RESEARCH PAPER
Pyruvate kinase M2 plays pivotal role on promoting PD-L1 expression and malignant behaviors of hepatoma cells
More details
Hide details
1
Hainan Medical University, China
These authors had equal contribution to this work
Submission date: 2025-01-21
Final revision date: 2025-07-09
Acceptance date: 2025-07-14
Online publication date: 2025-08-23
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Pyruvate kinase M2(PKM2) is a key rate-limiting enzyme that regulates glucose metabolic reprogramming(Warburg effect), but the correlation between PKM2 and PD-L1 or malignant behaviors in hepatocellular carcinoma(HCC) cells remains unknown. This study explored the role of PKM2 and the Warburg effect on the expression of PD-L1 and the malignant behaviors of HCC cells.
Material and methods:
The relationship between the Warburg effect and key enzymes and signaling pathways was analyzed using bioinformatics; the expression of PD-L1, PKM2, and hexokinase 2(HK2) in 30 patients HCC tissues and paired para-cancerous tissues was detected by immunohistochemistry and Western blotting. Short hairpin RNA(shRNA) silencing the expression of PKM2 was used to explore its influence on the expression of PD-L1 in HCC cells. The malignant behaviors of HCC cells were detected by scratch test, plate cloning experiment, Transwell migration experiment, and EdU staining; the concentrations of lactic acid, pyruvate, ATP and the consumption of glucose were detected using reagent kit.
Results:
Biological information database and detection of HCC tissues and paired para-cancerous tissues showed that the expression of PKM2 and PD-L1 were significantly higher in HCC tissues than in paired para-cancerous tissues, and the expression of PKM2 was positively correlated with PD-L1 expression. PKM2 could promote the proliferation and migration of HCC cells, and stimulate the expression of PD-L1 through activating PI3K/Akt signaling pathway in HCC cells.
Conclusions:
PKM2 was able to upregulate the expression of PD-L1 and stimulate the malignant behaviors of HCC cells. Targeting the PKM2 is a promising strategy for liver cancer treatment.
REFERENCES (64)
1.
Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021; 7(1): 6. doi: 10.1038/s41572-020-00240-3.
2.
Llovet JM, Zucman-Rossi J, Pikarsky E, Sangro B, Schwartz M, Sherman M, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2016; 2: 16018. doi: 10.1038/nrdp.2016.18.
3.
Ouyang T, Kan X, Zheng C. Immune checkpoint inhibitors for advanced hepatocellular carcinoma: Monotherapies and combined therapies. Front Oncol. 2022; 12: 898964. doi: 10.3389/fonc.2022.898964.
4.
Chen Y, Hu H, Yuan X, Fan X, Zhang C. Advances in immune checkpoint inhibitors for advanced hepatocellular carcinoma. Front Immunol. 2022; 13: 896752. doi: 10.3389/fimmu.2022.896752.
5.
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020; 10(3): 727-42.
6.
Cha JH, Chan LC, Li CW, Hsu JL, Hung MC. Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 2019; 76(3): 359-70. doi: 10.1016/j.molcel.2019.09.030.
7.
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res. 2018; 37(1): 110. doi: 10.1186/s13046-018-0777-4.
8.
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, et al. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 2022; 13: 964442. doi: 10.3389/fimmu.2022.964442.
9.
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, et al. METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond). 2023; 43(3):338-364. doi: 10.1002/cac2.12403.
10.
Zhou Q, Yin Y, Yu M, Gao D, Sun J, Yang Z, et al. GTPBP4 promotes hepatocellular carcinoma progression and metastasis via the PKM2 dependent glucose metabolism. Redox Biol. 2022; 56:102458. doi: 10.1016/j.redox.2022.102458.
11.
Peñuelas-Haro I, Espinosa-Sotelo R, Crosas-Molist E, Herranz-Itúrbide M, Caballero-Díaz D, Alay A, et al. The NADPH oxidase NOX4 regulates redox and metabolic homeostasis preventing HCC progression. Hepatology. 2023; 78(2):416-433. doi: 10.1002/hep.32702.
12.
Du D, Liu C, Qin M, Zhang X, Xi T, Yuan S, et al. Metabolic dysregulation and emerging therapeutical targets for hepatocellular carcinoma. Acta Pharm Sin B. 2022; 12(2): 558-80. doi: 10.1016/j.apsb.2021.09.019.
13.
Liberti M V, Locasale J W. The Warburg effect: How does it benefit cancer cells?. Trends Biochem Sci, 2016, 41(3): 211-8. doi: 10.1016/j.tibs.2015.12.001.
14.
Gatenby R A, Gawlinski E T. A reaction-diffusion model of cancer invasion. Cancer Res. 1996; 56(24): 5745-53.
15.
Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, et al. Acidity generated by the tumor microenvironment drives local invasion. Cancer Res. 2013; 73(5): 1524-35. doi: 10.1158/0008-5472.CAN-12-2796.
16.
Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015; 162(6): 1229-41. doi: 10.1016/j.cell.2015.08.016.
17.
Wiese E K, Hitosugi T. Tyrosine kinase signaling in cancer metabolism: PKM2 paradox in the Warburg effect. Front Cell Dev Biol. 2018; 6: 79. doi: 10.3389/ fcell.2018.00079.
18.
Luo W, Semenza G L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab. 2012; 23(11): 560-6. doi: 10.1016/j.tem. 2012.06.010.
19.
Ishfaq M, Bashir N, Riaz SK, Manzoor S, Khan JS, Bibi Y, et al. Expression of HK2, PKM2, and PFKM is associated with metastasis and late disease onset in breast cancer patients. Genes (Basel). 2022; 13(3). doi: 10.3390/genes13030549.
20.
Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 2016; 15: 3. doi: 10.1186/s12943-015-0490-2.
21.
Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C, et al. PKM2 inhibitor Shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. Int J Biol Sci. 2018; 14(13): 1883-91. doi: 10.7150/ijbs.27854.
22.
Li TE, Wang S, Shen XT, Zhang Z, Chen M, Wang H, et al. PKM2 drives hepatocellular carcinoma progression by inducing immunosuppressive microenvironment. Front Immunol. 2020; 11:589997. doi: 10.3389/fimmu. 2020.589997.
23.
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci. 2019; 9: 52. doi: 10.1186/s13578-019-0317-8.
24.
Yang W, Xia Y, Hawke D, Li X, Liang J, Xing D, et al. PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell. 2012; 150(4): 685-96. doi: 10.1016/j.cell.2012.07.018.
25.
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020; 10(1): 54. doi: 10.1186/s13578-020-00416-0.
26.
Tang X, Yang J, Shi A, Xiong Y, Wen M, Luo Z, et al. CD155 cooperates with PD-1/PD-L1 to promote proliferation of esophageal squamous cancer cells via PI3K/Akt and MAPK signaling pathways. Cancers(Basel). 2022; 14(22):5610. doi: 10.3390/cancers14225610.
27.
Wang F, Yang L, Xiao M, Zhang Z, Shen J, Anuchapreeda S, et al. PD-L1 regulates cell proliferation and apoptosis in acute myeloid leukemia by activating PI3K-AKT signaling pathway. Sci Rep. 2022; 12(1):11444. doi: 10.1038/s41598-022-15020-0.
28.
Piao W, Li L, Saxena V, Iyyathurai J, Lakhan R, Zhang Y, et al. PD-L1 signaling selectively regulates T cell lymphatic transendothelial migration. Nat Commun. 2022; 13(1):2176. doi: 10.1038/s41467-022-29930-0.
29.
Quan Z, Yang Y, Zheng H, Zhan Y, Luo J, Ning Y, et al. Clinical implications of the interaction between PD-1/PD-L1 and PI3K/AKT/mTOR pathway in progression and treatment of non-small cell lung cancer. J Cancer. 2022; 13(13): 3434-43. doi: 10.7150/jca.77619.
30.
Atefi M, Avramis E, Lassen A, Wong DJ, Robert L, Foulad D, et al. Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma. Clin Cancer Res. 2014; 20(13): 3446-57. doi: 10.1158/1078-0432.CCR-13-2797.
31.
Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007; 13(1): 84-8. doi: 10.1038/nm1517.
32.
Gao Y, Yang J, Cai Y, Fu S, Zhang N, Fu X, et al. IFN-γ-mediated inhibition of lung cancer correlates with PD-L1 expression and is regulated by PI3K-AKT signaling. Int J Cancer. 2018; 143(4): 931-43. doi: 10.1002/ijc.31357.
33.
Hoxhaj G, Manning B D. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020; 20(2): 74-88. doi: 10.1038/s41568-019-0216-7.
34.
Craig A J, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020; 17(3): 139-52. doi: 10.1038/s41575-019-0229-4.
35.
Anwanwan D, Singh S K, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer. 2020; 1873(1): 188314. doi: 10.1016/j.bbcan.2019.188314.
36.
Liu C Y, Chen K F, Chen P J. Treatment of liver cancer. Cold Spring Harb Perspect Med. 2015; 5(9): a021535. doi: 10.1101/cshperspect.a021535.
37.
Sangro B, Sarobe P, Hervás-Stubbs S, Melero I. Advances in immunotherapy for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2021; 18(8): 525-43. doi: 10.1038/s41575-021-00438-0.
38.
Gao Q, Wang XY, Qiu SJ, Yamato I, Sho M, Nakajima Y, et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin Cancer Res. 2009; 15(3): 971-9. doi: 10.1158/1078-0432.CCR-08-1608.
39.
Pazgan-Simon M, Szymanek-Pasternal A, Górka-Dynysiewicz J, Nowicka A, Simon K, Grzebyk E, et al. Serum chemerin level in patients with liver cirrhosis and primary and multifocal hepatocellular carcinoma with consideration of insulin level. Arch Med Sci. 2024;20(5):1504-1510. doi: 10.5114/aoms/176674.
40.
Fu Y, Liu S, Zeng S, Shen H. From bench to bed: the tumor immune microenvironment and current immunotherapeutic strategies for hepatocellular carcinoma. J Exp Clin Cancer Res. 2019; 38(1): 396. doi: 10.1186/s13046 -019-1396-4.
41.
Wen L, Xin B, Wu P, Lin CH, Peng C, Wang G, et al. An efficient combination immunotherapy for primary liver cancer by harmonized activation of innate and adaptive immunity in mice. Hepatology. 2019; 69(6): 2518-32. doi: 10.1002/ hep.30528.
42.
Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of immunotherapy combination strategies in cancer. Cancer Discov. 2021; 11(6): 1368-97. doi: 10.1158/2159-8290.CD-20-1209.
43.
Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, et al. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021; 14(1): 156. doi: 10.1186/s13045-021-01164-5.
44.
Satriano L, Lewinska M, Rodrigues P M, Banales J M, Andersen J B. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019; 16(12): 748-66. doi: 10.1038/s41575-019-0217-8.
45.
Dayton T L, Jacks T, Vander Heiden M G. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 2016; 17(12): 1721-30. doi: 10.15252/embr.201643300.
46.
Zhu S, Guo Y, Zhang X, Liu H, Yin M, Chen X, et al. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics. Cancer Lett. 2021; 503: 240-8. doi: 10.1016/j.canlet.2020.11.018.
47.
Madhok BM, Yeluri S, Perry SL, Hughes TA, Jayne DG. Targeting glucose metabolism: an emerging concept for anticancer therapy. Am J Clin Oncol. 2011; 34(6): 628-35. doi: 10.1097/COC.0b013e3181e84dec.
48.
Ciscato F, Ferrone L, Masgras I, Laquatra C, Rasola A. Hexokinase 2 in cancer: A prima donna playing multiple characters. Int J Mol Sci. 2021; 22(9): 4716. doi: 10.3390/ijms22094716.
49.
Jiao L, Zhang HL, Li DD, Yang KL, Tang J, Li X, et al. Regulation of glycolytic metabolism by autophagy in liver cancer involves selective autophagic degradation of HK2(hexokinase 2). Autophagy. 2018; 14(4): 671-84. doi: 10.1080/15548627.2017.1381804.
50.
Li H, Song J, He Y, Liu Y, Liu Z, Sun W, et al. CRISPR/Cas9 screens reveal that Hexokinase 2 enhances cancer stemness and tumorigenicity by activating the ACSL4-fatty acid β-oxidation pathway. Adv Sci Weinh). 2022; 9(21):e2105126. doi: 10.1002/advs.202105126.
51.
Bartrons R, Simon-Molas H, Rodríguez-García A, Castaño E, Navarro-Sabaté À, Manzano A, et al. Fructose 2,6-bisphosphate in cancer cell metabolism. Front Oncol. 2018; 8: 331. doi: 10.3389/fonc.2018.00331.
52.
Simula L, Alifano M, Icard P. How phosphofructokinase-1 promotes PI3K and YAP/TAZ in cancer: Therapeutic perspectives. Cancers(Basel). 2022; 14(10). doi: 10.3390/cancers14102478.
53.
Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017; 36(27): 3797-806. doi: 10.1038/onc.2017.6.
54.
Pu Z, Duda DG, Zhu Y, Pei S, Wang X, Huang Y, et al. VCP interaction with HMGB1 promotes hepatocellular carcinoma progression by activating the PI3K/AKT/mTOR pathway. J Transl Med. 2022;20(1):212. doi: 10.1186/s12967-022-03416-5.
55.
Hwang SJ, Cho SH, Bang HJ, Hong JH, Kim KH, Lee HJ. 1,8-Dihydroxy-3-methoxy-anthraquinone inhibits tumor angiogenesis through HIF-1alpha downregulation. Biochem Pharmacol. 2024; 220:115972. doi: 10.1016/j.bcp.2023.115972.
56.
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023;22(1):138. doi: 10.1186/s12943-023-01827-6.
57.
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol. 2022; 85: 69-94. doi: 10.1016/j.semcancer.2021.06.019.
58.
Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021; 9(11). doi: 10.3390/biomedicines9111639.
59.
Bamodu OA, Chang HL, Ong JR, Lee WH, Yeh CT, Tsai JT. Elevated PDK1 expression drives PI3K/AKT/MTOR signaling promotes radiation-resistant and dedifferentiated phenotype of hepatocellular carcinoma. Cells. 2020; 9(3):746. doi: 10.3390/cells9030746.
60.
Tang Z, Zhao P, Zhang W, Zhang Q, Zhao M, Tan H. SALL4 activates PI3K/ AKT signaling pathway through targeting PTEN, thus facilitating migration, invasion and proliferation of hepatocellular carcinoma cells. Aging (Albany NY). 2022; 14(24): 10081-92. doi: 10.18632/aging.204446.
61.
Hong T, Dong D, Li J, Wang L. PARP9 knockdown confers protection against chemoresistance and immune escape of breast cancer cells by blocking the PI3K/AKT pathway. Arch Med Sci. 2023;20(4):1228-1248. doi: 10.5114/aoms/161444.
62.
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B, et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell. 2024;187(10):2375-2392. e33. doi: 10.1016/j.cell.2024.04.002.
63.
Song H, Chen L, Pan X, Shen Y, Ye M, Wang G, et al. Targeting tumor monocyte-intrinsic PD-L1 by rewiring STING signaling and enhancing STING agonist therapy. Cancer Cell. 2025;43(3):503-518.e10. doi: 10.1016/j.ccell.2025.02.014.
64.
Zhang J, Ouyang F, Gao A, Zeng T, Li M, Li H, et al. ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment. Mol Cancer. 2024;23(1):94. doi: 10.1186/s12943-024-02009-8.