NUTRITION / STATE OF THE ART PAPER
 
KEYWORDS
TOPICS
ABSTRACT
In patients with hypertension, intestinal dysbiosis and increased intestine permeability are commonly observed. Modifications of intestinal microbiota with certain probiotics, prebiotics, and synbiotics, as well as gut microbiota transfer, have been associated with a reduction in blood pressure. Therefore, these interventions, especially probiotics, can be employed as adjuncts to hypertension therapy. Bacteria constituting dysbiotic intestinal microbiota produce compounds with hypertensinogenic activity (trimethylamine – TMA, pathogen-associated molecular patterns – PAMPs). In addition, in a state of dysbiosis, a decrease in the production of compounds with antihypertensive activity (short-chain fatty acids – SCFAs) is observed. A diet high in salt significantly alters the intestinal microbiota, and such dysbiosis has been implicated in the pathogenesis of salt-sensitive hypertension. This narrative review article discusses the importance of the gut microbiota, its dysbiosis in patients with hypertension, and potential therapeutic options.
REFERENCES (85)
1.
Wu X, Sha J, Yin Q, Gu Y, He X. Global burden of hypertensive heart disease and attributable risk factors, 1990-2021: insights from the global burden of disease study 2021. Sci Rep 2025; 15: 14594.
 
2.
Lin L, Xiang S, Chen Y, et al. Gut microbiota: implications in pathogenesis and therapy to cardiovascular disease (Review). Exp Ther Med 2024; 28: 427.
 
3.
Bielecka-Dabrowa A, Banach M, Wittczak A, et al. The role of nutraceuticals in heart failure muscle wasting as a result of inflammatory activity. The International Lipid Expert Panel (ILEP) Position Paper. Arch Med Sci 2023; 19: 841-64.
 
4.
Cicero AFG, Fogacci F, Tocci G, et al. Three arms, double-blind, non-inferiority, randomized clinical study testing the lipid-lowering effect of a novel dietary supplement containing red yeast rice and artichoke extracts compared to Armolipid Plus® and placebo. Arch Med Sci 2023; 19: 1169-79.
 
5.
Shen Y, Fan N, Ma SX, Cheng X, Yang X, Wang G. Gut microbiota dysbiosis: pathogenesis, diseases, prevention, and therapy. MedComm 2020 2025; 6: e70168.
 
6.
Bhatia A, Sharma D, Mehta J, et al. Probiotics and synbiotics: applications, benefits, and mechanisms for the improvement of human and ecological health. J Multidiscip Healthc 2025; 18: 1493-510.
 
7.
Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol 2020; 202: 2147-67.
 
8.
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy human gastrointestinal microbiome: composition and function after a decade of exploration. Dig Dis Sci 2020; 65: 695-705.
 
9.
Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 2016; 14: e1002533.
 
10.
Zhu B, Wang X, Li L. Human gut microbiome: the second genome of human body. Protein Cell 2010; 1: 718-25.
 
11.
Rackaityte E, Lynch SV. The human microbiome in the 21st century. Nat Commun 2020; 11: 5256.
 
12.
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7: 14.
 
13.
Clarke G, Sandhu KV, Griffin BT, Dinan TG, Cryan JF, Hyland NP. Gut reactions: breaking down xenobiotic-microbiome interactions. Pharmacol Rev 2019; 71: 198-224.
 
14.
Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-80.
 
15.
Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334: 105-8.
 
16.
Riccio P, Rossano R. The human gut microbiota is neither an organ nor a commensal. FEBS Lett 2020; 594: 3262-71.
 
17.
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787-803.
 
18.
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016; 22: 1137-50.
 
19.
Upadrasta A, Madempudi RS. Probiotics and blood pressure: current insights. Integr Blood Press Control 2016; 9: 33-42.
 
20.
Gebrayel P, Nicco C, Al Khodor S, et al. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20: 111.
 
21.
Ge Y, Wang J, Wu L, Wu J. Gut microbiota: a potential new regulator of hypertension. Front Cardiovasc Med 2024; 11: 1333005.
 
22.
Li H, Liu B, Song J, et al. Characteristics of gut microbiota in patients with hypertension and/or hyperlipidemia: a cross-sectional study on rural residents in Xinxiang County, Henan province. Microorganisms 2019; 7: 399.
 
23.
Dan X, Mushi Z, Baili W, et al. Differential analysis of hypertension-associated intestinal microbiota. Int J Med Sci 2019; 16: 872-81.
 
24.
Li J, Zhao F, Wang Y, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 2017; 5: 14.
 
25.
Louca P, Nogal A, Wells PM, et al. Gut microbiome diversity and composition is associated with hypertension in women. J Hypertens 2021; 39: 1810-6.
 
26.
Palmu J, Salosensaari A, Havulinna AS, et al. Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. J Am Heart Assoc 2020; 9: e016641.
 
27.
Sun S, Lulla A, Sioda M, et al. Gut microbiota composition and blood pressure. Hypertension 2019; 73: 998-1006.
 
28.
Silveira-Nunes G, Durso DF, de Oliveira Jr LRA, et al. Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a Brazilian population. Front Pharmacol 2020; 11: 258.
 
29.
Takagi T, Naito Y, Kashiwagi S, et al. Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients 2020; 12: 2996.
 
30.
Yan Q, Gu Y, Li X, et al. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 2017; 7: 381.
 
31.
Kim S, Goel R, Kumar A, et al. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci 2018; 132: 701-18.
 
32.
Cai M, Lin L, Jiang F, et al. Gut microbiota changes in patients with hypertension: a systematic review and meta-analysis. J Clin Hypertens 2023; 25: 1053-68.
 
33.
Toral M, Robles-Vera I, de la Visitación N, et al. Critical role of the interaction gut microbiota – sympathetic nervous system in the regulation of blood pressure. Front Physiol 2019; 10: 231.
 
34.
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. J Endocr Soc 2020; 4: bvz039.
 
35.
Jaworska K, Huc T, Samborowska E, et al. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS One 2017; 12: e0189310.
 
36.
Santisteban MM, Qi Y, Zubcevic J, et al. Hypertension-linked pathophysiological alterations in the gut. Circ Res 2017; 120: 312-23.
 
37.
Yang Z, Wang Q, Liu Y, et al. Gut microbiota and hypertension: association, mechanisms and treatment. Clin Exp Hypertens 2023; 45: 2195135.
 
38.
Bartolomaeus H, Balogh A, Yakoub M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 2019; 139: 1407-21.
 
39.
Felizardo RJF, Watanabe IKM, Dardi P, Rossoni LV, Câmara NOS. The interplay among gut microbiota, hypertension and kidney diseases: the role of short-chain fatty acids. Pharmacol Res 2019; 141: 366-77.
 
40.
Lymperopoulos A, Suster MS, Borges JI. Short-chain fatty acid receptors and cardiovascular function. Int J Mol Sci 2022; 23: 3303.
 
41.
Onyszkiewicz M, Gawrys-Kopczynska M, Konopelski P, et al. Butyric acid, a gut bacteria metabolite, lowers arterial blood pressure via colon-vagus nerve signaling and GPR41/43 receptors. Pflugers Arch 2019; 471: 1441-53.
 
42.
Roshanravan N, Mahdavi R, Alizadeh E, et al. Effect of butyrate and inulin supplementation on glycemic status, lipid profile and glucagon-like peptide 1 level in patients with type 2 diabetes: a randomized double-blind, placebo-controlled trial. Horm Metab Res 2017; 49: 886-91.
 
43.
Nakai M, Ribeiro RV, Stevens BR, et al. Essential hypertension is associated with changes in gut microbial metabolic pathways: a multisite analysis of ambulatory blood pressure. Hypertension 2021; 78: 804-15.
 
44.
Gatarek P, Kaluzna-Czaplinska J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J 2021; 20: 301-19.
 
45.
He S, Jiang H, Zhuo C, Jiang W. Trimethylamine/trimethylamine-n-oxide as a key between diet and cardiovascular diseases. Cardiovasc Toxicol 2021; 21: 593-604.
 
46.
Ufnal M, Jazwiec R, Dadlez M, Drapala A, Sikora M, Skrzypecki J. Trimethylamine-N-oxide: a carnitine-derived metabolite that prolongs the hypertensive effect of angiotensin II in rats. Can J Cardiol 2014; 30: 1700-5.
 
47.
Jaworska K, Bielinska K, Gawrys-Kopczynska M, Ufnal M. TMA (trimethylamine), but not its oxide TMAO (trimethylamine-oxide), exerts haemodynamic effects: implications for interpretation of cardiovascular actions of gut microbiome. Cardiovasc Res 2019; 115: 1948-9.
 
48.
Lucas SE, Walton SL, Mirabito Colafella KM, et al. Antihypertensives and antibiotics: impact on intestinal dysfunction and hypertension. Hypertension 2023; 80: 1393-402.
 
49.
Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol 2021; 11: 594150.
 
50.
Li C, Xiao P, Lin D, et al. Risk factors for intestinal barrier impairment in patients with essential hypertension. Front Med 2021; 7: 543698.
 
51.
Wagle R, Shi F, Ayyaswamy S, Durgan DJ. Examining the role of bacterial extracellular vesicles in host blood pressure regulation. Hypertension 2023; 80 Suppl 1, doi: 10.1161/hyp.80.suppl_1.086.
 
52.
Kitada K. Gut bacteria-derived extracellular vesicles and hypertension. Hypertens Res 2024; 47: 1994-5.
 
53.
Kim JY, Kim CW, Oh SY, et al. Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension. Hypertens Res 2024; 47: 1642-53.
 
54.
Dinakis E, O’Donnell JA, Marques FZ. The gut-immune axis during hypertension and cardiovascular diseases. Acta Physiol 2024; 240: e14193.
 
55.
Ferguson JF, Aden LA, Barbaro NR, et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 2019; 5: e126241.
 
56.
Yan X, Jin J, Su X, et al. intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ Res 2020; 126: 839-53.
 
57.
Jama HA, Marques FZ. Don’t take it with a pinch of salt: how sodium increases blood pressure via the gut microbiota. Circ Res 2020; 126: 854-6.
 
58.
Fagunwa O, Davies K, Bradbury J. The human gut and dietary salt: the Bacteroides/Prevotella ratio as a potential marker of sodium intake and beyond. Nutrients 2024; 16: 942.
 
59.
Wang X, Lang F, Liu D. High-salt diet and intestinal microbiota: influence on cardiovascular disease and inflammatory bowel disease. Biology 2024; 13: 674.
 
60.
Mishima E, Abe T. Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res 2022; 45: 246-53.
 
61.
Wang L, Hu J. Unraveling the gut microbiota’s role in salt-sensitive hypertension: current evidences and future directions. Front Cardiovasc Med 2024; 11: 1410623.
 
62.
Elijovich F, Laffer CL, Sahinoz M, Pitzer A, Ferguson JF, Kirabo A. The gut microbiome, inflammation, and salt-sensitive hypertension. Curr Hypertens Rep 2020; 22: 79.
 
63.
Galla S, Chakraborty S, Cheng X, et al. Disparate effects of antibiotics on hypertension. Physiol Genomics 2018; 50: 837-45.
 
64.
Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension – a case report. Int J Cardiol 2015; 201: 157-8.
 
65.
Pepine CJ, Thiel A, Kim S, et al. Potential of minocycline for treatment of resistant hypertension. Am J Cardiol 2021; 156: 147-9.
 
66.
Lin L, Xu S, Cai M, et al. Effects of fecal microbiota transfer on blood pressure in animal models: a systematic review and meta-analysis. PLoS One 2024; 19: e0300869.
 
67.
Zhong HJ, Zeng HL, Cai YL, et al. Washed microbiota transplantation lowers blood pressure in patients with hypertension. Front Cell Infect Microbiol 2021; 11: 679624.
 
68.
Zecheng L, Donghai L, Runchuan G, et al. Fecal microbiota transplantation in obesity metabolism: a meta-analysis and systematic review. Diabetes Res Clin Pract 2023; 202: 110803.
 
69.
Olveira G, González-Molero I. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol Nutr 2016; 63: 482-94.
 
70.
Maftei NM, Raileanu CR, Balta AA, et al. The potential impact of probiotics on human health: an update on their health-promoting properties. Microorganisms 2024; 12: 234.
 
71.
Niness KR. Inulin and oligofructose: what are they? J Nutr 1999; 129 (7 Suppl): 1402-6S.
 
72.
Delzenne NM, Cani PD, Daubioul C, Neyrinck AM. Impact of inulin and oligofructose on gastrointestinal peptides. Br J Nutr 2005; 93 Suppl 1: 157-61.
 
73.
Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta-analysis of randomized controlled trials. Adv Pharm Bull 2018; 8: 565-74.
 
74.
Dehghan P, Farhangi MA, Tavakoli F, Aliasgarzadeh A, Akbari AM. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: a randomized placebo-controlled Trial. Complement Ther Med 2016; 24: 96-102.
 
75.
Faghihimani Z, Namazi N, Ghaffari S, et al. Effects of inulin type-carbohydrates on blood pressure: a systematic review and meta-analysis. Int J Food Prop 2021; 24: 129-39.
 
76.
Qi D, Nie XL, Zhang JJ. The effect of probiotics supplementation on blood pressure: a systemic review and meta-analysis. Lipids Health Dis 2020; 19: 79.
 
77.
Zhao TX, Zhang L, Zhou N, Sun DS, Xie JH, Xu SK. Long-term use of probiotics for the management of office and ambulatory blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Food Sci Nutr 2022; 11: 101-13.
 
78.
Zarezadeh M, Musazadeh V, Ghalichi F, et al. Effects of probiotics supplementation on blood pressure: an umbrella meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2023; 33: 275-86.
 
79.
Khalesi S, Sun J, Buys N, Jayasinghe R. Effect of probiotics on blood pressure: a systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014; 64: 897-903.
 
80.
Teo YQJ, Chong B, Soong RY, Yong CL, Chew NW, Chew HSJ. Effects of probiotics, prebiotics and synbiotics on anthropometric, cardiometabolic and inflammatory markers: an umbrella review of meta-analyses. Clin Nutr 2024; 43: 1563-83.
 
81.
van Hemert S, Ormel G. Influence of the multispecies probiotic Ecologic® BARRIER on parameters of intestinal barrier function. Food Nutr Sci 2014; 5: 1739-45.
 
82.
Gomez Quintero DF, Kok CR, Hutkins R. The future of synbiotics: rational formulation and design. Front Microbiol 2022; 13: 919725.
 
83.
Hadi A, Pourmasoumi M, Kazemi M, Najafgholizadeh A, Marx W. Efficacy of synbiotic interventions on blood pressure: a systematic review and meta-analysis of clinical trials. Crit Rev Food Sci Nutr 2022; 62: 5582-91.
 
84.
Arabi SM, Bahrami LS, Rahnama I, Sahebkar A. Impact of synbiotic supplementation on cardiometabolic and anthropometric indices in patients with metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2022; 176: 106061.
 
85.
Naseri K, Saadati S, Yari Z, et al. Beneficial effects of probiotic and synbiotic supplementation on some cardiovascular risk factors among individuals with prediabetes and type 2 diabetes mellitus: a grade-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Pharmacol Res 2022; 182: 106288.
 
eISSN:1896-9151
ISSN:1734-1922
Journals System - logo
Scroll to top