 41: 190-1.
 
74.
Ferretti G, Bacchetti T, Johnston TP, et al. Lipoprotein(a): a missing culprit in the management of athero-thrombosis? J Cell Physiol 2018; 233: 2966-81.
 
75.
Banach M. Lipoprotein (a) – we know so much yet still have much to learn… J Am Heart Assoc 2016; 5: e003597.
 
76.
Cao J, Steffen BT, Guan W, et al. Evaluation of lipoprotein(a) electrophoretic and immunoassay methods in discriminating risk of calcific aortic valve disease and incident coronary heart disease: the multi-ethnic study of atherosclerosis. Clin Chem 2017; 63: 1705-13.
 
77.
Nordestgaard BG, Chapman MJ, Ray K, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J 2010; 31: 2844-53.
 
78.
Tsimikas S. A test in context: lipoprotein(a) diagnosis, prognosis, controversies, and emerging therapies. JACC 2017; 69: 692-711.
 
79.
Li KM, Wilcken DE, Dudman NP. Effect of serum lipoprotein(a) on estimation of low-density lipoprotein cholesterol by the Friedewald formula. Clin Chem 1994; 40: 571-3.
 
80.
Kronenberg F. Lipoprotein(a) measurement issues: are we making a mountain out of a molehill? Atherosclerosis 2022; 349: 123-35.
 
81.
Sosnowska B, Stepinska J, Mitkowski P, et al. Recommendations of the Experts of the Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) on the diagnosis and management of elevated lipoprotein(a) levels. Arch Med Sci 2024; 20: 8-27.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top