OBSTETRICS AND GYNAECOLOGY / BASIC RESEARCH
Assessing the role of serum prolactin levels and coding region somatic mutations of the prolactin gene in Saudi uterine leiomyoma patients
 
More details
Hide details
1
Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
 
2
Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
 
3
Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
 
4
Department of Obstetrics and Gynecology, Faculty of Medicine King Abdulaziz University, Jeddah, Saudi Arabia
 
 
Submission date: 2020-03-19
 
 
Final revision date: 2020-04-30
 
 
Acceptance date: 2020-05-09
 
 
Online publication date: 2020-09-07
 
 
Publication date: 2026-01-16
 
 
Corresponding author
Ramu Elango   

Department of Genetic Medicine Faculty of Medicine King Abdulaziz University P.O. Box 80205, Jeddah-21589 Saudi Arabia Phone: 00966-12-460 0000, ext 21074 Fax: 00966-12-460 0000, ext 20115
 
 
Nabeel Bondagji   

Department of Obstetrics and Gynecology Faculty of Medicine King Abdulaziz University P.O. Box 80205, Jeddah-21589 Saudi Arabia Phone: 00966-12-460000, ext 18310 Fax: 00966-12-4600000, ext 20115
 
 
Arch Med Sci 2025;21(6):2741-2750
 
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Uterine leiomyomas (UL) are highly prevalent benign smooth muscle tumors, seen in approximately 70% of women. These hormone responsive tumors are also known to secrete prolactin (PRL), a hormone of the anterior pituitary gland. Elevated levels of serum prolactin are a common clinical finding in different gynecological pathologies including UL. However, the underlying causes for this elevation are not yet clear. Therefore, the main objective of this study is to measure the serum PRL in UL patients and also to investigate its molecular connection with coding region somatic mutations of the PRL gene.

Material and methods:
The serum PRL levels of UL patients were measured through the ELISA method. The coding region PRL gene mutations in UL and corresponding myometrium tissues were screened through the Sanger sequencing method.

Results:
Uterine leiomyoma patients demonstrated significant elevation of the PRL hormone level in serum samples (p ≤ 0.01). No somatic coding region mutations in the PRL gene were identified. However, four germline variants (c.570G>A, c.205-102T>A, c.312+177T>C and c.269C>T) were detected.

Conclusions:
This study is the first one to confirm that serum PRL level elevation among UL patients is not connected to somatic mutations in the PRL gene. However, PRL genetic polymorphisms may indirectly contribute to the disease etiology.
REFERENCES (48)
1.
Osinovskaya NS, Malysheva OV, Shved NY, et al. Frequency and spectrum of MED12 exon 2 mutations in multiple versus solitary uterine leiomyomas from Russian patients. Int J Gynecol Pathol 2016; 35: 509-15.
 
2.
Flake GP, Andersen J, Dixon D. Etiology and pathogenesis of uterine leiomyomas: a review. Environ Health Perspect 2003; 111: 1037-1054.
 
3.
Mehine M. Integrated data analysis reveals Uterine Leiomyoma subtypes with distinct driver pathways and biomarkers. Proc Natl Acad Sci 2016; 113: 1315-20.
 
4.
Holzmann C, Markowski DN, Koczan D, Küpker W, Helmke BM, Bullerdiek J. Cytogenetically normal uterine leiomyomas without MED12-mutations – a source to identify unknown mechanisms of the development of uterine smooth muscle tumors. Mol Cytogenet 2014; 7: 88.
 
5.
Mehine M, Mäkinen N, Heinonen HR, Aaltonen LA, Vahteristo P. Genomics of uterine leiomyomas: insights from high-throughput sequencing. Fertil Steril 2014; 102: 621-9.
 
6.
El-Gharib MN, Elsobky ES. Cytogenetic aberrations and the development of uterine leiomyomata. J Obstet Gynaecol Res 2010; 36: 101-7.
 
7.
Baranov VS, Osinovskaya NS, Yarmolinskaya MI. Pathogenomics of uterine fibroids development. Int J Mol Sci 2019; 20: 6151.
 
8.
Shaik NA, Lone WG, Khan IA, et al. Detection of somatic mutations and germline polymorphisms in mitochondrial DNA of uterine fibroids patients. Genet Test Mol Biomarkers 2011; 15: 537-41.
 
9.
Ajabnoor G, Mohammed NA, Banaganapalli B, et al. Expanded somatic mutation Spectrum of MED12 gene in uterine leiomyomas of Saudi Arabian Women. Front Genet 2018; 9: 552.
 
10.
Goracy J, Kaczmarczyk M, Ciechanowicz A, et al. E-selectin gene haplotypes are associated with the risk of myocardial infarction. Arch Med Sci 2019; 15: 1223-31.
 
11.
Skonieczna K, Jawień A, Marszałek A, Grzybowski T. Mitogenome germline mutations and colorectal cancer risk in Polish population. Arch Med Sci 2020; 16: 366-73.
 
12.
Li S, Chiang T, Richard-Davis G, Barrett JC, Mclachlan JA. DNA hypomethylation and imbalanced expression of DNA methyltransferases (DNMT1, 3A, and 3B) in human uterine leiomyoma. Gynecol Oncol 2003; 90: 123-30.
 
13.
Karmon AE, Cardozo ER, Rueda BR, Styer AK. MicroRNAs in the development and pathobiology of uterine leiomyomata: does evidence support future strategies for clinical intervention? Human Reprod Update 2014; 20: 670-87.
 
14.
Islam MS, Protic O, Stortoni P, et al. Complex networks of multiple factors in the pathogenesis of uterine leiomyoma. Fertil Steril 2013; 100: 178-93.
 
15.
Cha PC, Takahashi A, Hosono N, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet 2011; 43: 447-50.
 
16.
Bondagji NS, Morad FA, Al-Nefaei AA, et al. Replication of GWAS loci revealed the moderate effect of TNRC6B locus on susceptibility of Saudi women to develop uterine leiomyomas. J Obstet Gynaecol Res 2017; 43: 330-8.
 
17.
Moravek MB, Bulun SE. Endocrinology of uterine fibroids: steroid hormones, stem cells, and genetic contribution. Curr Opin Obstet Gynecol 2015; 27: 276.
 
18.
Ahmed AA, Deif OM, Saad Abd Al-Latif S, ELHussieny Mohamed AM. Serum protein and prolactin in evaluation of uterine fibroids. Egyptian J Hosp Med 2019; 76: 3653-8.
 
19.
Fumagalli D, Wilson TR, Salgado R, et al. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann Oncol 2016; 27: 1860-6.
 
20.
Shaik NA, Govindan S, Kodati V, Rao KP, Hasan Q. Polymorphic (CAG)n repeats in the androgen receptor gene: a risk marker for endometriosis and uterine leiomyomas. Hematol Oncol Stem Cell Ther 2009; 2: 289-93.
 
21.
Pabalan N, Pineda MR, Jarjanazi H, Christofolini DM, Parente Barbosa C, Bianco B. Association of the+ 331G/A progesterone receptor gene (PgR) polymorphism with risk of endometrial cancer in Caucasian women: a meta-analysis. Arch Gynecol Obstet 2015; 291: 115-22.
 
22.
Shaik NA, Lone WG, Khan IA, Rao KP, Kodati VL, Hasan Q. Enhanced transcription of estrogen receptor α and mitochondrial cytochrome b genes in uterine leiomyomas. Gynecol Endocrinol 2011; 27: 1094-8.
 
23.
George JW, Fan H, Johnson B, et al. Integrated epigenome, exome, and transcriptome analyses reveal molecular subtypes and homeotic transformation in uterine fibroids. Cell Rep 2019; 29: 4069-85.e6.
 
24.
Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 2018; 47(D1): D941-D7.
 
25.
Shaik NA, Bokhari HA, Masoodi TA, et al. Molecular modelling and dynamics of CA2 missense mutations causative to carbonic anhydrase 2 deficiency syndrome. J Biomol Struct Dyn 2020; 38: 4067-80.
 
26.
Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 2012; 40(W1): W452-W7.
 
27.
Adzhubei I, Jordan D, Sunyaev S. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013; Chapter 7: Unit 7. DOI: 10.1002/0471142905.hg0720s76.
 
28.
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants through­out the human genome. Nucleic Acids Res 2019; 47(D1): D886-D94.
 
29.
McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol 2016; 17: 122.
 
30.
Shihab HA, Gough J, Cooper DN, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat 2013; 34: 57-65.
 
31.
Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res 2016; 44(D1): D877-D81.
 
32.
Juhasz-Böss I, Jungmann P, Radosa J, et al. Two novel classification systems for uterine fibroids and subsequent uterine reconstruction after myomectomy. Arch Gynecol Obstet 2017; 295: 675-80.
 
33.
Peddada SD, Laughlin SK, Miner K, et al. Growth of uterine leiomyomata among premenopausal black and white women. Proceed Nat Acad Sci 2008; 105: 19887-92.
 
34.
Zimmermann A, Bernuit D, Gerlinger Ch, Schaefers M, Geppert K. Prevalence, symptoms and management of uterine fibroids: an international internet-based survey of 21,746 women. BMC Women’s Health 2012; 12: 6.
 
35.
Owen C, Armstrong AY. Clinical management of leiomyoma. Obstet Gynecol Clin 2015; 42: 67-85.
 
36.
Wise LA, Palmer JR, Stewart EA, Rosenberg L. Age-specific incidence rates for self-reported uterine leiomyomata in the Black Women’s Health Study. Obstet Gynecol 2005; 105: 563-8.
 
37.
Othman EE, Al-Hendy A. Molecular genetics and racial disparities of uterine leiomyomas. Best Pract Res Clin Obstet Gynaecol 2008; 22: 589-601.
 
38.
Dandolu V, Singh R, Lidicker J, Harmanli O. BMI and uterine size: is there any relationship? Int J Gynecol Pathol 2010; 29: 568-71.
 
39.
Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA, et al. Obesity in Saudi Arabia. Saudi Med J 2005; 26: 824-9.
 
40.
Alnohair S. Obesity in gulf countries. Int J Health Sci 2014; 8: 79-83.
 
41.
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80: 1523-631.
 
42.
Ben-Jonathan N, Liby K, McFarland M, Zinger M. Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol Metab 2002; 13: 245-50.
 
43.
Baban RS. Serum protein and prolactin as diagnostic markers. Saudi Med J 2009; 30: 1411-5.
 
44.
Levy G, Hill MJ, Plowden TC, Catherino WH, Armstrong AY. Biomarkers in uterine leiomyoma. Fertil Steril 2013; 99: 1146-52.
 
45.
Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer 2015; 1: 53-65.
 
46.
Capasso M, Lasorsa VA, Cimmino F, et al. Transcription factors involved in tumorigenesis are over-represented in mutated active DNA binding sites in neuroblastoma. Cancer Res 2020; 80: 382-93.
 
47.
Chaudhary S, Islam Z, Mishra V, Rawat S, Md Ashraf G, Kolatkar PR. Sox2: a regulatory factor in tumorigenesis and metastasis. Curr Protein Peptide Sci 2019; 20: 495-504.
 
48.
Quesnelle KM, Boehm AL, Grandis JR. STAT-mediated EGFR signaling in cancer. J Cell Biochemistry 2007; 102: 311-9.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top