Editor's Choice
LIPID DISORDERS / STATE OF THE ART PAPER
 
KEYWORDS
TOPICS
ABSTRACT
This state-of-the-art review surveys the rapidly advancing field of triglyceride-lowering therapies as of 2025, positioning hypertriglyceridemia (HTG) as both a residual driver of atherosclerotic cardiovascular disease (ASCVD) and a key precipitant of acute pancreatitis. After outlining the pathophysiological role of elevated triglycerides – via remnant lipoproteins, inflammation and endothelial dysfunction, often within the lipid triad of low high-density lipoprotein-cholesterol (HDL-C) and small, dense low-density lipoprotein (LDL) – we evaluate established and emerging pharmacologic options. Fenofibrate, a PPAR- activator, remains a cornerstone for mixed dyslipidemia, improving micro- and macrovascular outcomes in diabetes. Purified eicosapentaenoic acid (icosapent ethyl) is highlighted for its robust reduction of major adverse cardiovascular events despite neutral triglyceride thresholds, albeit with a modest increase in atrial fibrillation risk. Novel agents targeting apolipoprotein C-III (volanesorsen, olezarsen, plozasiran) achieve profound triglyceride declines and substantially mitigate pancreatitis in familial chylomicronemia syndrome (FCS), while angiopoietin-like 3 (ANGPTL3) inhibitors and fibroblast growth factor 21 (FGF21) agonists demonstrate early promise in broad atherogenic-lipid reduction and metabolic modulation. The paper emphasizes the importance of genetic testing to differentiate FCS from multifactorial chylomicronemia syndrome, guiding personalized therapy. Current guidelines endorse icosapent ethyl and fenofibrate for high-risk HTG, with apoC-III inhibitors poised to become first-line for FCS as access improves. Ongoing trials of ANGPTL3 inhibitors, FGF21 agonists and gene-editing approaches may soon redefine lifelong lipid management.
REFERENCES (141)
1.
Ballena-Caicedo J, Zuzunaga-Montoya FE, Loayza-Castro JA, et al. Global prevalence of dyslipidemias in the general adult population: a systematic review and meta-analysis. J Health Popul Nutr 2025; 44: 308.
 
2.
Solnica B, Sygitowicz G, Sitkiewicz D, et al. 2024 Guidelines of the Polish Society of Laboratory Diagnostics and the Polish Lipid Association on laboratory diagnostics of lipid metabolism disorders. Arch Med Sci 2024; 20: 357-74.
 
3.
Fan W, Philip S, Granowitz C, Toth PP, Wong ND. Prevalence of US adults with triglycerides ≥ 150 mg/dl: NHANES 2007-2014. Cardiol Ther 2020; 9: 207-13.
 
4.
Santos RD, Ray KK, De Bacquer D, et al. Frequency of residual combined dyslipidemia and hypertriglyceridemia in patients with coronary heart disease in 13 countries across 6 WHO Regions: results from INTERASPIRE. Atherosclerosis 2025; 405: 119215.
 
5.
Ko DS, Kim YH. Mendelian randomization studies in atherosclerotic cardiovascular diseases. J Lipid Atheroscler 2024; 13: 280-91.
 
6.
Tada H, Nohara A, Kawashiri M. Serum triglycerides and atherosclerotic cardiovascular disease: insights from clinical and genetic studies. Nutrients 2018; 10: 1789.
 
7.
Budoff M. Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. Am J Cardiol 2016; 118: 138-45.
 
8.
Banach M, Fronczek M, Goc A, et al. Telomere length across the spectrum of metabolic health: an analysis from the LIPIDOGEN2015 study. Arch Med Sci 2024; 21: 1213-21.
 
9.
Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 2002; 105: 310-5.
 
10.
Criqui MH, Heiss G, Cohn R, et al. Plasma triglyceride level and mortality from coronary heart disease. N Engl J Med 1993; 328: 1220-5.
 
11.
Cremer P, Nagel D, Mann H, et al. Ten-year follow-up results from the Goettingen Risk, Incidence and Prevalence Study (GRIPS). I. Risk factors for myocardial infarction in a cohort of 5790 men. Atherosclerosis 1997; 129: 221-30.
 
12.
Eberly LE, Stamler J, Neaton JD. Relation of triglyceride levels, fasting and nonfasting, to fatal and nonfatal coronary heart disease. Arch Intern Med 2003; 163: 1077-83.
 
13.
D’Agostino RB, Russell MW, Huse DM, et al. Primary and subsequent coronary risk appraisal: new results from the Framingham study. Am Heart J 2000; 139: 272-81.
 
14.
Morrison A, Hokanson JE. The independent relationship between triglycerides and coronary heart disease. Vasc Health Risk Manag 2009; 5: 89-95.
 
15.
Chen Y, Zhong Z, Gue Y, et al.; LIPIDOGRAM2015 Investigators. Impact of surrogates for insulin resistance on mortality and life expectancy in primary care: a nationwide cross-sectional study with registry linkage (LIPIDOGRAM2015). Lancet Reg Health Eur 2024; 49: 101182.
 
16.
Sarwar N, Danesh J, Eiriksdottir G, et al. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007; 115: 450-8.
 
17.
Miller M, Cannon CP, Murphy SA, Qin J, Ray KK, Braunwald E. Impact of triglyceride levels beyond low-density lipoprotein cholesterol after acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Am Coll Cardiol 2008; 51: 724-30.
 
18.
Schwartz GG, Abt M, Bao W, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol 2015; 65: 2267-75.
 
19.
Toth PP, Philip S, Hull M, Granowitz C. Association of elevated triglycerides with increased cardiovascular risk and direct costs in statin-treated patients. Mayo Clin Proc 2019; 94: 1670-80.
 
20.
Ginsberg HN, Packard CJ, Chapman MJ, et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies – a consensus statement from the European Atherosclerosis Society. Eur Heart J 2021; 42: 4791-806.
 
21.
Balling M, Afzal S, Davey Smith G, et al. Elevated LDL triglycerides and atherosclerotic risk. J Am Coll Cardiol 2023; 81: 136-52.
 
22.
Toth PP, Banach M. It is time to address the contribution of cholesterol in all apoB-containing lipoproteins to atherosclerotic cardiovascular disease. Eur Heart J Open 2024; 4: oeae057.
 
23.
Ciftel S, Çiftel S, Baykan AR, Cerrah S, Çiftel E, Mercantepe F. Cardiometabolic risk in non-diabetic metabolic dysfunction-associated steatotic liver disease (MAFLD) patients: insights from the triglyceride-glucose, plasma atherogenic, and cardiometabolic index. Arch Med Sci 2024; 21: 401-8.
 
24.
Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J 2023; 44: 4196-8.
 
25.
Varbo A, Benn M, Tybjærg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013; 128: 1298-309.
 
26.
Reilly NA, Mulder JWCM, Dekkers KF, et al. Triglycerides and T cells in cardiovascular risk: inflammatory transcriptomic profile in hypertriglyceridemia patients’ T cells. JACC Basic Transl Sci 2025; 10: 101359.
 
27.
Ferreira AC, Peter AA, Mendez AJ, et al. Postprandial hypertriglyceridemia increases circulating levels of endothelial cell microparticles. Circulation 2004; 110: 3599-603.
 
28.
de Winther MPJ, Kanters E, Kraal G, Hofker MH. Nuclear factor B signaling in atherogenesis. Arterioscler Thromb Vasc Biol 2005; 25: 904-14.
 
29.
Peng X, Wu H. Inflammatory links between hypertriglyceridemia and atherogenesis. Curr Atheroscler Rep 2022; 24: 297-306.
 
30.
Lorenzatti A, Toth PP. New perspectives on atherogenic dyslipidaemia and cardiovascular disease. Eur Cardiol Rev 2020; 15: e04.
 
31.
Nicholls SJ, Nelson AJ, Ditmarsch M, et al. Obicetrapib on top of maximally tolerated lipid-modifying therapies in participants with or at high risk for atherosclerotic cardiovascular disease: rationale and designs of BROADWAY and BROOKLYN. Am Heart J 2024; 274: 32-45.
 
32.
van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res 2004; 21: 1531-8.
 
33.
Shang R, Rodrigues B. Lipoprotein lipase as a target for obesity/diabetes related cardiovascular disease. J Pharm Pharm Sci 2024; 27: 13199.
 
34.
Szczęśniak D, Bednarska-Makaruk M, Drgas O, et al. Lipoprotein lipase deficiency: heterozygotes match homozygotes in severity. Arch Med Sci 2025; 21: 750-6.
 
35.
van der Hoogt CC, de Haan W, Westerterp M, et al. Fenofibrate increases HDL-cholesterol by reducing cholesteryl ester transfer protein expression. J Lipid Res 2007; 48: 1763-71.
 
36.
Sahebkar A, Simental-Mendía LE, Katsiki N, et al. Effect of fenofibrate on plasma apolipoprotein C-III levels: a systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open 2019; 8: e021508.
 
37.
Gordts PL, Nock R, Son NH, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest 2016; 126: 2855-66.
 
38.
Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 2005; 366: 1849-61.
 
39.
Averna M, Banach M, Bruckert E, et al. Practical guidance for combination lipid-modifying therapy in high- and very-high-risk patients: a statement from a European Atherosclerosis Society Task Force. Atherosclerosis 2021; 325: 99-109.
 
40.
Banach M, Burchardt P, Chlebus K, et al. PoLA/CFPiP/PCS/PSLD/PSD/PSH guidelines on diagnosis and therapy of lipid disorders in Poland 2021. Arch Med Sci 2021; 17: 1447-547.
 
41.
Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007; 370: 1687-97.
 
42.
Rajamani K, Colman PG, Li LP, et al. Effect of fenofibrate on amputation events in people with type 2 diabetes mellitus (FIELD study): a prespecified analysis of a randomised controlled trial. Lancet 2009; 373: 1780-8.
 
43.
Ting RD, Keech AC, Drury PL, et al. Benefits and safety of long-term fenofibrate therapy in people with type 2 diabetes and renal impairment: the FIELD Study. Diabetes Care 2012; 35: 218-25.
 
44.
Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563-74.
 
45.
Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357: 905-10.
 
46.
Keech AC, Mitchell P, Summanen PA, et al.; FIELD study investigators. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007; 370: 1687-97.
 
47.
ACCORD Study Group; ACCORD Eye Study Group; Chew EY, Ambrosius WT, Davis MD, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 2010; 363: 233-44.
 
48.
Kim NH, Choi J, Kim YH, Lee H, Kim SG. Addition of fenofibrate to statins is associated with risk reduction of diabetic retinopathy progression in patients with type 2 diabetes and metabolic syndrome: a propensity-matched cohort study. Diabetes Metab 2023; 49: 101428.
 
49.
Preiss D, Spata E, Holman RR, et al. Effect of fenofibrate therapy on laser treatment for diabetic retinopathy: a meta-analysis of randomized controlled trials. Diabetes Care 2022; 45: e1-2.
 
50.
Meer E, Bavinger JC, Yu Y, VanderBeek BL. Association of fenofibrate use and the risk of progression to vision-threatening diabetic retinopathy. JAMA Ophthalmol 2022; 140: 529-32.
 
51.
Preiss D, Logue J, Sammons E, et al. Effect of fenofibrate on progression of diabetic retinopathy. NEJM Evid 2024; 3: EVIDoa2400179.
 
52.
Banach M, Surma S, Dzida G, et al. The prevention opportunities of retinopathy in diabetic patients – position paper endorsed by the Polish Lipid Association. Arch Med Sci 2024; 20: 1754-69.
 
53.
Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237-45.
 
54.
Bloomfield Rubins H, Davenport J, Babikian V, et al. Reduction in stroke with gemfibrozil in men with coronary heart disease and low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Circulation 2001; 103: 2828-33.
 
55.
Ogilvie BW, Zhang D, Li W, et al. Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions. Drug Metab Dispos 2006; 34: 191-7.
 
56.
Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002; 301: 1042-51.
 
57.
Banach M, Rizzo M, Toth PP, et al. Statin intolerance – an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch Med Sci 2015; 11: 1-23.
 
58.
Kim NH, Kim SG. Fibrates revisited: potential role in cardiovascular risk reduction. Diabetes Metab J 2020; 44: 213-21.
 
59.
Pradhan AD, Glynn RJ, Fruchart JC, et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med 2022; 387: 1923-34.
 
60.
Marx N, Duez H, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and atherogenesis. Circ Res 2004; 94: 1168-78.
 
61.
Wang X, Zhong S, Dong J, Zhuge F. Polyunsaturated fatty acid status and risk of type 1 diabetes in infants and children: a systematic review and meta-analysis. Arch Med Sci 2023; 19: 1421-7.
 
62.
Serhan CN, Hong S, Gronert K, et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 2002; 196: 1025-37.
 
63.
Levy BD. Resolvins and protectins: natural pharmacophores for resolution biology. Prostaglandins Leukot Essent Fatty Acids 2010; 82: 327-32.
 
64.
Ruscica M, Penson PE, Ferri N, et al.; International Lipid Expert Panel (ILEP) and International Lipid Expert Panel Experts (alphabetically). Impact of nutraceuticals on markers of systemic inflammation: Potential relevance to cardiovascular diseases – a position paper from the International Lipid Expert Panel (ILEP). Prog Cardiovasc Dis 2021; 67: 40-52.
 
65.
Bielecka-Dabrowa AM, Banach M, Wittczak A, et al. The role of nutraceuticals in heart failure muscle wasting as a result of inflammatory activity. The International Lipid Expert Panel (ILEP) Position Paper. Arch Med Sci 2023; 19: 841-64.
 
66.
Liao J, Xiong Q, Yin Y, Ling Z, Chen S. The effects of fish oil on cardiovascular diseases: systematical evaluation and recent advance. Front Cardiovasc Med 2021; 8: 802306.
 
67.
Turk HF, Chapkin RS. Membrane lipid raft organization is uniquely modified by n-3 polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 2013; 88: 43-7.
 
68.
Bodur M, Yilmaz B, Ağagündüz D, Ozogul Y. Immunomodulatory effects of omega-3 fatty acids: mechanistic insights and health implications. Mol Nutr Food Res 2025; 69: e202400752.
 
69.
GISSI-Prevenzione Investigators (Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico). Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Lancet 1999; 354: 447-55.
 
70.
Marchioli R, Barzi F, Bomba E, et al. Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction. Circulation 2002; 105: 1897-903.
 
71.
The ASCEND Study Collaborative Group. Effects of n−3 fatty acid supplements in diabetes mellitus. N Engl J Med 2018; 379: 1540-50.
 
72.
Nicholls SJ, Lincoff AM, Garcia M, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 2020; 324: 2268-80.
 
73.
Kalstad AA, Myhre PL, Laake K, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation 2021; 143: 528-39.
 
74.
Manson JE, Cook NR, Lee IM, et al. Marine n−3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 2019; 380: 23-32.
 
75.
Huang L, Zhang F, Xu P, et al. Effect of omega-3 polyunsaturated fatty acids on cardiovascular outcomes in patients with diabetes: a meta-analysis of randomized controlled trials. Adv Nutr 2023; 14: 629-36.
 
76.
Hu Y, Hu FB, Manson JE. Marine omega-3 supplementation and cardiovascular disease: an updated meta-analysis of 13 randomized controlled trials involving 127 477 participants. J Amn Heart Assoc 2019; 8: e013543.
 
77.
Khan SU, Lone AN, Khan MS, et al. Effect of omega-3 fatty acids on cardiovascular outcomes: a systematic review and meta-analysis. eClinicalMedicine 2021; 38: 100997.
 
78.
Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 2007; 369: 1090-8.
 
79.
Bhatt DL, Steg PG, Miller M, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380: 11-22.
 
80.
Goerger K, Stanger L, Rickenberg A, et al. The EPA oxylipin, 12-HEPE, directly regulates human platelet activity. J Lipid Res 2025; 66: 100807.
 
81.
Young SG, Song W, Yang Y, et al. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci 2022; 119: e2211136119.
 
82.
Vallerie SN, Bornfeldt KE. GPIHBP1. Circ Res 2015; 116: 560-2.
 
83.
Doolittle MH, Ehrhardt N, Péterfy M. Lipase maturation factor 1: structure and role in lipase folding and assembly. Curr Opin Lipidol 2010; 21: 198-203.
 
84.
Sukonina V, Lookene A, Olivecrona T, Olivecrona G. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci 2006; 103: 17450-5.
 
85.
Fan KC, Chen SC, Yen IW, et al. Plasma angiopoietin-like protein 4 as a novel biomarker predicting 10-year mortality in a community-based population: a longitudinal cohort study. Arch Med Sci 2024; 21: 51-9.
 
86.
Jin N, Matter WF, Michael LF, et al. The angiopoietin-like protein 3 and 8 complex interacts with lipoprotein lipase and induces LPL cleavage. ACS Chem Biol 2021; 16: 4.
 
87.
Kim H, Song Z, Zhang R, Davies BSJ, Zhang K. A hepatokine derived from the ER protein CREBH promotes triglyceride metabolism by stimulating lipoprotein lipase activity. Sci Signal 2023; 16: eadd6702.
 
88.
Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009; 297: E271-88.
 
89.
Javed F, Hegele RA, Garg A, et al. Familial chylomicronemia syndrome: an expert clinical review from the National Lipid Association. J Clin Lipidol 2025; 19: 382-403.
 
90.
Moulin P, Dufour R, Averna M, et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): expert panel recommendations and proposal of an “FCS score”. Atherosclerosis 2018; 275: 265-72.
 
91.
Spagnuolo CM, Hegele RA. Etiology and emerging treatments for familial chylomicronemia syndrome. Exp Rev Endocrinol Metab 2024; 19: 299-306.
 
92.
Hegele RA, Berberich AJ, Ban MR, et al. Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J Clin Lipidol 2018; 12: 920-7.
 
93.
Paragh G, Németh Á, Harangi M, Banach M, Fülöp P. Causes, clinical findings and therapeutic options in chylomicronemia syndrome, a special form of hypertriglyceridemia. Lipids Health Dis 2022; 21: 21.
 
94.
Bajaj A, Oral EA, Brown A, et al. Clinical considerations for the treatment of patients with familial chylomicronemia syndrome using a hepatic-targeted APOC3 antisense oligonucleotide. Am J Prev Cardiol 2025; 24: 101352.
 
95.
Falko JM. Familial chylomicronemia syndrome: a clinical guide for endocrinologists. Endocr Pract 2018; 24: 756-63.
 
96.
Prakash TP, Graham MJ, Yu J, et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res 2014; 42: 8796-807.
 
97.
Biessen EAL, Van Berkel TJC. N-acetyl galactosamine targeting: paving the way for clinical application of nucleotide medicines in cardiovascular diseases. Arterioscler Thromb Vasc Biol 2021; 41: 2855-65.
 
98.
Phillips B, Abbott C, Breit S, St Onge E. Olezarsen for the treatment of familial chylomicronemia syndrome. Ann Pharmacother 2025; 59: 1031-6.
 
99.
Geanacopoulos M. An introduction to RNA-mediated gene silencing. Sci Prog 2005; 88: 49-69.
 
100.
Watts GF, Rosenson RS, Hegele RA, et al. Plozasiran for managing persistent chylomicronemia and pancreatitis risk. N Engl J Med 2025; 392: 127-37.
 
101.
Mach F, Koskinas KC, Roeters van Lennep JE, et al.; ESC/EAS Scientific Document Group. 2025 Focused update of the 2019 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J 2025; 46: 4359-78.
 
102.
Witztum JL, Gaudet D, Freedman SD, et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med 2019; 381: 531-42.
 
103.
Witztum JL, Gaudet D, Arca M, et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: long-term efficacy and safety data from patients in an open-label extension trial. J Clin Lipidol 2023; 17: 342-55.
 
104.
Gouni-Berthold I, Alexander VJ, Yang Q, et al.; COMPASS study group. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol 2021; 9: 264-75.
 
105.
Alexander VJ, Karwatowska-Prokopczuk E, Prohaska TA, et al. Volanesorsen to prevent acute pancreatitis in hypertriglyceridemia. N Engl J Med 2024; 390: 476-7.
 
106.
Stroes ESG, Alexander VJ, Karwatowska-Prokopczuk E, et al. Olezarsen, acute pancreatitis, and familial chylomicronemia syndrome. N Engl J Med 2024; 390: 1781-92.
 
107.
Watts GF, Hegele RA, Rosenson RS, et al.; PALISADE Study Group. Temporal effects of plozasiran on lipids and lipoproteins in persistent chylomicronemia. Circulation 2025; 151: 733-6.
 
108.
Paquette M, Bernard S. The evolving story of multifactorial chylomicronemia syndrome. Front Cardiovasc Med 2022; 9: 886266.
 
109.
Chait A. Multifactorial chylomicronemia syndrome. Curr Opin Endocrinol Diabetes Obes 2024; 31: 78-83.
 
110.
Bashir B, Ho JH, Downie P, et al. Severe hypertriglyceridaemia and chylomicronaemia syndrome – causes, clinical presentation, and therapeutic options. Metabolites 2023; 13: 621.
 
111.
Tsimikas S. Anti-apoC-III therapies and implications for treatment of pancreatitis and cardiovascular disease. Curr Atheroscler Rep 2025; 27: 103.
 
112.
Sathiyakumar V, Pallazola VA, Park J, et al. Modern prevalence of the Fredrickson-Levy-Lees dyslipidemias: findings from the Very Large Database of Lipids and National Health and Nutrition Examination Survey. Arch Med Sci 2020; 16: 1279-87.
 
113.
D’Erasmo L, Tramontano D, Di Costanzo A, et al. Contemporary management of familial and multifactorial chylomicronemia syndromes in Italy: insights from the National LIPIGEN Registry. Arterioscler Thromb Vasc Biol 2025; 45: 2264-76.
 
114.
Guay SP, Paquette M, Taschereau A, et al. DNA methylation levels are independently associated with prevalence of atherosclerotic cardiovascular disease in multifactorial chylomicronemia syndrome. Clin Biochem 2025; 139: 110978.
 
115.
Marston NA, Bergmark BA, Alexander VJ, et al. Olezarsen for managing severe hypertriglyceridemia and pancreatitis risk. N Engl J Med 2026; doi: 10.1056/NEJMoa2512761.
 
116.
Bergmark BA, Marston NA, Prohaska TA, et al.; Essence–TIMI 73b Investigators. Targeting APOC3 with olezarsen in moderate hypertriglyceridemia. N Engl J Med 2025; 393: 1279-91.
 
117.
Gaudet D, Pall D, Watts GF, et al. Plozasiran (ARO-APOC3) for severe hypertriglyceridemia: the SHASTA-2 randomized clinical trial. JAMA Cardiol 2024; 9: 620-30.
 
118.
Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. JACC 2017; 69: 2054-63.
 
119.
Ling P, Zheng X, Luo S, Ge J, Xu S, Weng J. Targeting angiopoietin-like 3 in atherosclerosis: from bench to bedside. Diabetes Obes Metab 2021; 23: 2020-34.
 
120.
Luo F, Das A, Khetarpal SA, et al. ANGPTL3 inhibition, dyslipidemia, and cardiovascular diseases. Trends Cardiovasc Med 2024; 34: 215-22.
 
121.
Wang X, Musunuru K. Angiopoietin-like 3: from discovery to therapeutic gene editing. JACC Basic Transl Sci 2019; 4: 755-62.
 
122.
Stitziel NO, Khera AV, Wang X, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol 2017; 69: 2054-63.
 
123.
Bergmark BA, Marston NA, Bramson CR, et al. Effect of vupanorsen on non–high-density lipoprotein cholesterol levels in statin-treated patients with elevated cholesterol: TRANSLATE-TIMI 70. Circulation 2022; 145: 1377-86.
 
124.
Ray KK, Linnebjerg H, Michael LF, et al. Effect of ANGPTL3 inhibition with solbinsiran in preclinical and early human studies. JACC 2025; 85: 1803-18.
 
125.
Rosenson RS, Gaudet D, Hegele RA, et al. Zodasiran, an RNAi therapeutic targeting ANGPTL3, for mixed hyperlipidemia. N Engl J Med 2024; 391: 913-25.
 
126.
Raal FJ, Bergeron J, Gaudet D, et al. Zodasiran, an RNAi therapeutic targeting ANGPTL3, for treating patients with homozygous familial hypercholesterolaemia (GATEWAY): an open-label, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2026; 14: 123-36.
 
127.
Myśliwiec M, Bandura M, Wołoszyn-Durkiewicz A, et al. 2024 Polish recommendations for the management of familial hypercholesterolemia in children and adolescents. Arch Med Sci 2024; 20: 1741-53.
 
129.
Gostimskaya I. CRISPR-Cas9: a history of its discovery and ethical considerations of its use in genome editing. Biochemistry (Mosc) 2022; 87: 777-88.
 
130.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337: 816-21.
 
131.
Laffin LJ, Nicholls SJ, Scott RS, et al. Phase 1 trial of CRISPR-Cas9 gene editing targeting ANGPTL3. N Engl J Med 2025; 393: 2119-30.
 
132.
Cummings BB, Joing MP, Bouchard PR, et al. Safety and efficacy of a novel ANGPTL4 inhibitory antibody for lipid lowering: results from phase 1 and phase 1b/2a clinical studies. Lancet 2025; 405: 1923-34.
 
133.
Mitrovic B, Gluvic ZM, Obradovic M, et al. Non-alcoholic fatty liver disease, metabolic syndrome, and type 2 diabetes mellitus: where do we stand today? Arch Med Sci 2023; 19: 884-94.
 
134.
Cantero I, Abete I, Bullón-Vela V, et al. Fibroblast growth factor 21 levels and liver inflammatory biomarkers in obese subjects after weight loss. Arch Med Sci 2022; 18: 36-44.
 
135.
DeFrees S, Wang ZG, Xing R, et al. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 2006; 16: 833-43.
 
136.
Bailey NN, Peterson SJ, Parikh MA, Jackson KA, Frishman WH. Pegozafermin is a potential master therapeutic regulator in metabolic disorders: a review. Cardiol Rev 2025; 33: 402-6.
 
137.
Bhatt DL, Bays HE, Miller M, et al. The FGF21 analog pegozafermin in severe hypertriglyceridemia: a randomized phase 2 trial. Nat Med 2023; 29: 1782-92.
 
138.
Huang S, Ma J, Dai H, Luo L. A new in-hospital mortality prediction nomogram for intensive care unit patients with acute pancreatitis. Arch Med Sci 2024; 20: 61-70.
 
139.
Davidson M, Stevenson M, Hsieh A, et al. The burden of familial chylomicronemia syndrome: results from the global IN-FOCUS study. J Clin Lipidol 2018; 12: 898-907.e2.
 
140.
Banach M, Mastalerz-Migas A, Wita K, Myśliwiec M. Poland takes a lead in effective lipid disorders management healthcare programmes in Europe. Am J Prev Cardiol 2025; 24: 101346.
 
141.
Banach M. Polish Lipid Association (PoLA) Guidelines 2026 on the Diagnosis and Treatment of Lipid Disorders in Poland. Official Release at the XV Anniversary Congress of the Polish Lipid Association, Warsaw, 6th Dec. 2025.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top